1314

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Serving Multi-DNN Workloads on FPGAs:
A Coordinated Architecture, Scheduling,
and Mapping Perspective

Shulin Zeng

, Student Member, IEEE, Guohao Dai

, Member, IEEE, Niansong Zhang,

Xinhao Yang, Haoyu Zhang, Zhenhua Zhu, Student Member, IEEE,

Huazhong Yang, Fellow, IEEE, and Yu Wang

, Fellow, IEEE

Abstract—Deep Neural Network (DNN) INFerence-as-a-Service (INFaaS) is the dominating workload in current data centers,

for which FPGAs become promising hardware platforms because of their high flexibility and energy efficiency. The dynamic and
multi-tenancy nature of INFaaS requires careful design in three aspects: multi-tenant architecture, multi-DNN scheduling, and
multi-core mapping. These three factors are critical to the system latency and energy efficiency but are also challenging to optimize
since they are tightly coupled and correlated. This paper proposes H3M, an automatic Design Space Exploration (DSE) framework to
jointly optimize the architecture, scheduling, and mapping for serving INFaasS on cloud FPGAs. H3M explores: (1) the architecture
design space with Heterogeneous spatial Multi-tenant sub-accelerators, (2) layer-wise scheduling for Heterogeneous Multi-DNN
workloads, and (3) single-layer mapping to the Homogeneous Multi-core architecture. H3M beats state-of-the-art multi-tenant DNN
accelerators, Planaria and Herald, by up to 7.5x and 3.6 x in Energy-Delay-Product (EDP) reduction on the ASIC platform. On the
Xilinx U200 and U280 FPGA platforms, H3M offers 2.1-5.7x and 1.8-9.0x EDP reduction over Herald.

Index Terms—Multi-tenancy, deep neural network, multi-core, accelerator, FPGA

1 INTRODUCTION

LOUD-BACKED INFerence-as-a-Service (INFaaS) [1] cur-
Crently dominates Artificial Intelligence (AI) workloads in
data centers. As computing demands of INFaaS continue to
grow, data center designers tend to build increasingly larger
monolithic DNN accelerators with the multi-node scaled-out
capability, such as Google TPUv3 [2] and Microsoft Brain-
wave [3]. However, simply increasing the number of nodes to
accommodate the computing demands is neither scalable nor
cost-effective. Recently, there is a clear trend toward enabling
multi-tenancy on the single-node accelerator. First, running
more DNN services on a single server (or node) reduces com-
munication costs and improves throughput, which benefits the
satisfiability of Service Level Agreement (SLA) [4]. Second,

o Shulin Zeng, Niansong Zhang, Xinhao Yang, Haoyu Zhang, Zhenhua
Zhu, Huazhong Yang, and Yu Wang are with the Department of Electrical
Engineering, Tsinghua University, Beijing 100190, China.

E-mail: {zengsl18, yxh21, hy-zhang22, zhuzhenh18}@mails.tsinghua.edu.cn,
niansong.zhang@outlook.com, {yanghz, yu-wangj@mail tsinghua.edu.cn.

o Guohao Dai is with the Qing Yuan Research Institute, Shanghai Jino Tong
University, Shanghai, China. E-mail: daiguohao1992@gmail.com.

Manuscript received 18 January 2022; revised 24 August 2022; accepted 11
September 2022. Date of publication 12 October 2022; date of current version
7 April 2023.

This work was supported in part by the National Natural Science Foundation
of China under Grants U19B2019, U21B2031, 61832007, and 62104128, in
part by Tsinghua EE Xilinx Al Research Fund, and in part by the Beijing
National Research Center for Information Science and Technology (BNRist).
(Corresponding authors: Guohao Dai and Yu Wang.)

Recommended for acceptance by P. Milder.

This article has supplementary downloadable material available at https://doi.
0rg/10.1109/TC.2022.3214113, provided by the authors.

Digital Object Identifier no. 10.1109/TC.2022.3214113

cloud service DNN applications usually involve concurrent
execution of heterogeneous DNN models [5], such as AR/
VR [6] workloads, natural language processing (NLP) [7], and
recommendation system [8]. FPGAs offer fine-grained parallel-
ism and reconfiguration flexibility, making them a promising
hardware platform for serving dynamic and heterogeneous
multi-DNN workloads for INFaaS. To take full advantage of
FPGAs, we need to carefully co-design the architecture, schedul-
ing, and mapping of multi-tenant DNN accelerators.

As listed in Table 1, recent studies at the architecture level
focus on temporal sharing of a single monolithic accelerator [4],
[9], spatial sharing of homogeneous multi-core accelerators
(HMCAs) [10], [11], and heterogeneous dataflow accelerators
(HDAs) [5]. An HMCA consists of multiple identical cores that
can communicate with each other via Networks-on-Chip
(NoC). Each core is able to run a DNN model independently or
share the same workload with other cores. Therefore, HMCA
provides the dynamic fission flexibility that can quickly adapt
to dynamic load changes [10], While HDA offers a unique opti-
mization dimension, which stems from the diverse preferences
of different layers for dataflow [5] (e.g., weight-stationary
(NVDLA) [12], output-stationary (ShiDianNao) [13], and row-
stationary (Eyeriss) [14]).

This paper explores a novel spatial multi-tenant architec-
ture that incorporates the benefits of both HDAs and HMCAs.
On the one hand, the dataflow flexibility of HDAs better
accommodates the model heterogeneity [5]: Fig. 1 shows that
the GNMT model [16] achieves the best Energy-Delay-Prod-
uct (EDP) on NVDLA-style accelerators [12] using weight-sta-
tionary dataflow, and the VGG16 model [17] demonstrates the
best EDP on ShiDianNao-style accelerators [13] using output-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1030-3748
https://orcid.org/0000-0002-1030-3748
https://orcid.org/0000-0002-1030-3748
https://orcid.org/0000-0002-1030-3748
https://orcid.org/0000-0002-1030-3748
https://orcid.org/0000-0003-0849-3252
https://orcid.org/0000-0003-0849-3252
https://orcid.org/0000-0003-0849-3252
https://orcid.org/0000-0003-0849-3252
https://orcid.org/0000-0003-0849-3252
https://orcid.org/0000-0001-6108-5157
https://orcid.org/0000-0001-6108-5157
https://orcid.org/0000-0001-6108-5157
https://orcid.org/0000-0001-6108-5157
https://orcid.org/0000-0001-6108-5157
mailto:zengsl18@mails.tsinghua.edu.cn
mailto:yxh21@mails.tsinghua.edu.cn
mailto:hy-zhang22@mails.tsinghua.edu.cn
mailto:zhuzhenh18@mails.tsinghua.edu.cn
mailto:niansong.zhang@outlook.com
mailto:yanghz@mail.tsinghua.edu.cn
mailto:yu-wang@mail.tsinghua.edu.cn
mailto:daiguohao1992@gmail.com
https://doi.org/10.1109/TC.2022.3214113
https://doi.org/10.1109/TC.2022.3214113

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING...

1315

TABLE 1
The Comparison of Cloud-Backed DNN Accelerators in Terms of Architecture, Scheduler, and Design Space

Cloud-Backed

Homogeneous Heterogeneous Multi-Tenancy Multi-DNN Bandwidth

Design Space

DNN Accelerator ~ Multi-Core Dataflow Support Scheduler Scheduler Co-Exploration
TPUV3 [2] v X NA NA Fixed NA

CloudDNN [15] X X NA NA Fixed Arch. & Mapping
AI-MT [9] X X Temporal heuristics Fixed NA

PREMA [4] X X Temporal heuristics Fixed NA

Zeng et al [10] 4 X Spatial NA Fixed NA

Planaria [11] v X Spatial heuristics Fixed NA

Herald [5] X v Spatial heuristics Fixed Arch. & Scheduling

H3M (This Work) v v Spatial Optimization Dynamic Arch. & Scheduling & Mapping

stationary dataflow. On the other hand, The dynamic nature
of INFaaS determines that the Query-Per-Second (QPS) and
SLA requirements are different for each task (tenant) and
change over time. HMCAs allow for running multiple DNN
inference tasks concurrently, each allocated with an appropri-
ate number of cores to meet its demand. Such task-level
dynamic reconfigurability improves resource utilization and
reduces costs while meeting the QPS and SLA requirements.

We also need to carefully consider the core-level granular-
ity of HMCAs since there is a trade-off among flexibility,
resources, and energy. For example, Fig. 2 illustrates that the
logical resources and power consumption of Xilinx Deep
learning Processing Units (DPUs) cores [18], which are spe-
cially optimized for Xilinx FPGAs. It shows that DPU cores
with different computing capabilities do not maintain a
strictly linear relationship with the number of PEs (.e.,
DSPs). Besides, an 8-core HMCA (B512) consumes nearly 4 x
more logic resources and 3x more power than a monolithic
Xilinx DPU (B4096) under the same number of PEs on the
FPGA platform [19]. It is because each small core in the
HMCA requires some additional hardware components
(e.g., instruction and data controller, switches, and wires).

At the scheduling level, multi-DNN schedule decides the exe-
cution order and resource allocation for layers from different
DNN models. Recent multi-DNN schedulers (listed in Table 1)
use heuristics-based algorithms, such as Shortest-Job-First (SJF)
and greedy-based methods [4], [5], [11], which heavily rely on
pre-designed stationary architectures. Such heuristic-based
methods lead to sub-optimal schedule and cannot fit the rap-
idly evolving hardware platforms (especially FPGAs) in the
cloud. Besides, prior studies assume a fixed bandwidth (BW)
allocation at runtime, which is because the bandwidth allocation
of their multi-tenant architectures cannot dynamically adjust
after design time. Neglecting the optimization space for

2.0E+7

0.08 1.6E+7
=
+ 0.06 2 12E+7
-
% 0.04 % 8.0E+6
w w
0.02 4.0E+6 .
0.0E+0

GNMT VGG16

W output stationary

(J*s)

M row stationary weight stationary

Fig. 1. Comparison of EDP among the three dataflow-style architectures
on the GNMT and VGG 16 model.

dynamic bandwidth allocation at runtime will lead to wasteful
and over-competition for bandwidth resources, thus deteriorat-
ing the efficiency and performance [20], [21].

