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Abstract—Emerging GPUs have multiple Streaming Multiprocessors (SM), while each SM is comprised of CUDA Cores and Tensor

Cores. While CUDA Cores do the general computation, Tensor Cores are designed to speed up matrix multiplication for deep learning

applications. However, a GPU kernel often either uses CUDA Cores or Tensor Cores, leaving the other processing units idle. Although

many prior research works have been proposed to co-locate kernels to improve GPU utilization, they cannot leverage the Intra-SM

CUDACore-Tensor Core Parallelism. Specifically, ISPA designs persistent and elastic block to solve the thread slot and shared memory

contention between co-located kernels. ISPA also adopts the register allocation method to manage the register contention. These

resource management methods are applicable for both white-box kernels and cudnn kernels. Experimental results on an Nvidia 2080Ti

GPU show that ISPA improves the system-wide throughput by 15.3% for white-box workloads, and 7.1% for cudnn-based workloads

compared with prior co-location work.

Index Terms—Intra-SM parallelism, tensor core, GPU
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1 INTRODUCTION

NUMEROUS applications (for example, physical simula-
tion [1], neuroscience [2], and deep learning [3]) are

computationally intensive, and GPUs are commonly used to
supply this computational capacity. Nvidia introduced Ten-
sor Cores to accelerate matrix multiplication operations
(GEMM operation) since the Volta architecture [4], [5], [6].
Tensor Cores were limited to usage with the GEMM opera-
tion. A GPU program can utilize the Tensor Cores by using
the appropriate CUDA APIs [7] or cudnn library func-
tions [8]. Without these proprietary APIs and cudnn kernels,
applications that require matrix multiplication cannot take
advantage of the Tensor Cores.

The hardware design of a streaming multiprocessor (SM)
in today’s modern GPUs is depicted in Fig. 1. In general, a
GPU contains several SMs (an Nvidia RTX2080Ti GPU, for
example, has 68 SMs), and kernels are scheduled to execute
on the SMs. CUDA Cores and Tensor Cores are distinct
units that share the SM’s full memory stack. The general-
purpose operation is performed by CUDA Cores, whereas
matrix multiplication is accelerated by Tensor Cores.

In general, a GPU kernel is executed in warps (each warp
contains 32 threads), and an SM can execute multiple warps
concurrently [5]. When a warp’s data and computational
resources are ready, it starts to run. Thus, if two ready

warps each use Tensor Cores and CUDA Cores, they can
take use of two hardware’s parallelism. However, as illus-
trated in the left SM of Fig. 1, the current GPU launches all
the blocks of a kernel to the SM before the blocks of other
kernels. While a single kernel either only uses CUDA Cores
or primarily Tensor Cores, one computational resource is
squandered. (Tensor Cores require only a little assistance
from CUDA Cores, such as C matrix accumulation.)

This paper is aimed at the private datacenter scenario,
where all applications’ source codes are available, as many
previous works [9], [10], [11], [12], [13], [14] have indicated. In
private datacenters, multiple users concurrently submit vari-
ous applications to the GPUs. For example, deep learning
applications utilizing Tensor Cores and scientific programs
utilizing CUDA Cores may coexist on the same GPU [9], [10],
[15], [16]. In this case, by scheduling the kernel blocks as
shown in the right SMof Fig. 1, CUDACores andTensorCores
can be used concurrently, significantly increasing processing
throughput. Therefore, we propose ISPA, which exploits the
CUDA Core-Tensor Core parallelism by carefully scheduling
the blocks in the kernels of co-located applications.

Apart from ISPA, there are prior works co-locating multi-
ple GPU applications to optimize the throughput [9], [10].
Baymax [9] and Laius [10], for example, co-locate GPU
workloads to improve the system throughput while main-
taining low latency for high-priority applications. They
either reorder GPU task invocations or adjust SM alloca-
tions between GPU kernels based on the Nvidia MPS [17] or
CUDA stream [18]. However, both MPS and CUDA stream
launch kernels sequentially. A kernel’s block can be sched-
uled on an SM only if the resources in the SM have not been
used up. Since GPU kernels generally have many blocks to
hide the stall cycles due to data access, a kernel’s resource
occupation makes other kernels’ blocks unable to be sched-
uled on the SM. Therefore, these interfaces cannot directly
make use of the intra-SM parallelism due to their unaware-
ness of resource contention.
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There are four main challenges that must be resolved in
ISPA, without modifying the GPU hardware. Challenge-1:
the hardware driver provides the block scheduling algo-
rithm, which leads to the thread slots contention on the SM.
In this case, a mechanism is required to schedule the blocks
of different kernels to an SM concurrently. Challenge-2: the
size of shared memory in an SM is limited. A block cannot
be launched when the current blocks already take all the
shared memory space. A method is required to tune a
block’s shared memory usage to enable the intra-SM paral-
lelism. Challenge-3: Many applications rely on cudnn
library for high performance. cudnn kernels are black-box
and have an extreme register usage. A method is needed to
adjust the kernel’s register usage. Challenge-4: A runtime
scheduling strategy is required to carefully adjust the co-
running kernels’ block setup to maximize the throughput.

ISPA involves compilation and runtime schedule to
tackle the four challenges. Specifically, ISPA adopts persis-
tent block to solve GPU kernels’ unnecessary thread slots
occupation (Challenge-1). Moreover, ISPA discovers that
the GEMM task’s block size is adjustable. A smaller block
size brings less shared memory usage. Based on this insight,
ISPA proposes an elastic block technique to solve the shared
memory contention (Challenge-2). Besides, ISPA discovers
that DNN applications use the specific internal implementa-
tion though cudnn kernels have multiple implementations.
ISPA locates the specific implementation through profiling
the long-running applications. Besides, ISPA adjusts the
kernel’s register usage through compilation options (Chal-
lenge-3). Using these above three optimization methods,
ISPA provides several versions for each kernel.

Lastly, ISPA uses an online-offline collaborativemethod to
make scheduling decisions (Challenge-4). In the offline, ISPA
searches the optimal configurations for mainstream kernel
pairs and constructs their duration prediction models. When
real-system applications arrive randomly, ISPA makes co-
running decisions based on offline information and online
queue status to maximize the system throughput. Note that,
the main insight of ISPA is that the kernels could enjoy the
intra-SMparallelismwhen the resource contention on the SM
is solved. Therefore, ISPA utilizes these three resource man-
agement methods to exploit the intra-SM parallelism with
CUDA stream, which is unaware of the resource contention.
Besides, all kernel versions are generated automatically. The

only effort for programmers is to check the correctness of
elastic-block kernel versions.

The main contributions of ISPA are as follows:

� Comprehensive analysis of the intra-SM CUDA Core-
Tensor Core parallelism. We identify the factors that
impact the CUDA Core-Tensor Core parallelism.
The analysis motivates the design of ISPA that maxi-
mizes the GPU throughput with co-location.

� The design of fine-grained resource management techni-
ques.We could adjust a kernel’s issued block number
and shared memory usage by adopting the persis-
tent and elastic block. We could also adjust the ker-
nel’s register usage using the compilation flag.

� The in-depth analysis of the cudnn kernel’s resource usage
and their scheduling method. We characterize the
resource usage characteristics for cudnn kernels, and
make the scheduling strategy.

� The pure software implementation without hardware
modification. ISPA is applicable for current in-produc-
tion GPUs to improve resource efficiency.

We evaluate ISPA on an Nvidia 2080Ti GPU. Our experi-
mental results show that ISPA improves the system-wide
throughput by 15.3% for white-box workloads and 7.1% for
cudnn-based workloads compared with prior work.

2 RELATED WORKS

Co-locating applications in datacenters has been an active
research area because it can improve the utilization. There
are twomain directions about the tasks co-location: through-
put improvement and quality of servicemanagement.

There are prior works focus on improving the throughput
of the GPU system. Some works improve the throughput by
focusing on the schedulingmode, and other researches target
the resource management. For example, SMK [15] enables
block-level scheduling by adding the function of block pre-
emption in the GPU. Maestro [19] is proposed to change the
multitasking mode for better performance on GPUs dynami-
cally. Besides, many works [20], [21], [22] focus on the SM
management in multitasking GPUs. These approaches man-
age the SM allocation based on classification or prediction.
Compared with ISPA, these works use simulators to validate
their ideas’ effectiveness, which is not supported in in-pro-
duction GPUs. Besides, they do not consider the case of two
computing units, whichmakes them fail to work.

Some researches focus on the kernel’s block dimensions
and thread-level parallelism to improve the throughput. For
example, DYNCTA [23] allocates fewer blocks for applica-
tions suffering from memory bandwidth contention. How-
ever, GPU memory bandwidth has kept growing recent
years while the maximum TLP remains the same. The mem-
ory bandwidth contention between blocks is not a critical
problem nowadays. Pai et al. [24] propose elastic kernels to
permit fine-grained resource usage. However, this method
cannot be applied to the kernels using shared memory.

Quality of service management is also a popular research
direction [9], [10], [25]. With the support of MPS scheduling,
Baymax [9] predicts performance interference among co-
located GPU applications for a temporally shared GPU.
Laius [10] predicts the kernel duration and reorders the

Fig. 1. Difference between ISPA and prior work.
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kernel on the spatial multitasking GPUs. TimeGraph [26]
and GPUSync [27] use priority-based scheduling to guaran-
tee the performance of real-time kernels. High-priority ker-
nels are executed first if multiple kernels are launched to
the same GPU. Since these works all rely on the MPS [17]
which is kernel-level scheduling, they could not exploit the
two hardware parallelism. All these works focus on high-
priority applications’ performance, which are inapplicable
for throughput problems.

Besides these above researches, there are [28], [29], [30],
[31], [32] also works for microbench’s performance model
development for NVIDIA GPUs, which are orthogonal to
our work.

3 MOTIVATION

In this section, we first present the background and the par-
allelism possibility of Tensor Core and CUDA Core. Second,
we identify the constraints of existing scheduling interfaces
on co-running tasks, which motivates our work.

3.1 Background and Experimental Setup

We use an Nvidia RTX 2080Ti GPU (Turing architecture) [5]
as the experimental platform throughout this paper. Table 1
lists the detailed hardware specification of the experimental
platform. In the conference version, we comprehensively
validate the two computing units’ parallelism by customiz-
ing two well-tuned GPU kernels. Briefly, we implement
KernelA to be a kernel that performs GEMM operation
based on the Nvidia sample code [7] using Tensor Cores.
We implement KernelB to be a kernel that uses CUDA
Cores. Both KernelA and KernelB have 68 blocks with 512
threads, and they have the same solo-run duration.

We use the metric Makespan Reduction to measure the
degree that the two kernels are processed in parallel. Equa-
tion (1) calculates the makespan when co-running two ker-
nels. In this equation, T1, T2, and Tcolo represent the solo-run
time of the first kernel, the solo-run time of the second ker-
nel, and the total makespan of completing the two kernels
at co-location.

Makespan Reduction ¼ T1 þ T2 � Tcolo

T1 þ T2
(1)

When twoKernelA or twoKernelB co-run, the makespan
reduction is 0. When KernelA and KernelB co-run, the
makespan reduction is 45%. This is mainly because the two
kernels’ blocks run in parallel on the Tensor Cores and
CUDA Cores. There is potential intra-SM parallelism, if the co-
running kernels use different processing units. Note that, the
makespan reduction does not reach 50%. This is because
GEMM kernel has the computation part relying on CUDA
Core, such as the C matrix accumulation.

3.2 Poor Utilization of the Intra-SM Parallelism

We then investigate whether real-system applications can
benefit from the intra-SM parallelism. We refer to the
kernel that uses CUDA Cores as CD kernel, and the ker-
nel that uses Tensor Cores as TC kernel for easing of descrip-
tion. In this experiment, we choose an open-source GEMM
kernel used in Nvidia cutlass [33], [34] (tgemm) and
cudnnConvolutionForwardðÞ kernel (cuconv) as TC kernel.
We use all fifteen scientific applications’ kernels from Parboil
benchmark [35] suite as CD kernel.

Besides, CD kernels’ input parameters are all set as
default. They have been extensively studied and have stable
resource usage. For cuconv kernel, we choose the parame-
ters of Resnet50’s [36] first two convolution layers with a
batch size of 32. Since convolution operation could be trans-
formed to im2col operation [37] and GEMM operation, we
configure the tgemm using the GEMM parameters corre-
sponding to the above two convolutional layers. Fig. 2
shows the makespan reduction of co-running TC kernel and
CD kernel using CUDA stream. As shown in the figure, all
kernel pairs have no make reduction.

The real-system applications cannot utilize the intra-SM
parallelism due to the intrinsic scheduling logic of CUDA
stream. Only when all the blocks of a kernel are launched
on the SM, and the SM’s resources are not used up, another
kernel’s blocks could be scheduled on the SM. The resources
include thread slots, shared memory, and register. Since
CUDA stream is unaware of the resource contention, the
kernels may execute sequentially due to the contention.

We then collect all kernels’ issued block number per SM
(“issued blk_num”) and the maximum resident block num-
ber on SM (“max blk_num”). On this basis, we profile their
resource usage on the SM. As shown in Table 2, we have
three observations from this table.

First, all kernels launch a large number of blocks to the SM,
which far exceeds the maximum resident block number. A
launched kernel prevents the latter kernel’s block from launch-
ing. This is identified as the thread slot contention. Second, 10
of 19 kernels require sharedmemory, and 3 of 4 TC kernel cases
use all the sharedmemory. If there is no thread slot contention,
co-located kernels also suffer serious shared memory conten-
tion. Third, tgemm kernel with different parameters have the
same resource usage, while cuconv kernel does not. This is
because cudnn is the packaged library. It has multiple internal
implementations, and the calling logic is based on parameters.
Since the internal implementations and calling logics are black-
boxed, cuconv’s resource usage at runtime is unclear. More-
over, cuconv kernels use more than 69% registers with only
25% thread slots. There is severe register contention.

Based on the above analysis, we can conclude that kernel
co-location is first limited by the sequential scheduling
logic, bringing the thread slots contention. Second, GPU
kernels contend for memory resources, such as shared

TABLE 1
Specifications of an Nvidia RTX 2080Ti GPU

Resource Value Resource Value

Number of SMs 68 Max Threads per SM 1024
Registers per SM 65536 Shared Memory per SM 64 KB

Fig. 2. Makespan reduction of kernel pairs.
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memory and registers. Third, cudnn kernels’ resource usage
is unclear, and their implementations are black-box. There-
fore, the kernel co-location with CUDA stream suffers from
low makespan reduction. We propose ISPA to exploit the
intra-SM parallelism for higher system throughput.

4 OVERVIEW OF ISPA

To solve the problems in taking advantage of Intra-SM par-
allelism, we design and implement ISPA. Fig. 3 shows the
design overview of ISPA. ISPA targets the GPU scheduling
optimization on the private cloud, and administrators have
access to mainstream applications’ implementations.

As shown in Fig. 3, ISPA is comprised of an enhanced
source-to-source compiler, a throughput-oriented strategy maker,
and an online kernel scheduler. The enhanced source-to-
source compiler designs persistent and elastic block to man-
age the thread slot and shared memory usage, and also
utilizes the compilation flags to manage the register alloca-
tion (Challenge-1&2). With the compiler’s support, the
throughput-oriented strategy maker searches the optimal
co-running configurations and constructs the duration pre-
diction models for mainstream kernel pairs. Besides the
white-box TC kernels, the strategy maker also supports
cudnn kernels (Challenge-3). Finally, based on these sched-
uling strategies, the kernel scheduler makes real-time
scheduling decisions to maximize the GPU throughput
(Challenge-4). In more detail, ISPA works as follows.