At the mapping level, we need to decide how a DNN layer is
mapped to the HDAs (i.e., dataflow mapping in terms of loop
reordering and loop tiling [22]) or HMCAs (i.e., multi-core
mapping of batch, activation, weight, or partial sum paralleliza-
tion [23]). Since HDAs already contain the mapping informa-
tion of the specific dataflow (that we optimize at the architecture
level), we focus on the selection of the multi-core parallelization
scheme for HMCAs. Prior work co-explore the architecture and
mapping of monolithic DNN accelerators for single-DNN work-
loads on FPGAs, since they are highly correlated with each
other [15], [24]. However, the introduction of multi-DNN
scheduler makes the correlation between architecture, scheduling
and mapping more complex, which has not been explored yet.
A tuple of the perfectly matched three will improve the
resource utilization and maximize energy efficiency.

In this paper, we propose H3M, an architecture, scheduling
and mapping co-Design Space Exploration (DSE) framework,
which fully exploits (1) the architecutre design space with Het-
erogeneous spatial Multi-tenant sub-accelerators, (2) layer-wise
scheduling for a given Heterogeneous Multi-DNN workload on
the spatial multi-tenant accelerator, and (3) single-layer map-
ping onto the Homogeneous Multi-core architecture.

In Section 3, we formulate design space exploration as a
constrained optimization problem, and present a three-level
encoding for hardware architecture, scheduling, and map-
ping. We solve the optimization problem with Covariance-
Matrix Adaptation Evolution Strategy (CMA-ES) [25]. The
workflow is discussed in Section 4. Section 5 presents an opti-
mized HDA implementation on FPGA with dynamic

1 o
09 e R
s08 e
g - -
07 e
< os T e
B .
é s Regs
o
o BRAMSs
)
x 0.2 oA

--+- Total Power (from board)

o

--+- Total Power (from synth.)

o

B512
(Smallest)

B800 B1024 B1600

DPU size

B2304 B3136 B4096

(Largest)

Fig. 2. Resource and power consumption of the eight Xilinx DPUs with
different computing abilities [19].

1316

Sub—AcceI 0

1
|DDRO| |DDR1|| HBM || HBM |

|User0 User 1" / 2 _
(BW Controller] { ;
§ pixel : \ ,_,':»,
[Network-on-Chip] :U U 3:: L _____
o (FE YT) __sg_r__:_;se:r__ Input Welghts Output
3 3|3 .
© o °] Power
< b < ' ulj HMCA 1 |,
| | S ——|
U:) 5 5 | i : Sub-Accel 0 n
o) ! LSM H
- i 1
User 1 MAC | Sub-Accel 1 | 1 2
: ,]]

(b)

C] HMCA O 1= = = = oo o o o o o o e eheuiing |

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

1
[RY/ vy M

1 ision & v NLP N\

: ! CNN models Op i | Applications (\(Y

1

1

1

Layer 1 mapping scheme
for _P in pixel SP(4)
for _C in C TP
for _K in K SP(2)
1 psum += Core(in, w)

(~ ' RNN/
] : Transformers

If Recomm.
! MLP/GNN

'SP Spatial TP: Temporali 1
1

| Sub-Accel © CNN: 80%, RNN: 30%
I} Efficiency: & CNN: 50%, RNN: 70%

Layer Scheduling : i— _':__O_____(_)_:—‘_ _‘::(_5::6::' <: 3 _':__6::6:_7 T::,Q‘::,(;:,‘- “:
! () 1 [[1
111,001,001 11,001,021,
Model 1
time oce EENEY : ! BW Controller i { BW Controller i
Model2 [1]2] 1 [[obrR | [bR]! ! [oor | (NEENM |
[il =’ ili I

Xilinx U200 FPGA Xilinx U280 FPGA

time

Fig. 3. (a) Spatial Multi-tenant hardware architecture. (b) Multi-DNN compiler mapping and scheduler. (c) Heterogeneous workloads and FPGA

systems.

bandwidth control and isolation for security and perfor-
mance. We empirically evaluate the jointly optimized system
on both ASIC and FPGA platforms in Section 6.

The contributions of this paper are:

e We propose a novel spatial multi-tenant architecture
that employs the heterogeneous dataflow and homo-
geneous multi-core architecture at the same time.

e We formulate the multi-DNN scheduling as an opti-
mization problem with dynamic bandwidth alloca-
tion considered, by introducing HyperConnect [21]
into spatial multi-tenant DNN accelerators.

e We propose an architecture, scheduling, and map-
ping co-exploration framework, H3M, which has a
novel encoding format and leverages the CMA-ES
algorithm on improving sample efficiency.

e Extensive experiments show that H3M rivals Pla-
naria and Herald by 3.0-7.5x and 1.8-3.6x EDP
reduction on the ASIC platform. H3M offers 2.1-5.7x
EDP improvement over Herald on the Xilinx U200
FPGA, and 1.8-9.0x on the U280 FPGA.

2 BACKGROUND AND RELATED WORK

2.1 Spatial Multi-Tenant Architecture

As shown in Fig. 3a, a HDA consists of multiple HMCAs with
different dataflow and parallelism. We refer each core inside
HMCAs as a sub-accelerator. Each sub-accelerator in the spatial
multi-tenant architecture is a monolithic DNN accelerator, which
is comprised of a Global Scratchpad Memory (GSM) and an
array of Processing Elements (PEs) that interconnect with each
other in a specific dataflow manner. Each PE contains a Multi-
ply-and-Accumulate (MAC) unit for computation and a Local
Scratchpad Memory (LSM) to store activations, weights, and
partial sums. For the computation over a tile of a DNN layer,
each sub-accelerator first fetches the activations and weights
from the off-chip memory (DRAM or HBM) to the GSM in a
ping-pong manner, then distributes the data over the PEs for the
computation, and finally writes the results back to the GSM.

All sub-accelerators in the spatial multi-tenant accelera-
tor share the off-chip BW through an interconnection mod-
ule. It is worth pointing out that current commercialized
interconnection modules (e.g., AXI interconnect IP on Xilinx
FPGAs) lack mechanisms for reserving a fixed portion of
off-chip BW to a single sub-accelerator at design time and
also do not support dynamic reconfiguration at runtime. For

computing a DNN layer, if the off-chip BW is insufficient
for the ping-pong buffer to hide the data loading latency,
the computation pipeline will stall, leading to inefficiency.

As listed in Table 1, there are several studies aiming at
multi-tenancy. AI-MT [9] optimized the systolic array by
considering different resource-usage features inside layers
with scheduling methods. Zeng et al. [10] proposed a multi-
core DNN architecture to achieve performance isolation,
together with a low-overhead runtime reconfiguration com-
piler. Planaria [11] proposed a systolic array based architec-
ture that could dynamically fission into multiple small
pods. Herald [5] employed heterogeneous dataflow archi-
tectures for serving multi-DNN workloads.

2.2 Multi-DNN Schedule and Mapping

Multi-DNN schedule decides the execution order and
resource allocation of multiple DNN models on multi-tenant
accelerators, where a layer is the basic scheduling instance
(we refer to each layer as a job in this paper). The job execu-
tion order is determined based on priorities for the temporal
sharing of a monolithic accelerator [4]. Fig. 3b bottom shows
a two-model layer schedule on two sub-accelerators. For spa-
tial multi-tenant accelerators, it is also necessary to consider
the resources allocation for each job (e.g., specific HMCA and
the number of sub-accelerators in the HMCA). For instance,
PREMA [4] proposed a multi-DNN scheduling algorithm for
the temporal multi-tenant and preemptive DNN accelerator.
Planaria [11] developed an SLA-oriented scheduling algo-
rithm for the spatial multi-tenant DNN accelerator.

When a job is assigned to multiple sub-accelerators, differ-
ent mapping schemes of multi-core parallelization (e.g., the
parallelism among the batch, activation, weight, and partial
sum) provide another optimization dimension which is
orthogonal to heterogeneous dataflow [11], [23]. For example,
Tetris [26] employed a hybrid partition scheme for multi-core
accelerators with 3D-stacked DRAM. Tangram [23] co-
explored the intra-layer parallelization and inter-layer pipe-
line for 2D multi-core accelerators. NN-Baton [27] proposed
a spatial partition and temporal loop transformation scheme
for chiplet-based accelerators. Once the multi-core parallel-
ism scheme is decided, a DNN layer will be partitioned into
multiple sub-layers, each of which will run on a sub-accelera-
tor. As shown in Fig. 3b top, a layer is tiled in input dimen-
sion by four, and in weight dimension by two. Thus, the layer
is spatially mapped to eight sub-accelerators, and temporally

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING...

mapped along the channel dimension. Mapping each sub-
layer onto the sub-accelerator has been well studied by con-
ventional DNN compilers [24], [28], where the loop order
and loop tiling sizes are optimized based on the dataflow of
the sub-accelerator [22], which is not the focus of this paper.

2.3 Heterogeneous DNN Workloads and Systems
INFaaS workloads in the cloud mainly include three types
of application scenarios: image/video recognition, Natural
Language Processing (NLP), and recommendation system.
The vision applications are dominated by CNN models [17],
[29], which contain many convolution layers (CONV) as the
backbone and several fully-connected layers (FC) at the
end. The NLP and recommendation systems are dominated
by RNN [16], [30] and transformer [31] models, where
Multi-Layer Perceptron (MLP) and attention layers are the
major components. The diverse operations and shapes of
CNN, RNN, and transformer models construct heteroge-
neous multi-DNN INFaaS workloads.

FPGAs are showing great potential for serving INFaaS
workloads in data centers due to their dynamic programma-
bility feature, enabling the spatial multi-tenant architecture to
evolve with the dynamic and heterogeneous multi-DNN
workloads. Moreover, FPGA systems deployed in the cloud
also have heterogeneous characteristics, i.e., different FPGAs
have diverse hardware resource constraints (e.g., LUTs,
BRAMSs, and DSPs) and various main memories (e.g.,, DRAM
and HBM), as shown in Fig. 3c. In this paper, we validate
H3M on heterogeneous FPGA systems.