1) The enhanced source-to-source compiler provides
three compilation optimization methods. First, the
compiler could transform GPU kernels to persistent
block mode to resolve thread slot contention. Second,
the compiler could generate TC kernels’ elastic block
versions using smaller block sizes. Third, the com-
piler supports the register allocation using the
maxrregcount compilation flags.

2) We collect all the TC kernels on the cloud and the
mainstream CD kernels based on their historical
usage. For the kernel pairswithwhite-box TC kernels,
the throughput-oriented strategy maker searches the
optimal co-running configurations from all the possi-
ble ones. The configuration includes the block size,
persistent block number, and register usage. With the
optimal co-running configuration, we further con-
struct the duration prediction models. For the kernel
pair with cudnn kernels, We first obtain these cudnn
kernels’ resource usage, and further adjust the co-
located kernel’s resource usage to get the maximum
throughput.

3) When multiple GPU tasks arrive in real-time, the
online kernel scheduler classifies the tasks’ kernels
into TC kernels and CD kernels. The online sched-
uler tracks the running kernels’ status on the GPU
and selects two co-running kernels from different
tasks using different hardware.

Through the above scheduling method, ISPA improves
the system-wide GPU throughput by exploiting the intra-
SM parallelism. Note that, since GPU applications are often
stable and long-running, administrators of private clouds
generally have access to the mainstream applications’ codes,
and the offline overhead is acceptable (Section 7). Besides,
ISPA could automatically use three resource management
methods. All kernel versions are generated by our source-
to-source compiler. While the GEMM task using Tensor
Cores naturally supports the elastic block, legacy applica-
tions with CUDA Cores require programmers’ directives.
Therefore, the only effort for programmers is to double-
check the correctness of elastic-block kernel versions.

5 SOURCE-TO-SOURCE COMPILER

5.1 Thread Slot Management

5.1.1 Persistent Block

As discussed in Section 3, GPU kernels often use a large
number of blocks to hide the stall cycles due to data access,
and the co-running kernels contend for the thread slots. To
alleviate the slot contention, we adopt the persistent block
technique (PTB) [38] to adjust a kernel’s resident block num-
ber on an SM. The persistent block is abstracted as the block
worker, which is permanently resident on the GPU until the
kernel completes. Each persistent block is responsible for
multiple original blocks’ computation. The optimal persis-
tent block number means minimum residency of blocks that

TABLE 2
Resource Usage of All Kernels

Kernel max issued thread shared reg

blk_num blk_num slot mem size

tgemm-1 1 3137 25% 100% 50%
tgemm-2 1 1568 25% 100% 50%
cuconv-1 1 1568 25% 64% 69.5%
cuconv-2 2 1568 25% 100% 79.2%

bfs 2 6 100% 39.34% 46.88%
cp 7 3 37.25% 0 41.02%
cutcp 8 258 100% 25% 68.75%
fft 8 15 100% 25% 51.56%
histo 1 3 100% 37.5% 40.63%
img 1 10 100% 75% 60.94%
lbm 8 30 100% 0 93.75%
mrif 4 15 100% 0 54.69%
mriq 4 120 100% 0 53.13%
pns 3 3 100% 9.38% 73.83%
regtil 8 15 100% 0 90.63%
sgemm 6 121 100% 4.69% 91.41%
spmv 8 16 100% 0 76.56%
stenc 8 15 100% 12.5% 76.56%
tpacf 3 3 100% 56.25% 58.59%

The bold values are used to prompt the readers about the three observations.

Fig. 3. Design overview of ISPA.
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has comparable performance to the maximum occupancy of
SM.

For the Parboil benchmarks [35], Table 3 shows the opti-
mal persistent block numbers (“opt”) and the maximum
resident block numbers (“max”) of their main kernels. The
optimal persistent block number is profiled using the algo-
rithm in Section 6, and the maximum resident block number
is profiled with CUDA interface. As observed, there is a gap
between the optimal persistent block number and the maxi-
mum resident block number, not to mention the issued
block number. It is not always necessary to launch a large num-
ber of blocks for a kernel to achieve high performance. Based on
this observation, we adopt the persistent block technique to
resolve the thread slot contention.

Table 4 shows the hardware resource usage of fft,
sgemm, and tgemm with two kernel versions. Other ker-
nels also have similar results. As observed, all kernels’ two
versions have the same core utilization and issue unit utili-
zation. Since the issue unit utilization reflects the instruc-
tion execution speed, it directly determines the kernel’s
duration. Based on that, the PTB-based kernel version
could achieve the same performance as the original kernel
version. Also, two versions may have different L2 hit rates
and DRAM utilization. This is because the PTB-based ker-
nel has fewer active threads, which leads to fewer memory
requests.

Some works [23] focus on optimizing kernel performance
by tuning thread-level parallelism (TLP). They state that the
maximum TLP leads to high amounts of idle time at the
cores. The primary reason is high memory access latencies
with limited memory bandwidth. This work is fully based
on the GPU simulator. However, our experimental results
indicate that tuning TLP with PTB for the same benchmark
does not bring performance improvement. We have the
same results on Nvidia 1080Ti, P100, V100, and 2080Ti.
Therefore, our approach does not enjoy any performance
improvement from PTB.

We also conduct application-level performance experi-
ments after transforming all the kernels to the PTB version.

In Parboil, 11 of the 15 applications have multiple kernels.
In addition to Parboil, we also choose five commonly used
DNN models (Resnet50, ReNext, VGG16, Inception, Dense-
net) for this experiment. Fig. 4 shows the performance dif-
ference between the PTB-based and original tasks. Index
1 - 15 represents the tasks from Parboil, while index 16 - 20
represents five DNN models. As observed, the average per-
formance difference of all tasks is 1.1%. This means that the
PTB technique does not bring severe performance degrada-
tion. The main reason behind the result is PTB-based kernel
has the same instruction issue efficiency.

5.1.2 Automatic Compilation

We use automatic source-to-source compilation to convert a
kernel into the PTB version. The compilation process is
divided into three steps. First, we identify the original ker-
nel function. Second, we replace the “blockId” in the origi-
nal function with new variables to ensure correctness.
Lastly, we add related logic to loop the original blocks’
computation.

5.1.3 Experimental Results

We also conduct the co-running experiments same as that in
Section 3. While the cudnn kernels are black-box, we only
apply the persistent block transformation to the code-avail-
able kernels. Fig. 5 shows the makespan reduction of the
kernel pairs with the PTB technique.

As observed, the co-running between six CD kernels and
tgemm has a makespan reduction of 28.8% on average. The
co-running between eight CD kernels and cuconv reduces
the makespan of 9.6% on average. Meantime, other kernel
pairs have little makespan reduction. The improved make-
span reduction comes from two reasons. First, after the ker-
nels are converted to persistent block mode, they avoid
unnecessary thread occupation. Second, the six CD kernels
mainly contend for thread slots with TC kernels but not for
memory resources.

5.2 Shared Memory Management

While there is no official shared memory multiplexing tool
between kernels, we focus on the connection between
shared memory size, block size, and performance. We pro-
pose elastic block to solve the shared memory contention by adjust-
ing the block size.