3 PROBLEM FORMULATION

3.1 Notations

Multi-DNN Workloads. A = {ay,as, ...,a;} is a set of I DNN
inference applications from multiple tenants, where each
DNN inference application is a 3-tuple a; = (DNN;, QPS;
(t),SLA;), 1 <i < I. DNN; is the target DNN model (e.g.,
ResNet50), QFS;(t) is the query load (i.e., the batch size)
which changes dynamically over time (e.g., 100fps at ¢; and
50fps at t), and SLA,; is the latency constraint from the ten-
ant (e.g., 200ms for each inference).

Heterogeneous and Homogeneous Sub-Accelerators. H =
{h1,ha,...,hn} is a set of N HMCAs with a total of M data-
flow styles. We denote dataflow styles as D = {d;,ds, ...,
dyr}, where N > M. Each sub-accelerator is defined as a 3-
tuple: h,, = (d,, Core,, PE,), where d,, € D denotes the data-
flow style, Core,, is the number of sub-accelerators, and PE,
is the number of PEs per sub-accelerator.

Heterogeneous FPGA Systems. F = { f1, fa, ..., fs} is a set of
S FPGA chips in the serving systems. Each FPGA chip is a 3-
tuple f; = (ResTotal,, BW, freqs), where ResTotal denotes
the total hardware resources of LUTs (logic), BRAMSs (on-
chip memory), and DSPs (hard-core MACs). BW, represents
the available off-chip memory bandwidth, and freg; denotes
the running frequency. Under the resource constraints of a
specific FPGA f,, a spatial multi-tenant DNN accelerator
(i.e., a set of N HMCAs) is defined as: H = {(d,, Core,,
PE,)|>" Res(d,, Core,, PE,) < ResTotal;,1 <n < N}.

Multi-DNN Scheduling. Multi-DNN scheduling on the
spatial multi-tenant accelerator consists of two major compo-
nents. First, scheduling function foene : foche(job,t) = (0,1),

1317

which decides whether the job executes or not at time ¢. The
scheduling function f;.,. takes a job queue as input and out-
puts the execution order among multiple jobs. Second, allo-
cation function fy, : fue(job,t) = (8, Core), where § € H
denotes the assignment of heterogeneous sub-accelerators
and Core represents the allocated number of cores. Optimiz-
ing the multi-DNN scheduling with dynamic workloads is a
NP-hard problem [32]. Therefore, many previous resource
scheduling studies [4], [11] transform the dynamic-workload
scheduling into a static scheduling problem, where the cen-
tral controller (e.g., CPU) packs incoming tasks (i.e., DNN
models) over a period of time into batches of jobs (i.e., DNN
layers), and a static scheduler processes the batches in an
First-Come-First-Serve (FCFS) manner.

Multi-Core Mapping. To explore the mapping of each job,
we focus on three types of multi-core parallelization
schemes [23]: pixel parallelism along the width or height
dimension of activations (denoted as PP), weight parallel-
ism along the output feature maps (denoted as OCP), and
partial sum parallelism along the input channel dimension
of activations and weights (denoted as ICP). We refer to
PP x ICP x OCP as the number of cores for spatial map-
ping the DNN layer over the pixel, weight, and partial sum
parallelism, as shown in Fig. 3b.

3.2 Optimization Objectives and Constraints

We choose the widely used optimization objective, Energy-
Delay Product (EDP), to find the optimal multi-tenant archi-
tecture, scheduling, and mapping for a given multi-DNN
workload on the target platform, as formulated below:

EDP = (Z Eh,n> '(Latencynzake(epa,n,)ﬂ7 (1)

1<n<N

where « and g are the weighting factors to control the trade-
off between latency and energy consumption. And Ej, is
the energy consumption of heterogeneous sub-accelerator
h, running all the jobs assigned to it. As for inference
latency, we use the makespan latency, i.e., the duration from
the beginning of the first job to the end of the last job, as the
metric to evaluate the performance of a schedule candidate
for a batch of jobs, as shown below:

Latencymak’espun = max (Ell ; jjhza ceey ThN)’ (2)

where T}, is the runtime latency of heterogeneous sub-
accelerator h,, to run all the assigned jobs. The objective is to
achieve the optimal workload balancing among all the sub-
accelerators while minimizing the tail latency (i.e., 95th per-
centile of the completion time, and makespan latency is the
strictest case with 100th percentile).

There are two constraints on the architecture, scheduling,
and mapping co-exploration problem. First, the hardware
configuration candidate H of the spatial multi-tenant accel-
erator cannot exceed the resource constraints of the target
FPGA platform f;, as described below:

Z Res(d,, Core,, PE,) < ResTotal 3)

1<n<N

Second, multiple sub-accelerators sharing the off-chip BW
cannot exceed the system BW. If the total BW required by the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Layer Schedule

ED Dataflow Choice 1. e.g. output stationary for _P in batch width height P_tile Spatial/Temporal Map Model 1
! () Dataflow Choice 2. e.g. weight stationary for _C in in_channel / C_tile Spatial/Temporal Map Core1 2 |32 e
' D Dataflow Choice 3. e.g. row stationary for _K in out_cr.\annel. KTtlle) Spatial/Temporal Map
N e o o oo e e e psum += Core(in_activation, weights) Laver Mappin el Core2 | 1 2 time
[ooR] [obR| [mBm] [HBM] ver Mapping vers
I l t l yer Layer Reorder
Lower
[BW Co?troller] Hardware Vodel2 | 1] S | ; Latency
. Layer 1
(Network-on-Chip) —— Layer Mapping SpatialMap (T_P, T_P) P; Y tme
t I I TemporalMap (Sz(P), Sz(P)) P; Core2 | 1|2
Number of e . S
Dataflow Map Choice, spatialMap (T_C, T_C) G;
os1: Hardware Resourse T - = Bandwidth
— umberor tores TemporalMap (Sz(C), Sz(C)) C; System BW
- N — T T kemmmmmm e e m oo
L,,1 ,,,,,,,,,,,,,,, G leepp (P Ve SpatialMap (T_K, T_K) K; 1 >
i Schedule i
P & lemp CMERHIE TemporalMap(Sz(K), Sz(K)) K; 3
i ok L1 B q
g il Layer Schedule Loop K Mapping / % 1 2
i MAC ' time
3 e Bandwidth Alloc t tt
= H3M Search space BW Alloc Bandwidth Allocation

Fig. 4. H3M search space covers architecture, schedule, and mapping. (1) Architecture design space includes sub-accelerator parallelism and data-
flow; (2) schedule design space includes layer schedule and bandwidth allocation; (3) mapping design space includes dataflow choice, spatial/tem-
poral map of feature pixel (P), channel (C), and kernel weight (K) dimensions.

concurrent jobs exceeds the BW constraint, they will compete
for the off-chip BW resources and interfere with each other.
Thus, the total BW usage should not exceed the constraint
BW, of the target FPGA f; at any time ¢, as shown below:

> BW <BW. @

1<n<N

3.3 Search Space

As shown in Fig. 4, the search space consists of:(1) the archi-
tecture design space of the accelerators () when deployed
to heterogeneous FPGA systems (F) under the given multi-
DNN workload (A4); (2) the schedule design space of the
execution order with scheduling function (fs..) and the off-
chip bandwidth allocation for parallel jobs; (3) the mapping
design space of sub-accelerator selection with allocation
function (f,,) and choosing the proper combination of spa-
tial/temporal mapping for input feature pixel (P), input
channel (C), and kernel weights (K) dimensions.

We use an illustrative example to demonstrate the size of
the search space. Table 4 shows the resource constraints of
Xilinx U280 FPGAs. Based on the resource utilization of the
smallest Xilinx DPU accelerator B512 [18], we can calculate
the number of DPU cores to be at most 46. Assuming we
have 4 kinds of DPU cores with different dataflow styles,
the hardware candidates are at least Ciy,, - (46)" =102
within the number of DSPs (i.e., PEs) and DPU cores. We
assume that the maximum batch size of arriving jobs is 100,
and the possible scheduling combinations are (100)! =
10'57. For each layer mapping onto the HMCA, the possible
combinations of multi-core parallelism parameters are
(46)* = 10*. Combining the three design spaces, H3M'’s
search space size is 102071574100 = §(10°7"), while there are
only 10'® hardware candidates in Herald’s search space. We
employ the bio-inspired genetic evolutionary algorithms to
find the optimal design point with high sample effi-
ciency [25], [33] in the massive search space.

4 H3M Co-EXPLORATION FRAMEWORK

4.1 Framework Overview

Fig. 5 shows the optimization loop of the H3M framework.
We discuss the optimization process in steps.

Sample Search Space. The optimizer generates samples
from the search space. Each sample is a set of three encoding
vectors representing a full solution: hardware parameters,
mapping scheme, layer schedule, and bandwidth allocation.

Decode. The decoder translates the encoding vectors to
solutions. Specifically, it first decodes the hardware encod-
ing vector to get sub-accelerator dataflow choices, core
numbers, and PE numbers. Then, based on the decoded
hardware information, the decoder translates the mapping
encoding vector and the scheduling vector to mapping
schemes and priority scores for every layer of all input
DNN tasks. A mapping scheme specifies how a layer (job)
is executed in parallel on multiple cores: whether it is spa-
tially or temporally mapped in pixel, input channel, and
output channel dimensions. It also specifies the spatial map-
ping factor of each dimension. The priority scores determine
the layer schedule on a sub-accelerator and the bandwidth
allocation across different cores.

Schedule. From the mapping scheme information, we
know the number of cores each layer is assigned to. How-
ever, it does not specify which cores to use. The jobs are first
scheduled in a queue on each HMCA. The scheduler orders
the jobs in the queue according to their priority scores and
layer dependency. Then, it allocates specific cores to the job
in an FCFS manner. For jobs running in parallel, the sched-
uler allocates their share of off-chip bandwidth according to
their normalized priority scores.

Hardware
Arch.

Spatial p .
Tempol spatial p
Temporal C

e !
Sample ' Hardware Population
Compiler Mapping
Search Space Schedule | Population
|f\ ;;c;dings ‘\\Layer Schedule Population ’
Update S LFUI ,,,,,, .
Distribution ™~
Select Best E+j Evaluator Core2 1 2
Candidates
W)\ &= e | 1 P :
EDP MAESTRO time
nergy-Delay i
Output :mdmﬂe v Scheduled jobs on HW)
‘ Best Architecture ‘ ‘ Best Mapping ‘ ‘ Best Schedule ‘

Fig. 5. H3M co-exploration workflow.