TABLE 3
Optimal PTB Block Number of Different Kernels

tgemm bfs cp cutcp fft histo img lbm

max 1 2 7 8 8 1 1 8
opt 1 1 4 8 2 1 1 1

mrif mriq pns regtil sgem spmv stenc tpa

max 4 4 3 8 6 8 8 3
opt 1 3 1 4 3 1 4 3

TABLE 4
Resource Usage for Different Kernel Versions

fft fft sgemm sgemm tgemm tgemm

Version ORI PTB ORI PTB ORI PTB

Issue unit (%) 14.9 14.7 29.1 28.8 9.54 9.51
Core (%) 15.3 15.1 41.5 40.9 33.1 32.9
L2 hit rate (%) 50.2 50.2 23.3 48.6 81.9 81.9
Dram (%) 5.0 4.9 74.4 47.1 24.6 24.7

Fig. 4. Performance difference between PTB-based task and original
task.

Fig. 5. Co-running two kernels in persistent block mode.
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5.2.1 Elastic Block

TC Kernel. Tensor Cores can only perform GEMM task,
which has been extensively studied. As shown in Fig. 6, a
GEMM task generally divides the result matrix (C matrix)
into multiple tiles, and each tile’s computation corresponds
to one block. At each moment, each block only loads partial
A matrix and B matrix into the shared memory due to the
space limitation. Each block then slides on the K dimension
to complete all computations and obtain the correct result.

Shared mem ¼ðtile x� tile kþ tile y�tile kÞ�sizeofðhalfÞ
tile x� tile k / block size

tile y� tile k / block size (2)

Specifically, each block reads the A matrix of tile k�
tile x and the B matrix of tile k� tile y to the shared mem-
ory. Equation (2) shows the shared memory usage used by
a block. Since the block’s threads load the data from the
global memory to shared memory collaboratively, we can
observe the linear relationship between block size and
shared memory usage. According to Equation (2), when the
block size reduces, the tile size becomes smaller, and the
shared memory usage reduces. We refer to the kernel with a
smaller block size as the kernel’s elastic block version.

CD Kernel. Since Tensor Cores could only deal with the
matrix multiplication, the TC kernels naturally support
adjusting the block size. While CUDA Cores support vari-
ous tasks, it is unknown for CD kernels. We then investigate
whether the benchmarks of Parboil [35] have adjustable
block sizes. Experimental results show that 13 of 15 bench-
marks support block size adjustment. The rest two bench-
marks with simple modification also support it.

These GPU kernels have adjustable block sizes because
they all belong to one basic programming model, as shown
the Output1 in Fig. 7. While GPU programming divides a
task into multiple subtasks, each block targets for a subtask.
One GPU kernel may have multiple inputs and multiple
outputs. As for each block, it performs the computation
based on the sub-inputs to obtain the right sub-outputs. We

could also calculate each block’s shared memory usage,
which is shown in Fig. 7. Assuming there are N sub-inputs,
we could calculate the overall shared memory usage in
Equation (3), similar to Equation (2). Therefore, the shared
memory usage has a linear relationship with the block size.

Shared mem ¼
XN
i¼1

sub inputi � sizeofðsub inputiÞ

sub inputi / block size i 2 ½1; N� (3)

Note that, our elastic block technique is different from
the elastic kernel proposed by Pai et al. [24]. They only focus
on the kernels without shared memory usage. Their method
is more like the PTB technique, which adjusts the TLP.

5.2.2 Automatic Compilation

We use the automatic source-to-source compilation to gener-
ate a kernel’s elastic block versions. The compilation process
is divided into four steps. First, we identify the macros or
constant values that assign the shared memory usage. Sec-
ond, we identify the variables related to the block dimen-
sions. Third, we locate the variables related to the shared
memory values and block dimensions using the abstract syn-
tax tree. Fourth, we modify these variables to create the elas-
tic block version, and give a kernel version with the same
result as the original version under the default parameters.
The only effort for programmers is to double check the cor-
rectness of these elastic-block kernel versions. Besides, since
these kernel versions have different shared memory usage,
we need to decide to call different kernel version at the run-
time. This part is elaborate in Sections 6 and 6.3.

5.2.3 Experimental Results

We then verify the effectiveness of elastic block mechanism.
As shown in Fig. 8, the co-running between the remaining
nine CD kernels and tgemm gains a makespan reduction of
16.1%. The co-running between seven CD kernels and
cuconv gains a makespan reduction of 10.1% on average.
The improved makespan reduction comes from the fine-
grained shared memory management. While the elastic
block mode uses less shared memory, more parallelism is
exploited. Besides, the cuconv kernel still mainly relies on
GEMM for calculation [34], [39], though these kernels are
black-box. If we can have access to their source code, we
can also generate the corresponding elastic block version.

5.2.4 Discussion About Elastic Block

1) Programming mode. Besides the above mode, there are
also other programming modes. For example, some
threads in a block are not responsible for the output

Fig. 6. Matrix mulitplication.

Fig. 7. The basic programming model.

Fig. 8. Co-running two tasks in persistent and elastic block.

1478 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023



computation,while common threads are. These threads
go to the specific computation path based on the condi-
tional expression. The expression is related to the thread
index, which is generally hard-coded. In this case,
adjusting the block size directly may incur the correct-
ness problem of the condition. We further investigate
the programming modes in mainstream benchmarks.
We choose the kernels from Parboil [35], Rodinia [40],
and CUDA official samples. 81.6% of GPU kernels in
more than 120 kernels belong to the basic programming
model. Since private cloud administrators have access
to the applications’ implementations, it is easy to check
the possibility for elastic block.

2) Performance degradation. When the block size reduces,
the shared memory usage reduces, which may bring
more global memory accesses. More memory accesses
may lead to performance degradation. Experimental
results show that only bfs and histo in Parboil have a
5.1% performance degradation on average. Besides,
we collect the matrix multiplication parameter from
five mainstreamDNN networks. Experimental results
show that 81.2% of input parameters have perfor-
mance degradation under 7%.

To explain the above results, we take the tgemm kernel as an
example to make a qualitative analysis. Original tgemm ker-
nel only has one running block in each SM at each moment.
The block is responsible for one result tile. As shown in
Equation (4), the result tile’s computation time could be
divided into four parts: the loading time of A and B matrix,
the computation time of the result tile, the store time of the
result tile, and other auxiliary times. Since tile x and tile y
are constant for the original kernel, we could derive Equa-
tion (5). One tile’s computing time is proportional toK.

Torigin ¼ Tload þ Tcompute þ Tstore þ Tothers

Tload ¼ mem loadðtile x �K þ tile y �KÞ
Tcompute ¼ computeðtile x � tile y �KÞ

Tstore ¼ mem storeðtile x � tile yÞ (4)

T origin ¼ a�K þ b�K þ c (5)

When the block size is halved, two blocks perform com-
putation on each SM at each moment. Each block is respon-
sible for one sub-tile. Meanwhile, the halved block size
brings halved tile x and halved tile y. Therefore, the origi-
nal tile is divided into four sub-tiles, and each block needs
to complete the calculation of two sub-tiles. Since the sub-
tile’s computation division is the same as the original tile,
we could get the two blocks’ computation time and the ker-
nel’s duration from Equation (6).

Telastic ¼ 2� T2�sub�tile

¼ 2� Tload þ Tcompute þ Tstore þ Tothers

¼ 2� a�K þ b�K þ c (6)

Based on Equations (5) and (6), we could derive the per-
formance degradation, as shown in Equation (7).

Perfdiff ¼ Telastic � Torigin

Torigin
¼ a�K

a�K þ b�K þ c
(7)

Based on Equation (7), whenK is relatively small, the per-
formance degradation of elastic block is limited. We further
investigate the input parameters of the GEMM kernel for all
DNN models. 86.3% of K is less than 1152, while tile x and
tile y are 128. Besides, the GEMMkernel uses manymemory
optimization methods, such as memory coalescing and con-
tinuous data loading (use float4 to load half data). These
methods reduce the impact of extra memory accesses. Fur-
thermore, while the block size is halved, the queuing of two
blocks at the memory controller introduces an implicit pipe-
line. Since the original kernel only has a block, the memory
access and computation could only be performed sequen-
tially. The implicit pipeline also reduces the negative impact.
Based on the above three reasons, the performance degrada-
tion of the elastic block version is limited. Likewise, the per-
formance degradation of other kernels is also limited.

5.3 Register Management

As mentioned in Section 3, cuconv kernel is prone to bring
the register contention. We count the elastic block numbers
that all kernels could launch to the SM while co-running
with cuconv. Meanwhile, we also record the resource type
that restricts the kernel from launching more blocks. As
shown in Tables 5, 13 in 15 kernel pairs are limited by regis-
ter contention, consistent with our analysis.

NVIDIA provides two register allocation methods to
launch more blocks to the SM and increase the kernel’s
occupancy. First, an application could optionally provide
additional information to the compiler in the form of launch
bounds. Launch bounds specify maxThreadsPerBlock and
minBlocksPerMultiprocessor. If launch bounds are speci-
fied, the compiler derives the upper register limit L. Second,
an application could optionally add a compiler flag
maxrregcount to hard limit the register number used by the
kernel. It forces the compiler to rearrange the register usage.

Since the first method targets the solo-run kernel, it can-
not set a hard upper limit for the register usage. Therefore,
we choose the second allocation method. Note that when
the compiler cannot stay below the imposed limit, it will
simply spill the register to local memory. These local varia-
bles are stored in global DRAM memory, and they can be
cached in L1 cache and L2 cache. Therefore, excessive regis-
ter reduction could bring the memory system pressure.
Therefore, we just adjust the register usage to launch one
more block instead of the original resident block number.

We perform the experiments with cuconv after the CD
kernels are applied with register control. Fig. 9 shows the
corresponding experimental results. While there is no regis-
ter contention for the tgemm, the kernel pairs with tgemm
do not gain throughput improvement. Besides, four kernel

TABLE 5
Resources Limit of Different Kernels

kernel bfs cp cutcp fft histo img lbm

PEB blk 2.6 4.5 3.6 4.7 3.5 4.0 2.6
Resource Shared REG REG Shared REG REG REG

kernel mrif mriq pns regtil sgem spmv tpacf

PEB blk 4.5 4.7 2.6 2.7 4.0 3.2 3.1
Resource REG REG REG REG REG REG REG
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pairs (cp, cutcp,mrif ,mriq) with cuconv have further reduce
the makespan by 3.1% on average. This is because these four
kernels launch one more block on the SM, which better uti-
lizes the computing resources. Therefore, the kernel pairs
exploit more parallelism.

6 COLLABORATIVE SCHEDULING

As mentioned in Section 5, we can use three methods to
manage thread slot, shared memory, and register usage.
However, how the kernel’s elastic block version, persistent
block number, and register usage are determined at runtime
is still unknown. Besides, we are unaware of the cudnn ker-
nels’ resource usage. Customizing the scheduling strategy
for the cudnn kernel is also a non-trivial problem.

Specifically, three problems should be solved for the run-
time kernel scheduling. First, what are the resource usage
characteristics of cudnn kernels, and how to perceive their
resource usage at runtime? Second, how to determine the
kernel’s resource usage at the runtime? Third, how to
choose the co-running kernel pairs at the runtime?

ISPA uses an online-offline collaborative method to iden-
tify the scheduling that results in high system-wide
throughput. While the cloud hosts long-running applica-
tions, we select mainstream kernels based on their usage,
and generate all possible TC-CD kernel pairs. The offline
strategy maker first perceives the resource usage of the
cudnn kernel used by a DNN service (Problem 1). Second,
the strategy maker searches for the optimal persistent block
number for all kernel versions. Based on the optimal persis-
tent block number, the strategy maker locate the optimal
configuration pair based on the co-running performance for
each kernel pair (Problem 2). Third, the strategy maker con-
structs the duration prediction model for each kernel pair
with optimal configurations. Finally, based on the configu-
rations and duration models from the offline, the online
scheduler performs online kernel scheduling(Problem 3).

6.1 Cudnn Kernel Profiling

As mentioned in Section 3, the cudnn kernels have different
resource usage when using different input parameters.
Although the official document does not present any infor-
mation about the kernel’s resource usage, it indicates that
the function calls of the cudnn kernel are deterministic. Intu-
itively, we could record the resource usage of cudnn kernels
under all parameters of a DNN service, and customize the
scheduling policies for them, respectively. However, such
an approach brings severe offline profiling overhead.

We then comprehensively analyze the cudnn kernel’s
resource usage to reduce the profiling overhead. In the full
log from nsight, we find that each call has the internal func-
tion name it uses. The internal function selection is done by
the cudnn kernel. We statistic the internal implementations

when the five DNN models in evaluation are configured
with BS as 32 and 16. Experimental results show that there
are seven internal implementations for these models. Fig. 10
presents the name of an example implementation and its
definition rules. Table 6 shows the resource usage of these
internal implementations.

We have several observations from the above table. First,
we could get the internal implementation names through
nsight, butwe cannot control the launch of these kernels. Sec-
ond, the internal implementation usage is determined by the
cudnn kernel, and the number of these implementations is
limited. Third, the batch size of a DNN service also deter-
mines the cudnn kernels’ implementation. Fourth, existing
cudnn kernels exhibit similar resource usage characteristics.
All kernels use limited thread slots and a large amount of
sharedmemory. Half of the register usage is over 70%.

We maintain two tables to support the cudnn kernel
scheduling based on the above observations. The first table
records the internal implementation used by a DNN service
with different batch sizes. We inquire about the first table to
perceive the cudnn kernel’s internal implementation at run-
time. Besides, the second table record the resource usage of
all the possible cudnn kernel’s internal implementations.
We use these resource usage to tune the CD kernel’s config-
uration for optimal throughput offline.

6.2 Locating the Optimal Persistent Block Setup

While persistent block is needed for resolving the thread
slot contention, we need transform all the possible kernel’s
all the versions (original version or elastic version) to the
persistent block mode. Therefore, we design a searching
method based on dichotomy to locate the optimal persistent
block number (blkopt) for each kernel. The kernel’s original
performance is used as the baseline and the input for the
search process. The searching range for blkopt is between 1
and the maximum resident block number (blkmax).

Since the persistent block version’s performance with
blkmax is equal to the original kernel’s performance, we skip
its performance test and begin with blktest ¼ ðblkmin þ
blkmaxÞ=2. If the performance is equal to the baseline, we set
blkmax to blktest and decrease blktest to ðblkmin þ blkmaxÞ=2. If
the performance is worse than the baseline, we set blkmin to
blktest and increase blktest to ðblkmin þ blkmaxÞ=2. When all
possible block numbers are searched, the optimal block
number of the kernel is returned. While the max resident
block of the SM is 16, each kernel requires up to 4 profiling
steps to search for the optimal persistent block number.

Fig. 9. Co-running two kernels with further register control.

Fig. 10. The definition of internal implementation names.

TABLE 6
The Resource Usage of Cudnn Kernels

CONV TYPE T1 T2 T3 T4 T5 T6 T7

Register (%) 69.5 79.3 79.3 67.2 82.8 73.4 76.9
Shared memory (%) 64.0 100 64.0 64.0 100 76.8 76.8
Max DRAM BW (%) 32.5 64.1 42.8 70.3 50.2 41.9 32.2
FP32 utilization (%) 0 0.31 0 0.19 0 0 0
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6.3 Identifying Optimal Configuration Pairs

Then, we need to customize the scheduling strategy for all
possible kernel pairs. For a kernel pair, we need to select
each kernel’s specific version (original version or elastic ver-
sion) and its persistent block number. Since elastic block
may bring performance degradation, we only create the
halved and quartered block versions for each kernel. On
this basis, each kernel has three kernel versions, which
could be configured with multiple persistent block num-
bers. Besides, register optimization needs also be consid-
ered. A complete search process for the configurations has
OðN4Þ complexity. Therefore, we design a configuration
search method to optimize this search process, as shown in
Fig. 11.