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING...

Hardware Encoding Vector

flowl | #PE1 | dataflow2 | #PE2 | dataflow3 | #PE3 | dataflow4 | #PE4
0.64 0.64 0.42 0.42 0.46 0.52 0.23 0.1
* Sort by dataflow
* Choose first two

dataflowl | #PE1 | dataflow3 | #PE3

* Normalize

0.58 0.55 0.42 0.45

1 Decode

DSP: 2265 #PE:
BRAM: 935 256
LUT: 435K #Core:

DSP: 2632 #PE:
BRAM: 1098512
LUT: 534K #Core: 8

FF: 142K FF: 110K 10
Dataflow: Dataflow:
Weight Stationary, Output Stationary;,

Hardware Config

(@)

1319

Mapping Encoding Vector

Model 1
Layer 1
T T T !
— !
Dataflow: v ¥
Weight Stationary Temporal ~ Weight Stationary
#Core: 8 _
.‘ Map factor = 3
Hardware Config SpatialMap (5z(C)/3, S2(C)/3) C;
Map factor = 2
SpatialMap (Sz(P)/2, Sz(P)/2) P;
1 Decode
Model 1 Layer 1 . X)
SpatialMap (Sz(P)/2, sz(P)/2) P;[f[— for _P in batch width height / P_tile
SpatialMap (Sz(C)/3, Sz(C)/3) C; for _C in in_channel C_tlle_
TeporalMap (Sz(K), Sz(K)) K; for _K in out_channel K_tile
Mapped core num: 2x3x1=6 psum += Core(in_activation, weights)
g
Mapping Config

Fig. 6. Hardware and mapping encoding vectors with decode examples. (a) Hardware Encoding Vector. (b) Mapping Encoding Vector.

Simulate. After the schedule and bandwidth allocation
are determined, the simulator runs the jobs with the given
configuration, and outputs the total latency and energy con-
sumption to calculate EDP.

4.2 Optimization Algorithm

We use CMA-ES [25] to sample the search space and optimize
the objective function. CMA-ES is a derivative-free second-
order method that estimates a positive-definite covariance
matrix, which makes it effective for ill-conditioned and non-
smooth problems [33]. CMA-ES is also proven to be reliable
and competitive for global optimizations [25]. We choose
CMA-ES over heuristic-based methods because of its effec-
tiveness in exploring large design space. The problem formu-
lation and encoding design are general and not limited to this
optimization method. CMA-ES models solutions as n-dimen-
sional Gaussian variables. At each evolutionary step, it gener-
ates new samples with mean p and covariance matrix C,.
After evaluation, the parameters are updated with feedback
from the objective function.

4.3 The Three-Tier Encoding Format

Hardware Encoding Vector. The hardware encoding vector is
an array of 2M floating-point numbers, M is the total
choices of sub-accelerator dataflow. Each pair of floating-
point numbers encodes the hardware resource share and PE
number for one choice of sub-accelerator dataflow.

Mapping Encoding Vector. The mapping encoding vector
is an array of 5L floating-point numbers, with L being the
total number of layers. The five fields for each layer are: P,
C, K mapping scores, dataflow choice, and the core number
factor. A mapping score higher than one indicates spatial
mapping in that dimension, otherwise indicating temporal
mapping. The dataflow choice determines which HMCA
the layer maps to. The number of the core factor is capped
between 0 and 1, and it indicates how many cores in the
chosen HMCA the current layer maps to.

Scheduling Encoding Vector. The scheduling encoding vec-
tor is an array of L floating-point numbers. Each value in
the vector is the priority score of the corresponding layer.
Layers with higher priority scores are likely to execute ear-
lier in the queue, and be assigned more bandwidth.

4.4 Decoder
We describe how to decode the encoding vectors in steps.

Decode Sub-Accelerator Hardware Configuration. We assume
that a single FPGA chip hosts N HMCAs with N dataflow
styles. We first sort the M pairs of values in the hardware
encoding vector and take the first N pairs. As the first value in
the pair encodes hardware resource share, we normalize the
N dataflow score values and divide the hardware resources
(e.g., LUTs, FFs, BRAMSs, DSPs) according to the normalized
values. The second value in the pair encodes PE numbers.
Assume there are P predefined PE number choices. We fix
P — 1 thresholds, and assign PE numbers according to which
interval the PE number value falls into. Given hardware
resources and the number of PE in each core, we calculate the
number of cores in each HMCA. Fig. 6a is an example of a
hardware encoding vector with four dataflow choices. From
the four dataflows, we choose dataflow 1 and 3 because of
their higher scores, and normalize the scores to divide up the
available hardware resources. Given that PE score 0-0.5 maps
to 256 PEs in each core, and 0.5-1 maps to 512 PEs, we decode
the PE numbers of cores in each HMCA. Finally, we calculate
the core number in each HMCA. After the hardware encoding
vector is decoded, we know the two HMCAs have 8xB1024
cores with weight stationary dataflow and 10xB512 cores
with output stationary dataflow.

Decode Compiler Mapping. Each layer is associated with
five fields in the mapping encoding vector. First, we
decode the ”core type” field to know which HMCA the
layer maps to. For N HMCAs, we fix N —1 thresholds,
and decide the core type by the interval. Since hardware
information is decoded, we know the total core number
Core, of the chosen type. p, ¢, and k are the spatial map-
ping scores of input feature pixel (P), input channel (C),
and kernel weights (K) dimensions. We first bound the
scores by:

p = maz(p,1)
¢ =mazx(c,1)
k =maz(k,1). 5)

Dimensions with scores > 1 are spatially mapped, other-
wise temporally mapped. We decode the spatial mapping
factor for spatially mapped loops by:

1320

Scheduling Encoding Vector

Layer 1 Layer 5
0.2 0.1 0.3 0.4 0.5 1

T T T T T T T

\’\I/ I I I I I I

model Model 1 Layer 1
Mapping

Layer 2 | Layer 3 | Layer 4 Layer N

Mapping Config

7

4

Model 1 Layer 1

SpatialMap (Sz(P)/2, Sz(P)/2) P;
SpatialMap (Sz(C)/3, Sz(C)/3) C;
TeporalMap (Sz(K), Sz(K)) K;
Mapped core num: 6

Priority score: 0.2

Complete Layer Config

Fig. 7. Scheduling encoding vector.

usage x Core, x

p
Y |1
L pxcxk_’)

c
usage X Core, Xx ———|,1
g n pxcxk_’)

PP = mam(

ICP = max(

k
OCP = max(usage X Core, X ———|, 1), (6)
L pxcxk|

where PP, ICP, and OCP are the spatial mapping factors of
feature, input channel, and output channel dimensions, 0 <
usage < 1 is the core usage score, denoted as #Core in
Fig. 6b. The total core number this layer maps to is PP x
ICP x OCP. For the example shown in Fig. 6b, P and C
dimensions are spatially mapped with factors 2 and 3,
dimension K is temporally mapped, and the total mapped
core number is 6. Sz (P) is the size function of loop P, there-
fore Sz (P)/2 is the tiling size of input feature pixel
dimension.

Decode Priority Score. The scheduling vector stores the pri-
ority scores for each vector. As shown in Fig. 7, decoding the
priority score is straightforward. We simply assign the val-
ues to corresponding layers to get the complete configura-
tion. The priority score will be compared and normalized
during layer scheduling and bandwidth allocation.

4.5 Evaluator
H3M allocates bandwidth for scheduled jobs, and evaluate
the latency and energy consumption with a simulator.

Layer Schedule and Dynamic Bandwidth Allocation. Since
layer schedule is part of the optimization, the schedule is
known and fixed at runtime. Therefore, H3M does not require
a dynamic scheduler as a hardware module or a piece of soft-
ware in the runtime. However, the off-chip bandwidth is
dynamically allocated based on the normalized priority score
of parallel jobs. We discuss the implementation of dynamic
bandwidth controller in Section 5.2.

Simulator. Each layer’s latency and energy consumption
is evaluated by MAESTRO [22] simulator. The MAESTRO
simulator supports diverse dataflow choices and allows
hardware customizations (PE number, scratchpad sizes,
NoC latency, bandwidth). The scheduler sets up the hard-
ware resource and bandwidth configuration for the simula-
tor, and calls the simulator to evaluate the latency and
energy.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

DDR O DDR 1 DDR 2 DDR 3

v
Hyper
Connect

v
Hyper
Connect

v
Hyper
Connect

$
Hyper
Connect

o [

/

Load/Save Load/Save Load/Save

1 e T THE

0 r— T
s £ S s £ S
Core| |Core] |Core| |Core||Core| i| Core Core | | Core Core
i
Core:

"
(s
[C) HMCAO . HMCAT
______ e e e R
(b) | | AX14 | | 1 (c) AX14
v v v v ! | |
g L2 Scratch Memory - : L2 Scratch Memory
= o
y A
£ L E
S LU S G | AXj4-Stréam 5
[re Connect |-> El Hyper
_—J[:B ¥ J 11 E) Compect =
[=
I —p __,llnst. Decoder}—v —1>
1
! L.
1 g
1 F1
1
1
| Core0 Corel C2 C3

Fig. 8. (a) Top-level architecture of multi-tenant DNN accelerators on the
Xilinx FPGA U200 platform. And illustrations of the (b) Load and (c)
Save data movement module.

5 IMPLEMENTATION ON FPGAS

5.1 Spatial Multi-Tenant Architecture
5.1.1 Top-Level Architecture

Fig. 8a shows the top-level architecture of the spatial multi-
tenant accelerator on the Xilinx U200 FPGA having four
DDR memory channels. The implementation on Xilinx
U280 FPGA is similar, which has two DDR and two HBM.
The sub-accelerators and off-chip memory channels are
grouped together according to the total number of DDR
memory channels and available HBMs. The number of sub-
accelerators and dataflow choices within each group is
determined by the H3M DSE framework. The inter- and
intra-group data movement is managed by the Load/Save
data movement modules connected by a Network-on-Chip.
The dynamic bandwidth controller in each group manages
the data movement between sub-accelerators and off-chip
memory channels, while also providing multi-tenant perfor-
mance isolation and dynamic bandwidth allocation.