Our searching method is divided into four steps. First,
we reduce the elastic block version of each kernel. We only
focus on the kernels that have performance degradation
within the specified threshold. In this paper, we set the
threshold to 20%, because the average makespan reduction
is about 25%. Second, for a version pair of a kernel pair, we
determine the kernel’s persistent block number based on
resource usage. After the TC kernel’s blocks reserve some
resources, we calculate the possible CD kernel’s block
number based on resource slack. If the possible persistent
block number is less than half of the optimal block num-
ber, we skip the co-running performance test. This is
because a kernel’s performance is almost halved when the
possible persistent block number is half of the optimal
one. Third, we consider the register allocation optimiza-
tion method to enlarge the kernels’ parallelism. As dis-
cussed in Section 5.3, we could only use the register
allocation method to launch one more block on the SM.
Fourth, if we do not gain the parallelism using the CD ker-
nel’s halved version while launching more than half the
optimal block, we no longer perform the test with the
quartered version. This is because the halved version
already launches enough blocks.

The above searching method also supports cudnn ker-
nels. The only difference is that cudnn kernels only have the
original version. Moreover, each kernel pair requires four
searches on average with the search method. Through the
above configuration pair search, ISPA identifies the optimal
co-running configuration pairs for mainstream TC-CD ker-
nel pairs, and records their makespan reduction.

6.4 Duration Prediction Models

After we locate the optimal configurations for the kernel
pairs, we need to consider the co-running decision for the
runtime kernel scheduling. Equation (8) shows the through-
put gain of a kernel pair. As observed, the kernels’ co-run-
ning gain is determined by the solo-run durations of two
kernels and the co-running duration of two kernels. There-
fore, We need to construct the duration prediction models
for these three durations for making runtime scheduling
decisions to maximize the throughput.

Throughput gain ¼ Tseq � Tcolo ¼ T1 þ T2 � Tcolo (8)

For the kernel’s solo-run duration prediction, previous
works [9], [22] choose Linear Regression from various pre-
diction models. We also choose LR as the duration predic-
tion model due to its high precision. The inputs of LR
models are the kernel’s grid dimensions, and the output is
the kernel’s solo-run duration. For the kernel pair’s co-run-
ning duration prediction, the models proposed by previous
works could not provide accurate duration predictions.
This is because these models work in cases where the kernel
runs exclusively on the SM. Multiple kernels’ blocks now
could run in the SM simultaneously.

To construct a model for the kernel pair’s duration pre-
diction, we need to find a new model for the kernels’
co-running duration. Previous works may rely on the hard-
ware counters for duration prediction. However, since per-
formance counters in real-world GPUs are not available at
runtime, we could not predict the kernels’ co-running dura-
tion with the hardware counters. Therefore, we try to study
the co-running duration through extensive profiling.

Theoretically, the co-running duration could only be
effected by two kernels’ load. These two parts correspond
to the original time of TC kernel and CD kernel, and we use
Ttc and Tcd to represent them. To simplify the co-running
duration modeling from two variables, we then define a
metric LoadRatio as LoadRatio ¼ Tcd=Ttc. Based on that, our
profiling experiments could be divided into two parts:
changing load ratio with fixed TC kernel’s load, and chang-
ing TC kernel’s load with fixed load ratio.

For the first experiment, we fix the TC kernel’s load, i.e.,
with static Ttc, and model the kernel pair’s duration with
CD kernel’s different loads, i.e., a changing Tcd. Fig. 12a
shows the kernel pair’s duration of the tgemm-fft. The x-axis
is the load ratio; and the y-axis is the kernel pair’s co-run-
ning duration normalized to the Ttc. From the figure, the
duration fits a two-stage linear regression model.

For the second experiment, we fix the load ratio, i.e., with
static LoadRatio, and model the kernel pair’s duration with
TC kernel’s different loads, i.e., a changing Ttc. Fig. 12b
shows the duration curves with random load ratios. The
x-axis is the TC kernel’s load, and the y-axis is the kernel
pair’s duration. From the figure, the kernel pair’s co-run-
ning duration has a linear relationship with the TC kernel’s
original duration while the load ratio is fixed.

While the kernel pairs with cuconv and other CD kernels
also show similar profiling results, we have two observa-
tions. First, the kernel pair’s co-running duration shows a two-
stage linear regression model, if the TC kernel’s original duration
is fixed. Second, when the load ratio is fixed, the kernel pair’s co-

Fig. 11. Identify the optimal configuration pairs.
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running duration has a linear relationship with the TC kernel’s
original time.

Therefore, we could predict the kernel pair’s duration in
three steps. 1) we predict the TC kernel and CD kernel’s
original time using LR models, which are Ttc and Tcd. 2) we
compute the LoadRatio. 3) we predict the kernel pair’s
duration using the duration models in Fig. 12.

We randomly generate the workload to investigate the
prediction accuracy of the duration models. Fig. 13 shows
the prediction error of these single kernels prediction error.
Index 1 - 15 represents the kernel from Parboil, while index
16 - 19 represents the tgemm� 1, tgemm� 2, cuconv� 1,
and cuconv� 2. The predicted running time differs from the
actual value by 2.1% on average and 6.1% at most. There-
fore, Tacker is able to use linear regression to predict the
kernels’ solo-run durations. We also evaluate the kernel
pairs’ two-stage LR model’s prediction accuracy. Fig. 14
shows the prediction accuracy. Index 1 - 15 represents the
kernel pairs with tgemm, while index 16 - 30 represents the
kernel pairs with cuconv. These LR models achieve an error
rate of 3.7% on average and 8.5% at most.

6.5 Online Scheduling Decision

While the offline strategy maker locates the optimal co-run-
ning configurations and constructs the duration models, the
online scheduler makes kernel co-running decisions at the
runtime. The applications in the datacenter could be catego-
rized into TC tasks and CD tasks. TC tasks contain TC ker-
nels, and may contain CD kernels. CD tasks only contain
the CD kernel. Since the kernels in a task have dependen-
cies, we only focus on the co-running of TC kernel and CD
kernel from different tasks in this paper.

The online scheduler maintains two kernel queues: the
TC kernel queue and the CD kernel queue. When the tasks’
kernels enqueue, the scheduler also saves these kernels’
dependencies. Based on these kernel dependencies and the
kernel queues status, the scheduler performs online sched-
uling as follows.

First, the online scheduler identifies the possible TC-CD
kernel pairs at the moment based on the kernels’ dependen-
cies. Second, the scheduler predicts the durations of these
kernel pairs. Based on these durations, the scheduler then
calculates the throughput gain of these kernel pairs and
chooses the kernel pair with the largest one for kernel
scheduling. Third, if there is no possible TC-CD kernel pair

for this moment, the kernels are scheduled to run with the
persistent block mode in sequence.

ThreadTC � blk numþ ThreadCD � 1 < THREADlimit

SharedTC � blk numþ SharedCD � 1 < SHAREDlimit

RegTC � blk numþRegCD � 1 < REGlimit

8<
:

(9)

If some CD kernels have not been profiled with the off-
line customizer, the scheduler determines the co-running
based on resource usage. If a possible TC-CD kernel pair
satisfies the condition in Equation (9), one kernel could
launch at least one block after the TC kernels’ blocks launch.
Therefore, the scheduler would schedule these two kernels
to co-run for better throughput.

7 EVALUATION

In this section, we first evaluate ISPA on the overall
throughput, which enjoys the two hardware’s parallelism.
White-box TC kernels and black-box cudnn kernels are both
considered. Second, we evaluate the ideal makespan reduc-
tion of the kernel pairs. Third, we will evaluate the make-
span reduction for multiple cudnn internal kernels. Fourth,
we will evaluate our system on the scheduling scenarios
with various tasks. Finally, we discuss the performance dif-
ference between cudnn kernels and tgemm kernels, and the
overhead of ISPA is discussed in detail.

7.1 Implementation

To evaluate ISPA method, we implement the source-to-
source compiler and online kernel scheduler. We have
described our source-to-source compilation methods in Sec-
tion 5. The source-to-source compiler first converts all ker-
nels to the PTB version and provides possible elastic block
versions. After that, a dynamic-link library is created for
online invocation. At runtime, the kernel scheduler main-
tains two kernel queues: TC kernel queue and CD kernel
queue. Besides, the kernel scheduler maintains a state table
for each running task. All kernels have three states in the
table, which are waiting, ready and complete. While the ker-
nel scheduler schedules a kernel on the SM, it sets the ker-
nel’s state as ready. The scheduler then sets the next
kernel’s state as ready. At each moment, the scheduler only
considers the ready kernels for scheduling.

7.2 Experimental Setup

Benchmarks. We choose five commonly used DNN inference
services [42] as the Tensor Core tasks, which are Resnet50,
RexNext, VGG16, Inception, and Densenet. Since there are
white-box TC kernels and black-box cudnn kernels, we distin-
guish DNN inference service with cudnn version and tgemm
version. For example, Resnet50-C is configured with cudnn
kernels, and Renset50-T uses im2colþ tgemm kernel to

Fig. 12. The duration of co-running two kernels.

Fig. 13. The kernels’ solo-run duration prediction errors.

Fig. 14. The kernel pairs’ co-running duration prediction errors.
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replace the cudnn convolution kernel. We use all the fifteen
tasks from Parboil [35] as the CUDA Core tasks, which
include various GPU tasks from different domains. TC tasks
contain both TC kernels and CD kernels, while CD tasks only
contain CD kernels.We do not choose other TC tasks from the
benchmark suite because mainstream benchmarks do not
have the tasks containing TC kernels. Besides, the batch sizes
are set as 32.

Hardware and Software. The experiments are carried out
on a server equipped with one Nvidia GPU RTX 2080Ti.
The elaborate setups are summarized in Table 7. Note
that ISPA does not rely on any hardware features of
2080Ti and is easy to serve on other GPUs that integrate
Tensor Cores.

7.3 Overall Throughput

In this subsection, we evaluate ISPA’s effectiveness in maxi-
mizing the throughput. We compare ISPA with CUDA
stream. The throughput is the task number completed over
a period of time.

Fig. 15 shows the system-wide throughput improvement
with ISPA for tgemm-based task pairs compared with
CUDA stream. As observed from this figure, ISPA improves
the throughput in all the 5 * 15 = 75 co-location pairs. ISPA
increases the throughput by 15.3% on average and up to
40.3% (ResNext and lbm). ISPA improves the throughput,

because it solves the resource contention between co-run-
ning kernels. This allows ISPA to explore the parallelism of
the two hardware. On the contrary, although CUDA stream
is designed to co-running kernels, it could not utilize the
intra-SM parallelism due to resource contention.

Fig. 16 shows the system-wide throughput improvement
with ISPA for cudnn-based task pairs. As observed from
this figure, ISPA improves the throughput in all the 5 * 13
pairwise co-location task pairs. We do not choose pns and
stenc for experiments because these two kernels could not
gain throughput improvement while co-running with
cudnn kernels. ISPA increases the throughput by 7.1% on
average
and up to 15.6% (ResNext and mrif). ISPA improves the
throughput because of the same reason as the tgemm-based
task pairs. Since ISPA could solve the resource contention
between kernels, it could exploit the parallelism between
two hardwares.

Observed from Figs. 15 and 16, we find that the kernel
pair with the same DNN service have different throughput
improvements for different CD tasks. While VGG16-T has
an makespan reduction of 38.4% with mrif , it only has 5.3%
with sgemm. The VGG16-C also has similar results for mrif
and sgemm. This difference comes from the CD task’s dif-
ferent demands for the memory system, which includes the
memory bandwidth, the bus bandwidth, etc. Therefore,
compute-intensive CD tasks could enjoy a high co-running
speepdup with cudnn kernels, while that of memory-inten-
sive CD tasks are relatively low. Nonetheless, a large num-
ber of CD tasks could get throughput improvement, which
demonstrates the effectiveness of ISPA.

We can also observe that the networks have throughput
improvement differences. While ResNext-T increases the
throughput by 17.2% on average, Densenet-T improves the
throughput by 12.0%. This difference comes from the differ-
ent network features due to the network design. Densenet
introduces many small matrix multiplications compared to

Fig. 15. The throughput improvement of ISPAnormalized to that of CUDA stream (tgemm-based services).

Fig. 16. The throughput improvement with ISPAnormalized to that of CUDA stream (cuconv-based services).

TABLE 7
Evaluation Specifications

CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz
GPU NVIDIA RTX 2080Ti (68 SMs, 544 Tensor Cores)
OS Ubuntu 16.04.5 LTS (kernel 4.15.0)
Inference system Caffe 1.0 [41]

Software GPU Driver Version: 450.51;
CUDA Version: 10.0, CUDNN Version: 7.5
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other networks. The small matrix multiplication’s short run-
ning time leads to the little potential for hardware parallel-
ism. Besides, the small matrix multiplication may not
occupy all the SM. In this case, CUDA stream could also
enjoy the task parallelism, although it could not take advan-
tage of two hardware’s parallelism. Nevertheless, ISPA
improves the GPU throughput on all the networks.

To better understand why ISPA performs better than
CUDA stream, as an example, Fig. 17 shows the execution
trace if TC task Resnet50 and CD task fft with ISPA and
CUDA stream. In Fig. 17, the first row represents the Tensor
Core active time, and the second row represents the CUDA
Core active time. In these two rows, we use blue color to
represent the co-running time. As shown in the figure, these
color bars demonstrate that ISPA utilizes two hardware’s
parallelism and CUDA stream could not. We do not present
the results of the kernel pair with cudnn kernels due to page
limitations, which have similar experimental results. Since
ISPA could take advantage of these two hardware’s paral-
lelism, it improves the system-wide throughput.

We also collect the increased duration of each applica-
tion. The experimental results show that the duration of
each application increases by an average of 56.3%. The
increased duration comes from two reasons. First, the make-
span of co-running two kernels is longer than each kernel’s
solo-run duration. Second, when there is no co-running
opportunity due to dependencies, the scheduler will try to
launch the prerequisite kernel to create the co-running
opportunity. This changes the kernel launch order.

7.4 Final Kernel-Level Makespan Reduction

This section proves the final makespan reduction of ISPA
after the offline strategy customization. As shown in
figure 18, all the kernel pairs with tgemm have a makespan
reduction of 21.3% on average and at least 9.1%. Likewise,
all the kernel pairs (except pns and stenc) with cuconv have
a makespan reduction of 10.1% and at least 6.4%. These
improved makespan come from the intra-SM parallelism.

The co-running experiments continue from Section 5 to
Section 7, where there are three optimization techniques
and one offline profiling method. Specifically, the persistent
block first solves the thread slot contention. Six CD kernels
(cp, lbm, mrif , mriq, regtil, spmv) have the best makespan

reduction when they co-run with the original tgemm kernel
in persistent block mode. Eight CD kernels (cp, cutcp, fft,
mrif , mriq, regtil, sgemm, spmv) gain the makespan reduc-
tion while co-running with the cuconv kernel.