5.1.2 Load/Save Data Movement Module

The Load /Save data movement module has forwarding and
broadcast control for Load instructions and write control for
Save instructions to the local shared buffer or off-chip DDR
memory. Figs. 8b and 8c show the Load and Save data
movement module design, the data paths are separated for
clarity. It is responsible for: (1) reading data from the left
neighbor or off-chip memory to the local cores; (2) forward-
ing data from the off-chip memory or left neighbor to the
right neighbor; (3) writing data from local cores to the local
shared buffer or off-chip memory; (4) configuring the
dynamic bandwidth controller for runtime bandwidth allo-
cation; and (5) merging the identical read requests into one
and broadcast the fetched data. The Load/Save data move-
ment module has the following components:
Network-on-Chip (NoC) forwards the instructions and data
between groups. We leverage a directed and light-weight
NoC introduced by Hoplite [34]. As shown in Fig. 8b. As the
uni-directional NoC takes up much fewer hardware resour-
ces than the bi-directional NoC, its width can be designed to

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING...

1321

I
[Memory Cross Register Conv Memory (1) ws
’ DDR Pool Connect File Controller Pool dataflow Weight
(2) RS 3 Buffer
| Instruction Dispatch Module | [PE Array 0] | Bank 0 | dataflow
f=
® o f PE Array 1] | Bank 1 | 2
] 3 R
Reg. &
LOAD | SAVE || 1| conv | | misc Bank 2 [PE Array 2] | Bank 2 |
Output
: : : [
[|
On-chip Memory Pool/Buffer | Bank pp-1 [PE Array pp-1] | Bank pp-1—| dataflow |)
(a) (b) ()

Fig. 9. DNN sub-accelerator architecture based on Xilinx DPU: (a) top level architecture, (b) convolution module architecture, and (c) PE architecture

with three different dataflow styles supported .

match the total width of the off-chip memory bandwidth,
thus minimizing the performance interference.

Instruction Decoder generates control signals for all of the
multiplexers and the dynamic bandwidth controller to man-
age broadcast, forwarding, and save directions. If identical
data is requested, the decoder initiates only one read
request to the dynamic bandwidth controller. Meanwhile, it
changes the off-chip bandwidth allocation from being dis-
tributed equally across multiple cores to having the full
bandwidth exclusively to one port for data broadcast.
Besides, the instruction decoder configures the dynamic
bandwidth controller based on the Init instructions of each
job, thus enabling runtime bandwidth reconfiguration.

Control Multiplexers are controlled by the Instruction
Decoder. In Fig. 8b, multiplexer B0 and F0 control data for-
warding. Multiplexer B0 to B(n — 1), where n denotes the
number of cores in each group, control broadcasting for-
warded data or local data. In Fig. 8c, multiplexer S0 controls
saving unpacked data from the neighbor group to the local
shared buffer or DDR. Multiplexer F'1 selects the intermedi-
ate data to be forwarded for multi-core parallelization (e.g.,
partial sum for input channel parallelism ICP).

Pack/Unpack Module.We pack data and instructions into
frames for inter-group communication. The unpack module
extracts the instruction for decoding, and the pack module
concatenates instructions with data to form a frame.

5.1.3 DNN Sub-Accelerator Architecture

In this paper, the basic templates of the DNN sub-accelerator
architecture are based on Xilinx DPUs [18]. Since a DPU is a
Xilinx proprietary functional block, we implement it from
Angel-Eye [35], which is a basic implementation of a Xilinx
DPU, and continuously optimize it to keep up with the per-
formance of Xilinx DPUs. As shown in Fig. 9a, the top-level
architecture of Xilinx DPUs contains five modules: Local
Instruction Decoder and Scheduler (LIDS), data loader mod-
ule (LOAD), data writer module (SAVE), convolution opera-
tor module (CONYV), and non-convolution operator module
(MISC). The LIDS is responsible for the decoding of instruc-
tions and the local scheduling of the other four modules,
which correspond to the four instructions.

Fig. 9b illustrates the architecture of CONV module,
where there are pp PE arrays, each with a parallelism of
Ppe = icp X ocp. The computation parallelism of one DPU
core (pgp,) can be calculated by:

Pipu =2 PP - Dpe =2 - spp - icp - ocp (OPs/cycle), ()
where pp, icp, and ocp represent the pixel, input-channel,
and output-channel parallelism. Xilinx DPUs employ the
weight-stationary style dataflow for each PE array. More
specifically, there are ocp parallel PE channels, each with icp
PEs to perform MAC operations in parallel. To support dif-
ferent styles of dataflow, the PE array of DPUs is modified
to enable different dataflow styles (e.g., output-stationary
and row-stationary dataflow in Fig. 9c). By enabling hetero-
geneous dataflow on the PE array level, we implement
DPU-based accelerators with heterogeneous dataflow and
homogeneous multi-core architecture.

5.2 Dynamic Bandwidth Controller Implementation
In this section, we introduce the dynamic bandwidth con-
troller implemented based on AXI HyperConnect [21].

5.2.1 Bandwidth Reservation

Bandwidth reservation for each sub-accelerator is essential
to guarantee performance isolation for multi-tenant sharing.
For example, a memory-intensive DNN layer with low-pri-
ority running on a sub-accelerator can occupy the unlimited
BW and inject a lot of delay into the sub-accelerator running
a high-priority DNN layer with hard latency constraints.
We implement the bandwidth reservation mechanism by
limiting data transactions to a specific threshold number over a
periodic time window, which has been verified in [20]. The
threshold for each sub-accelerator can be configured by the
hypervisor, thus ensuring the predictable performance of
running jobs and avoiding performance interference due to
multi-tenant sharing on the off-chip memory bandwidth.

5.2.2 Security Isolation

For a generic FPGA virtualization solution [36] in the cloud,
users can either select the pre-designed DNN accelerators
provided by cloud vendors, or upload their own designed
DNN accelerators into the partial reconfigurable regions of
the FPGA. Since these closed-source DNN accelerators are
black-box for cloud vendors, it is crucial to ensure security
isolation among different DNN accelerators for multi-tenant
sharing. Current commercialized AXI interconnection mod-
ules (e.g., Xilinx AXI interconnect) use round-robin arbitra-
tion to solve the conflicts among multiple accelerators.
However, it can lead to serious unfair bandwidth allocation

1322

Hypervisor Control

<> AXI Bus

Dynamic BW Controller ng_l Al S Interface

Core 1 <->| Bus Equalizer |<—>
Coren Bus Equalizer

N T

DDR
Controller

Crossbar [+

Write response merger Write response

AR | : : | _
Address Read l Read address inspector & splitter ‘ Splitted Read Address
R
Read dat
Merged Read l Read merger ‘ | ead data
AW = l Write address inspector & splitter ‘ Splitted Write Adress
Address Write
W l Write splitter ‘ splitted Write Data
Merged Write
B [‘
: |

Write :

Fig. 10. Dynamic bandwidth controller architecture.

under the case with heterogeneous burst sizes [37]. This
reveals a serious security issue where a malicious user could
bring down the entire FPGA system by uploading the accel-
erator bitstream with a particularly large burst size as the
"pandwidth stealer’. To tackle this issue, we employ the
technique proposed in [37], which works by equalizing the
burst size of each sub-accelerator to a uniform size. Combining
the mechanisms of limiting the number of transactions and
the data size in a predictable manner, we can safely ensure
both the performance and security isolation on FPGAs.

5.2.3 Runtime Reconfigurability

As discussed in Section 2.1, current commercialized AXI
interconnection modules are not able to change their config-
uration during runtime. We enable the runtime reconfigur-
ability by exposing an AXI interface for the hypervisor to
configure internal registers at runtime. More specifically, the
proposed dynamic bandwidth controller has three major
configurable parameters. The first is the threshold & to limit
the number of AXI transactions for the bandwidth alloca-
tion of each sub-accelerator. The second is the uniform burst
size b for fair bandwidth allocation and security isolation.
As discovered in [37], a smaller b allows for a fairer band-
width allocation, but introduces some more latency over-
head for the overall transactions, thus an empirical value of
b as 16-word is taken to meet the best trade-off. The third is
the period T, which has impacts on the total bandwidth uti-
lization rate depending on the specific workload [20]. The
hypervisor can dynamically adjust the period T to gradu-
ally achieve the optimal bandwidth utilization at runtime.

5.2.4 Architecture Overview

Fig. 10 shows the architecture overview of the dynamic
bandwidth controller based on AXI HyperConnect [21],
where the bus equalizer is proposed as the key module to
incorporate with the conventional AXI interconnection
module. For the first functionality, the bus equalizer realizes
bandwidth reservation by limiting the number of outstand-
ing transactions based on the threshold . The bus equalizer
has a separate internal counter for each sub-accelerator.
Once the number of transactions set by the threshold # is
reached, the Central Control Unit (CCU) will suspend fur-
ther transaction requests of the corresponding sub-accelera-
tor. For the second one, the bus equalizer deals with

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

TABLE 2
Multi-DNN Workloads With Vision, NLP, and Mixed Applications
Workload DNN Models
Vision ResNet50 [29], MobileNetV2 [39],
GoogleNet [40], VGG16 [17]
NLP GNMT [16], ncf [41],
Transformer (12 layers) [31]
Mixed ResNet50 [29], MobileNetV2 [39],

GNMT [16], Transformer (12 layers) [31]

The listed CNN and RNN models are extracted from MLPerf [38].

heterogeneous burst sizes with the help of splitters and
mergers. When the burst size is larger than the pre-defined
uniform burst size b, the splitter will divide the read and
write transaction requests into multiple sub-transactions,
and the merger will merge the corresponding responses.
For the third functionality, an AXI slave control interface is
exposed to the hypervisor as a standard memory-mapped
device. The hypervisor can read /write internal registers for
configuring parameters and monitoring stats at runtime.

6 EVALUATIONS

6.1 Evaluation Setups

Multi-DNN Workloads. We consider three different work-
loads: vision, NLP, and a mix of both. The DNN models
consist of CNN, RNN, and transformer models, mainly
extracted from the multi-stream inference workload of
MLPerf [38]. As listed in Table 2, we construct each work-
load with four different DNN models. For the Transformer
model [31], we limit the number of layers to be 12 (i.e., two
self-attention layers) for a more balanced workload. Besides,
we set the batch size to 1 for each DNN model.

Evaluated Platforms. We evaluate H3M on both ASIC and
FPGA platforms. The ASIC platform experiments aim at
providing comparative results with state-of-the-art spatial
multi-tenant accelerators, i.e., Planaria [11] and Herald [5].
We follow the settings in Herald for fair comparison, as
shown in Table 3. On the other hand, FPGA platforms offer
a realistic and deployable environment for evaluating the
proposed H3M framework on heterogeneous systems.
Table 4 shows the available hardware resources and off-
chip memory bandwidth of Xilinx Alveo U200 and U280
FPGAs. We employ the API remoting based virtualization
method for the PCle-based FPGA system [42].

Architecture Settings. As summarized in Tables 3 and 4,
we set the local memory to 512 KB for each sub-accelerator

TABLE 3
Settings for ASIC-Based Cloud Use Scenarios

PEs 16384

NoC BW 256 GB/s

Off-chip BW 256 GB/s

Global Memory 16 MB

Local Memory 512 KB

Frequency 1 GHz

Accelerator Xilinx B512/800/1024/B1152 and
Parallelism B1600/B2304/B3136/B4096 DPUs
Dataflow Output/Weight/Row-stationary

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING...

TABLE 4

Resources and Settings for Xilinx FPGA Platforms
FPGA Type Alveo U200 Alveo U280
LUTs 1182K 1304K
FFs 1777K 2607K
DSPs 6840 9024
BRAMs 1602 2016
URAMs 800 960
Off-chip Memory 4 DDRs (64 GB) 2 DDRs, 1 HBM2 (40 GB)
Off-chip BW 77 GB/s 38+460=498 GB/s
NoC BW 77 GB/s 498 GB/s
Accelerator Xilinx B512/800/1024/B1152 and
Parallelism B1600/B2304/B3136/B4096 DPUs
Local Memory 512 KB
Global Memory 16 MB
Frequency 300 MHz
Dataflow Output/Weight/Row-stationary

Each BRAM block is 36 Kb, and each URAM block is 288 Kb.

and the global memory to 16 MB for a fair comparison. We
set the NoC BW to be consistent with the off-chip BW as dis-
cussed in Section 5.1.1. We assume a running frequency of 1
GHz on the ASIC platform and implement sub-accelerators
on the FPGA platform with a frequency of 300 MHz. As dis-
cussed in Section 4, we search the heterogeneous dataflow
styles, the homogeneous multi-core number, and the com-
putation parallelism (#PE) for each sub-accelerator. Specifi-
cally, we select three distinct dataflow styles for evaluation
(i.e., weight-stationary (NVDLA) [12], output-stationary
(ShiDianNao) [13], and row-stationary (Eyeriss) [14]). More-
over, we consider the Xilinx DPUs with eight different com-
putation parallelisms from 512 to 4096 [18]. For the
architecture baselines, we choose Planaria [11] as the homo-
geneous multi-core baseline, and Herald [5] as the heteroge-
neous dataflow baseline.

Scheduling Settings. As discussed in Section 3.1, we opti-
mize the scheduling problem in terms of execution order
and dynamic bandwidth allocation for a batch of jobs,
which are composed of DNN layers from different DNN
models. In the evaluation, the number of batched jobs is
equal to the total number of DNN layers in the multi-DNN
workload (i.e., vision, NLP, and mixed) as presented above.
For the scheduling baselines, we implement two heuristic
scheduling strategies, i.e., FCFS and SJF, which are widely
employed and have been verified to be effective [4], [11].
Both FCFS and SJF are greedy scheduler and do not support
dynamic bandwidth allocation at runtime.

Mapping Settings. We search the three multi-core parallel-
ism schemes, i.e., pixel, weight, and partial sum parallelism
(PP, ICP, and OCP), for spatial mapping the DNN layer
onto the spatial multi-tenant accelerator, as discussed in
Section 3.1. Also, we search the resource allocation in terms
of sub-accelerator selection and core assignment inside the
mapping encoding vector, as discussed in Section 4. For the
mapping baselines, we consider two widely used heteroge-
neous resource allocation methods, i.e., Minimum Execu-
tion Time (MET) and Opportunistic Load Balancing (OLB),
with a fixed multi-core parallelism scheme. Both MET and
OLB are greedy resource allocator, where MET assigns the
job to the fastest sub-accelerators, while OLB assigns the job
to the most available sub-accelerators.

1323

DSE Settings. As discussed in Section 4.2, we employ
CMA-ES [25] as the optimizer to explore the proposed
three-level design space. We implement the H3M frame-
work on the top of the PYCMA package [43] using Python.
We set the number of population for each iteration to be 20,
and we find 500 iterations are enough for H3M to find the
optimal solutions, which means a total of 10K sampling
design points to be evaluated. We run the experiments on
the server with two Intel Xeon 4208 CPUs running at 2.1
GHz. We set the « and S as 1 for a balanced EDP objective.

Cost Estimation. As discussed in Section 4.5, we use MAE-
STRO [22], which is also employed by Herald [5] and
reports only 3.9% error compared with RTL simulation, for
modeling latency and energy consumption of each sub-
accelerator running the target DNN layer on both ASIC and
FPGA platforms. As for FPGA platforms, we employ Xilinx
Vitis 2021.1 for synthesis and implementation, and the post-
synthesis hardware resource utilization reports of all types
of modified Xilinx DPUs are used as input to the cost model
of H3M. The real-time power consumption of FPGA-based
spatial multi-tenant DNN accelerators is collected using on-
chip power monitor, which can be accessed by the host
CPU through the PCle interface.

6.2 Evaluation Results
Comparison With Multi-Tenant DNN Accelerators. Fig. 11
shows the comparison results of H3M and the other two
multi-tenant DNN accelerator baselines (i.e., Planaria [11]
and Herald [5]). The evaluation results over the three work-
loads show the same trend on the three platforms, where
the homogeneous multi-core architecture of Planaria has
the worst EDP (except for the vision workload on the Xilinx
U280 FPGA), and heterogeneous dataflow architecture of
Herald has a better EDP compared with Planaria. Mean-
while, the proposed H3M framework can find the optimal
configuration of the multi-tenant DNN accelerator by com-
bining the both worlds of homogeneous multi-core and het-
erogeneous dataflow architecture, thus achieving the best
EDP for all the three workloads on both platforms.

Comparison With Baselines on ASIC. As shown in Fig. 11a,
the optimal configurations spotted by the proposed H3M
framework on the ASIC platform improve the EDP over the
Planaria and Herald by 3.0-7.5x and 1.8-3.6x, respectively.
The reasons are two-fold. On the one hand, Herald takes
full advantage of different dataflow styles, but it fails to
take advantage of the homogeneous multi-core architecture
for supporting multi-DNN workloads in a fine-grained
manner. The goal of H3M is to have both the model-level
dataflow flexibility of HDA and the task-level dynamic fis-
sion capabilities of HMCA at the architecture level. On the
other hand, the design space for scheduling and mapping
also has an important contribution to the EDP improve-
ment. Since both Planaria and Herald use heuristics based
mapping and scheduling methods, while H3M co-explores
the design space of mapping and scheduling together with
architectural parameters. We will further discuss the effec-
tiveness of the proposed scheduling and mapping optimiza-
tion methodology later.

Comparison With Baselines on FPGA. For evaluation on
FPGA platforms, we implement Planaria with the same

1324 |IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023
Planaria Herald m Qurs .
0.0025 x 0.035 é 0.003 x S
© 5 -
0.002 0.03 . 0.0025 o
o
@ 4 oots u w0028 o S 0.002 _
* 0 * o X > * <
g 0.02 > 8 X x o X
> ~ g 2 R ¥ 200015 3 ® o =
& 0001 5 o 0.015 X o
w S P w (o) = w 0.001
© & . 0.01 < = <
0.0005 - x x " x
Z X 0.005 X I 0.0005 -
0 - | . 0 l | 0 . l
Vision NLP Mixed Vision NLP Mixed Vision NLP Mixed

(a)

()

Fig. 11. Comparison results of H3M and other multi-tenant DNN accelerator baselines (i.e., Planaria [11] and Herald [5]) over the three workloads on
the different hardware platforms: (a) ASIC, (b) Xilinx U200 FPGA, and (c) Xilinx U280 FPGA.

number of cores as the ASIC platform, which means the
architecture of 16-core B2304 and 16-core B4096 DPU sub-
accelerators with the same dataflow on the Xilinx U200 and
U280 FPGA, respectively. Also, we implement Herald with
5-core B4096 and 8-core B4096 DPU sub-accelerators for the
two dataflow styles (i.e., output and weight stationary) on
the Xilinx U200 and U280 FPGA, respectively. And we con-
strain multiple B4096 cores for each dataflow style in Herald
to perform only a single job at the same time, to stay consis-
tent with the way Herald is executed.

Fig. 11b illustrates that the EDP improvement of H3M
over the Planaria and Herald baselines ranging from 3.3-
12.3x and 2.1-5.7x on the Xilinx U200 FPGA, respectively.
Similar results of the EDP improvement on the Xilinx U280
FPGA, which are 2.1-4.4x for Planaria and 1.8-9.0x for Her-
ald, can also be observed in Fig. 11b. Compared to the ASIC
platform, we can find that the average EDP improvement is
greater for the FPGA platform. This is because we need to
search PE parameters (i.e., DSPs), but also need to consider
other hardware resources such as LUTs and BRAMs on the
FPGA platform, resulting in more room for optimization of
hardware architecture.

Comparison With Mapping and Scheduling Baselines. Since
the mapping and scheduling for multi-DNN workloads are
highly coupled with each other, we evaluate both together.
As discussed above, we compare the mapping and schedul-
ing optimization results of H3M with several heuristics
baselines, including scheduling baselines (i.e., FCFS and
SJF) and mapping baselines (i.e., MET and OLB). A com-
plete baseline is the combination of them. For instance,
FCFS-MET is a valid strategy, where FCFS is to schedule the

execution order of the batched jobs, and MET is to map the
job to the available sub-accelerators. Moreover, we fix the
hardware configurations to be consistent with Herald to
ensure a fair comparison.