Second, the elastic block solves the shared memory con-
tention, which comes from the memory system sharing. Six
CD kernels (bfs, cutcp, fft, sgemm, stenc, tpacf) achieve the
best performance while co-running with the halved block
version of tgemm kernel. Three CD kernels (histo, img, pns)
gain the largest makespan reduction while they are also
elastic block versions. Besides, five CD kernels (bfs, histo,
img, lbm, tpacf) have improved makespan reduction while
co-running with cuconv kernel after they are transformed to
elastic block version. Since elastic block could provide the
kernel with fine-grained shared memory usage, two co-run-
ning kernels could co-exist on the SM.

Third, the register allocation method could support
launching one more block on the SM, which increases the
parallelism potential. Due to the fine-grained register alloca-
tion, four CD kernels (cp, cutcp, mrif , mriq) have further
improved makespan reduction while co-running with
cuconv kernel. This indicates that register allocation could
exploit the two computing units’ parallelism.

Therefore, three methods could solve the three resource
contention on the SM for the co-running kernels. Offline
strategy customizer searches for the best co-running config-
urations, which bring the best makespan reduction.

7.5 Cudnn Kernels

As described in Section 6.1, five DNN models only use
seven cudnn internal implementations when they are con-
figured with BS as 32 and 16. The first and second cudnn
internal implementation is comprehensively discussed in
the above subsection. We also apply the three resource man-
agement techniques and one offline profiling method on the
remaining five cudnn internal implementations. The relative
makespan reduction are shown in Figs. 20 and 21.

As observed, all the kernel pairs gain the improved
makespan reduction, though the internal implementations
have different resource usage. All kernel pairs have a make-
span reduction of 9.2% and max speedup of 25.5%. From
these two figures, two internal implementations (T 2 and
T 5) have relatively low makespan reduction. This is
because they require all the shared memory, CD kernels
having shared memory demand have no makespan

Fig. 17. The active timelines of Tensor and CUDA Cores.

Fig. 18. The final makespan reduction at the kernel level.

Fig. 19. The throughput of ISPAwith multiple tasks.

Fig. 20. The final makespan reduction of T_2 to T_4.

1484 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023



reduction with them. Besides, two internal implementations
(T 3 and T 4) have higher memory resource slack than
the other two implementations (T 6 and T 7). That brings
the higher speedup of them than the other two
implementations.

7.6 Beyond Pair-Wise Co-Locations

To evaluate the robustness of ISPA in more complex co-
locations scenarios, we pick the subsets of CD tasks and co-
locate them all with the five TC tasks. The CD task sets
include three five-task subsets, two ten-task subsets, and
one task set with all the CD tasks. While the kernels are
sorted by name, we randomly select the first five tasks, mid-
dle five tasks, last five tasks, first ten tasks, and last ten tasks
to form the task set. Fig. 19 shows the system-wide through-
put improvement with ISPA in these scenarios.

ISPA improves the system throughput by 16.0% on aver-
age and 26.2% at most, similar to previous results. This is
because although there are more tasks for co-running, their
co-running still relies on two hardware’s parallel usage. The
scheduler is only responsible for choosing the co-running
candidate, and has no impact on the co-running configura-
tions. For these tasks, they only perceive their execution,
even when they are in parallel with another type of task.

7.7 Cuconv Versus Im2col+Tgemm

In the evaluation, we conduct the experiments with DNN
services based on two different convolution methods. The
first one is the cuconvolutionForwardðÞ, the second is the
im2col kernel and tgemm kernel [33], [34]. These twomethods
may have performance differences. Fig. 22 shows the normal-
ized performance of im2col þ tgemm implementation over
cuconvolutionForwardðÞ implementation in Resnet50 with BS
32. As shown, the performance gap between the two imple-
mentations is less than 14% for 43.3% of the convolution
kernels. By only transforming the kernelswith the low perfor-
mance gap, the entire application has less than 2% perfor-
mance loss after the transformation. We also choose the
tgemm as a performance setup for two reasons. First, we
prove our resource management methods’ effectiveness
through white-box TC kernel and white-box CD kernel co-

location. Second, there aremanyDNNmodels that rely on the
GEMMoperation directly, which alsomotivates our choice.

7.8 Inference System

The above experiments are based on Caffe 1.0, which seems
a bit old. We also conduct experiments on other inference
systems. We choose Caffe 2.0 and Pytorch to implement our
ISPA system. Figs. 23 and 24 show the experimental results
of Caffe 2.0 and Pytorch. Results of two DNN models are
shown due to the tight space.

Since Pytorch heavily relies on cudnn kernels to improve
performance, we configure Caffe 2.0 with the tgemm-based
convolution method. As observed from Fig. 23, ISPA
improves the throughput by 14.7% on average (up to 39.4%).
By comparing Figs. 23 and 15, ISPA improves the throughput
of all co-locations in a similar way. This is because the opti-
mization of Caffe 2.0 compared to Caffe 1.0 mainly focuses
on four aspects. These aspects include distributed training,
mobile deployment, quantized computation, and vast-scale
applications. However, these four aspects do not affect ker-
nel scheduling and optimization. Therefore, Caffe 2.0 and
Caffe 1.0 have similar results.

As shown in Fig. 24, ISPA increases the throughput by
6.9% on average (up to 15.4%). By comparing Figs. 24 and
16, ISPA also improves the throughput of all co-locations in
a similar way. This is because Pytorch heavily relies on
cudnn kernels to accelerate the model inference. cudnn ker-
nels could serve mainstream operators in DNN models.
DNN models may have similar experimental results on dif-
ferent inference systems. For example, Resnet50 of BS 32
needs about 13 ms to complete the computation under Caffe
and Pytorch, which is the same result published by Tensor-
Flow [43]. Therefore, ISPA can improve system throughput
in other inference systems.

7.9 Overhead

Our overhead comes from the offline strategy customizer,
which includes the cudnn kernel’s profiling, white-box ker-
nels’ optimal persistent block number determination, and
the optimal configuration pair for kernel pairs.

As for the cudnn profiling, we only need to profile each
DNN service once to perceive their internal implementa-
tion, which generally takes several seconds. If there are

Fig. 21. The final makespan reduction of T_5 to T_7.

Fig. 22. Normalized performance of im2colþ tgemm method over
cuddnConv kernel.

Fig. 23. Throughput improvement of ISPA (caffe 2.0).

Fig. 24. Throughput improvement of ISPA (pytorch).
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new internal implementations, we need to update the table
that stores the cudnn internal implementations. We then
create the new TC-CD kernel pairs with the new cudnn
kernel. As for the white-box kernels’ optimal persistent
block number, ISPAcould locate the optimal persistent
block number in four profiling steps, which took 50ms on
average.

As for the kernel pair’s optimal configuration pair, we
reduce the profiling overhead through four optimization
steps. Therefore, each kernel pair need an average of four
profiling steps, which takes 400 ms on average. Besides,
since there are limited TC kernels for nowadays tasks, the
search overhead is mainly decided by the CD kernel num-
ber. Current deep learning frameworks generally have tens
of operators, indicating that ISPA’s overhead is acceptable.

8 CONCLUSION

This papers bridges the research gap of improving the utili-
zation of Tensor Core enabled GPU by proposing ISPA. A
GPU kernel often either uses Tensor Cores or CUDA Cores,
leaving another processing unit idle. ISPA proposes persis-
tent and elastic block to solve thread slot and shared mem-
ory contention, and also adopts register allocation methods.
Based on these methods, ISPA uses the compilation stage
and the runtime schedule to co-locate TC kernels and CD
kernels to exploit the intra-SM parallelism. Our experiments
show that the throughput of ISPA outperforms existing co-
location based solutions by 15.3% for white-box workloads
and 7.1% for CUDNN-based workloads.
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