Fig. 12 shows the comparison results of H3M and other
heuristics multi-DNN mapping and scheduling baselines
(i.e., SJF-OLB, FCFS-OLB, SJF-MET, and FCFS-MET) over
the three workloads on the ASIC and FPGA platforms. As
for the ASIC platform, H3M achieves an average of 1.5x,
3.8x%, and 4.6 x EDP improvement over the baselines on the
vision, NLP, and mixed workload, respectively. We can see
the same trend on FPGA platforms, but with better EDP
improvements. H3M outperforms the baselines by 1.9-2.9x%,
10.3-15.8 %, and 12.4-25.7x over the three workloads on the
Xilinx U200 and U280 FPGA platform. We can see from
Fig. 12 that the heuristics baselines have the worst perfor-
mance under the mixed workload, where the layers show
more heterogeneity. While H3M can find the optimal map-
ping and scheduling for heterogeneous multi-DNN work-
loads by collaboratively optimizing on the mapping and
scheduling design space for the spatial multi-tenant hard-
ware architecture. What's more, these baselines fail to take
advantage of the potential design space for dynamic band-
width allocation, leading to wasted and competing hard-
ware resources. In contrast, H3M can maximize bandwidth
utilization by finding optimal runtime bandwidth allocation
schemes through co-exploration.

Optimal Architecture Configuration. We list the optimal
architecture configurations spotted by H3M on the Xilinx
U200 and U280 FPGA in Tables 5 and 6, respectively. We
discover some interesting insights here. First, for the vision

SJF-OLB FCFS-OLB m SJF-MET m FCFS-MET m Qurs
e xS =&
0.005 x 0.1 83584 0.025 Qe x
%16 Naig— N
0.004 588 0.08 0.02 SN
0 b 0 5 0
x0.003 x 0.06 x XX x 0.015
2 5 5 2 560 2 58X
& 0002 X383 88 L 004 - & 001 xxx =g
w T8 oYoe S w 00K w QATCSH -
- x g N NN x x “Na=& «
0.001 II IIS 0.02 S S S 0.005 = I,s X
0 I] | 0 III -] 0 III - -
Vision NLP Mixed Vision NLP Mixed Vision NLP Mixed

(b) ()

Fig. 12. Comparison results of H3M and other heuristics mapping and scheduling baselines (i.e., FCFS, SJF, MET, and OLB) over the three work-
loads on the different hardware platforms: (a) ASIC, (b) Xilinx U200, and (c) U280 FPGA.

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING... 1325
TABLE 5
Optimal Configuration and Resource Utilization of H3M Over the Three Workloads on the Xilinx U200 FPGA
Modules Optimal Configs LUTs FFs BRAMs URAMs DSPs
HyperConnect 12.1K 5.2K 0 0 0
Load/Save Module - 21.7K 51.2K 0 0 0
NoC 12.3K 16.5K 0 0 0
Vision ws:23*B512 + rs:15*B800 830.4K 1278.4K 968 323 3048
Cores NLP 0s:15*B800 + ws:8*B3136 629.9K 1195.3K 978 326 4682
Mixed ws:8*B3136 + rs:4*B4096 452.0K 1088.2K 875 292 5208
Total Utilization (Vision/NLP/Mixed) 74%/57%/42% | 76%/71%/65% | 60%/61%/55% | 40%/41%/37% | 45%/69%/76%
TABLE 6
Optimal Configuration and Resource Utilization of H3M Over the Three Workloads on the Xilinx U280 FPGA
Modules Optimal Configs LUTs FFs BRAMs URAMs DSPs
HyperConnect 15.6K 7.5K 0 0 0
Load/Save Module _ 24 8K 61.4K 0 0 0
NoC 50.1K 65.3K 0 0 0
Vision ws:16¥B1152 + rs:37*B800 1091.0K 2042.2K 1700 567 6110
Cores NLP 08:33*B512 + ws:10*B3136 1056.6K 1969.2K 1443 481 6118
Mixed 0s:12*B3136 + ws:8*B4096 760.9K 1831.9K 1479 493 8840
Total Utilization (Vision/NLP/Mixed) 91%/88%/65% | 84%/81%/75% | 84%/72%/73% | 59%/50%/51% | 68%/68%/98%

workload consisting of CNN models, H3M tends to use
more small cores (e.g., B512 and B800). Second, for the NLP
workload consisting of RNN and transformer models, H3M
tends to use a combination of large and small cores (e.g.,
B800 and b3136). Third, for the mixed workload consisting
of CNN, RNN, and transformer models, H3M tends to use a
smaller number of large cores (e.g., B3136 and B4096).

For the first case, the reason is that the computational
loads of CNN network layers are smaller compared to RNN
network layers, so the vision workload will prefer an all-
small-core configuration. For the second case, part of the
reason is that there is also some heterogeneity in the differ-
ent RNN models of the NLP workload. For instance, the
GNMT network layers are more than 10 times larger than
the ncf network layers. For the third case, which has the
most heterogeneity, H3M chooses a smaller number of large
cores rather than a combination of large and small cores.
Such a surprising result could be due to two reasons. On the
one hand, the excessive number of small cores leads to
higher power consumption, which indicates that H3M is
able to find a good trade-off between power and perfor-
mance to achieve the best EDP. On the other hand, H3M’s

hw-only = sch-only ®map-only ®mhw+sch ®mhw+map mEmap+sch mall
0.016 0.02 0.05
0.014 0.018 0.045
0016 & 004 ©
0012 & g ©
. N _ 0014 3 __0.035
@ 001 © 0012 2 003
= 0.008 = = 001 & 2 0.025
o » © o
2 0.006 ~ G 0.008 2 Q o002 &
] . - w 4
x 0.006 @ X 0.015 x O x
0.004 ~ x > s> X
© S x 0.004 "l\:rr'x 0.01 O 5B x
0.002 2ede 0.002 ,‘YI = 0.005 ~—"“I‘_-
0 mlm 0 | o =0l
Vision NLP Mixed

Fig. 13. Ablation study of H3M when searching over the three workloads
on the Xilinx U280 FPGA.

co-exploration of the three design spaces can exploit optimi-
zation spaces that are not available to the heuristic-based
multi-DNN scheduling and mapping baselines.

Resource Utilization on FPGAs. Tables 5 and 6 summarizes
the resource utilization of H3M over the three workloads on
the Xilinx U200 and U280 FPGA, respectively. The AXI
HyperConnect controller, Load/Save module, and NoC
consume a total of 3.9% and 6.9% logic resources on the
Xilinx U200 and U280 FPGA, respectively. To ensure the
feasibility of placing and routing on FPGAs, we set the logic
resource utilization threshold to 90%. It can be seen from
Table 5 that the hardware resources are not fully utilized.
This is because the optimization goal of H3M is EDP, and
using all the hardware resources achieves the best latency
but not the optimal EDP. This also proves again that H3M
can achieve the best trade-off between power and latency.

Ablation Study. We analyze how three design spaces
affect overall system performance with an ablation study.
From the evaluation results of the single-design-space cases
shown in Fig. 13, we observe that the scheduling design

——CMA-ES
0.025

Random Search

0.02
0.015 |

0.01

EDP (J *s)

0.005

0

o oo
w o
-

150

[eNelolNo ool
oOLOoWwouw
NANOOST T

500

(b) Iteration

Fig. 14. (a) Sampling runtime of one iteration when searching over the
different number of layers of the GNMT model. (b) Sampling efficiency of
H3M and random search over the NLP workload on the Xilinx U280
FPGA.

1326

0160 Vision Workload on FPGA-U280 009 NLP Workload on FPGA-U280
0140 g4 (a=2,3=0) 0.080 (‘X:Z'E:OZ e Design Point

0120 oo — Pareto Curve

@ 9100 ® 0.060 (=15=1)

5\ 0.080 3\ 0.050 " S ’

5 ° $ 0.040

g 0000 (@=04=2) | B om0 (a=0.5=2)
0040 4 0020 S

T L
0020 0010
a=1,=1
0,000 (@=1,5=1) 0.000
0.000 0.010 0.020 0.030 0.040 0.050 0.000 0.005 0.010 0.015 0.020 0.025
(a) Energy (J) (b) Energy (J)

Fig. 15. The Trade-off between latency and energy by adjusting the «
and g for the (a) Vision and (b) NLP workload.

space has the greatest impact on the performance (5.3-8.7 x
difference from the all-design-space case), while the archi-
tecture design space has relatively the least impact (36.3-
52.0x). As for the cases where we choose two design
spaces to construct a combined design space, Fig. 13
illustrates that the combined design space of architecture
and scheduling has the greatest impact on the perfor-
mance with only 1.2-1.9x difference. This further demon-
strates that the design spaces of architecture, scheduling,
and mapping are highly coupled and correlated with
each other, reflecting the need for H3M to optimize all
the three collaboratively.

Sampling Efficiency. As discussed in Section 4.3, the length
of the hardware and mapping encoding vector is fixed,
while the length of the scheduling encoding vector equals
to the number of batched jobs (i.e., layers). Fig. 14a shows
the sampling runtime of H3M scales linearly with the num-
ber of layers for one iteration. When we fix the number of
batch jobs to 100, H3M takes 5.8-7.6s for one iteration, and
around one hour for a complete exploration with 100 itera-
tions. Fig. 14b demonstrates that H3M can quickly converge
to a near-optimal design point in the first 200 iterations,
while the EDP mean of random search remains high. It indi-
cates that H3M gradually improves the range of architec-
ture, scheduling, and mapping selection.

Trade-off Between Latency and Energy. We explore different
combinations of EDP objectives with («, 8) between (2,0)
(i.e., makespan latency only) and (0,2) (i.e., energy only)
with a step of 0.1. Fig. 15 illustrates that H3M controls
the trade-off between the makespan latency and energy,
where a larger @ and a smaller g result in a better make-
span latency at the cost of a higher energy consumption,
and vice verse. Moreover, we discover that the more bal-
anced EDP objectives (i.e., (o, B) is close to (1,1)) are
more likely to appear on the Pareto frontier. Thus, we
set the (a,8) to (1,1) as the default configuration for
H3M to ensure a Pareto-optimal and latency-energy bal-
anced result.

7 CONCLUSION

In this paper, we propose H3M, an architecture, scheduling,
and mapping co-exploration framework for FPGAs, which
provides the following takeaways. (1) The combination of the
heterogeneous dataflow and homogeneous multi-core architecture
offers superior performance over SOTA multi-tenant DNN
architectures. (2) Heuristics-based mapping and scheduling
algorithms cannot meet the performance demand required
by multi-DNN workloads. Instead, we need to formulate it
as an optimization problem with dynamic bandwidth allocation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

considered. (3) The design spaces of the architecture, schedul-
ing, and mapping are highly coupled and correlated with each
other, which demands for a co-exploration methodology. (4)
H3M rivals the SOTA multi-tenant DNN accelerator base-
lines, Planaria and Herald, by 3.0-7.5x and 1.8-3.6x EDP
reduction on the ASIC platform. H3M offers 2.1-5.7x EDP
improvement over Herald on the Xilinx U200 FPGA, and 1.8-
9.0x on the U280 FPGA.

REFERENCES

[1] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Managed & model-less inference serving,” 2019, arXiv:1905.13348.

[2] Google, “Google cloud TPU: Train and run machine learning
models faster than ever before,” 2021. [Online]. Available:
https://cloud.google.com/tpu/

[3] J. Fowers et al., “A configurable cloud-scale DNN processor for
real-time AL” in Proc. IEEE/ACM 45th Annu. Int. Symp. Comput.
Archit., 2018, pp. 1-14.

[4] Y. Choi and M. Rhu, “PREMA: A predictive multi-task sched-
uling algorithm for preemptible neural processing units,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit.,, 2020,
pp- 220-233.

[5] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and
V. Chandra, “Heterogeneous dataflow accelerators for multi-
DNN workloads,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., 2021, pp. 71-83.

[6] C.-J. Wu et al., “Machine learning at facebook: Understanding
inference at the edge,” in Proc. IEEE Int. Symp. High Perform. Com-
put. Archit., 2019, pp. 331-344.

[71 D. Amodei et al., “Deep speech 2: End-to-end speech recognition
in english and mandarin,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 173-182.

[8] U.Gupta etal., “DeepRecSys: A system for optimizing end-to-end
at-scale neural recommendation inference,” in Proc. IEEE/ACM
47th Annu. Int. Symp. Comput. Archit., 2020, pp. 982-995.

[9]1 E. Baek, D. Kwon, and J. Kim, “A multi-neural network accelera-
tion architecture,” in Proc. IEEEJACM 47th Annu. Int. Symp. Com-
put. Archit., 2020, pp. 940-953.

[10] S.Zeng et al., “Enabling efficient and flexible FPGA virtualization
for deep learning in the cloud,” in Proc. IEEE 28th Annu. Int. Symp.
Field-Programmable Custom Comput. Machines, 2020, pp. 102-110.

[11] S. Ghodrati et al., “Planaria: Dynamic architecture fission for
spatial multi-tenant acceleration of deep neural networks,” in
Proc. IEEE 53rd Annu. ACM Int. Symp. Microarchit., 2020,
pp- 681-697.

[12] NVIDIA, “NVIDIA deep learning accelerator,” 2017. [Online].
Available: http:/ /nvdla.org

[13] Z.Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. 42nd Annu. Int. Symp. Comput. Archit., 2015,
pp- 92-104.

[14] Y.-H. Chen,]J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,”
ACM SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 367-379,
2016.

[15] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An
open framework for mapping DNN models to cloud FPGAs,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2019,
pp. 73-82.

[16] Y. Wu et al, “Google’s neural machine translation system:
Bridging the gap between human and machine translation,”
2016, arXiv:1609.08144.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[18] Xilinx, “Deep learning processor unit (DPU) intellectual property,”
2021. [Online]. Available. https://www.xilinx.com/products/
intellectual-property/dpu.html

[19] R. Kedia, S. Goel, M. Balakrishnan, K. Paul, and R. Sen, “Design
space exploration of FPGA based system with multiple DNN
accelerators,” IEEE Embedded Syst. Lett., vol. 13, no. 3, pp. 114-117,
Sep. 2021.

[20] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. But-
tazzo, “A bandwidth reservation mechanism for AXI-based hard-
ware accelerators on FPGAs,” in Proc. 31st Euromicro Conf.
Real-Time Syst., 2019, pp. 14:1-14:9.

https://cloud.google.com/tpu/
http://nvdla.org
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html

ZENG ETAL.: SERVING MULTI-DNN WORKLOADS ON FPGAS: A COORDINATED ARCHITECTURE, SCHEDULING, AND MAPPING... 1327

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo,
“AXI hyperconnect: A predictable, hypervisor-level interconnect
for hardware accelerators in FPGA SoC,” in Proc. IEEE 57th ACM
Des. Automat. Conf., 2020, pp. 1-6.

H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A.
Parashar, “"MAESTRO: A data-centric approach to understand
reuse, performance, and hardware cost of DNN mappings,” IEEE
Micro, vol. 40, no. 3, pp. 20-29, May /Jun. 2020.

M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis,
“TANGRAM: Optimized coarse-grained dataflow for scalable
NN accelerators,” in Proc. 24th Int. Conf. Architectural Support Pro-
gram. Lang. Oper. Syst., 2019, pp. 807-820.

X. Zhang et al., “DNNBuilder: An automated tool for building
high-performance DNN hardware accelerators for FPGAs,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2018, pp. 1-8.

N. Hansen, “The CMA evolution strategy: A comparing review,”
in Towards a New Evolutionary Computation, Berlin, Germany:
Springer, pp. 75-102, 2006.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and efficient neural network acceleration with 3D memo-
ry,” in Proc. 22nd Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2017, pp. 751-764.

Z. Tan, H. Cai, R. Dong, and K. Ma, “NN-baton: DNN workload
orchestration and chiplet granularity exploration for multichip
accelerators,” in Proc. IEEE[ACM 48th Annu. Int. Symp. Comput.
Archit., 2021, pp. 1013-1026.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and]J. Cong,
“Optimizing FPGA-based accelerator design for deep convolu-
tional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays, 2015, pp. 161-170.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” Proc. 15th Annu. Conf. Int. Speech Commun. Assoc.,
2014, pp. 338-342.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Informat. Process. Syst., 2017, pp. 5998-6008.

B. Mor, D. Shabtay, and L. Yedidsion, “Heuristic algorithms for
solving a set of NP-hard single-machine scheduling problems
with resource-dependent processing times,” Comput. Ind. Eng.,
vol. 153, 2021, Art. no. 107024.

Y. Lin, M. Yang, and S. Han, “NAAS: Neural accelerator architec-
ture search,” 2021, arXiv:2105.13258.

N. Kapre and J. Gray, “Hoplite: A deflection-routed directional
torus NoC for FPGAs,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 10, no. 2, pp. 1-24, 2017.

K. Guo et al.,, “Angel-eye: A complete design flow for mapping
CNN onto embedded FPGA,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 37, no. 1, pp. 35-47, Jan. 2018.

Y. Zha and J. Li, “Virtualizing FPGAs in the cloud,” in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Oper. Syst., 2020, pp. 845-858.

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? Restoring fairness in AXI intercon-
nects for FPGA SoCs,” ACM Trans. Embedded Comput. Syst.,
vol. 18, no. 5, pp. 1-22, 2019.

V. J. Reddi et al., “MLPerf inference benchmark,” in Proc. ACM/
IEEE 47th Annu. Int. Symp. Comput. Archit., 2020, pp. 446—459.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobilenetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proc. 26th Int. Conf. World Wide Web,
2017, pp. 173-182.

S. Zengetal ., “A unified FPGA virtualization framework for gen-
eral-purpose deep neural networks in the cloud,” ACM Trans.
Reconfigurable Technol. Syst., vol. 15, no. 3, pp. 1-31, 2021.

Github, “Python implementation of CMA-ES,” 2021. [Online].
Available: https://github.com/CMA-ES/pycma

Shulin Zeng (Student Member, IEEE) received the
BS degree from the Electronic Engineering Depart-
ment, Tsinghua University, Beijing, China, in 2018.
He is currently working toward the PhD degree with
Electronic Engineering Department, Tsinghua Uni-
versity. His research interests include mainly
focuses on software-hardware co-design for deep
learning, FPGA-based accelerator design, and vir-
tualization in the cloud.

Guohao Dai (Member, IEEE) received the BS and
PhD (with honor) degrees from Tsinghua Univer-
sity, Beijing, in 2014 and 2019, respectively. He is
joining Shanghai Jiao Tong University, Shanghai,
China, as an associate professor. His research
mainly focuses on large-scale sparse graph
computing, heterogeneous hardware computing,
emerging hardware architecture, and etc. He has
received Best Paper Award in ASP-DAC 2019,
and Best Paper Nomination in DAC 2022 and
DATE 2018. He is the winner of the NeurlPS Bil-
lion-Scale Approximate Nearest Neighbor Search Challenge, in 2021, the
recipient of the Outstanding PhD Dissertation Award of Tsinghua Univer-
sity, in 2019. Currently, he serves as PI/Co-PI for several projects with a
personal share of more than RMB 6 million.

Niansong Zhang received the BEng degree in
telecommunication engineering from Sun Yat-
sen University, in 2020. He is currently working
toward the PhD degree with Cornell University.
His research interests include heterogeneous
compilation, domain-specific language for hard-
ware design, and physical design optimizations
for FPGAs. This work is conduced during his
research internship with Tsinghua University.

Xinhao Yang received the BS degree from the
Electronic Engineering Department, Tsinghua
University, Beijing, China, in 2021. He is cur-
rently working toward the MS degree in elec-
tronic engineering with Tsinghua University,
Beijing. His research interests include Neural
Network (NN) compiler and heterogeneous
compiler.

Haoyu Zhang received the BS degree from the
Electronic Engineering Department, Beihang Uni-
versity, Beijing, China, in 2022. She is currently
working toward the MS degree in electronic engi-
neering with Tsinghua University, Beijing. Her
research interest includes software-hardware co-
design for deep learning on FPGA.

Zhenhua Zhu (Student Member, IEEE) received
the BS degree from the Electronic Engineering
Department, Tsinghua University, Beijing, China,
in 2018. He is currently working toward the PhD
degree with the Electronic Engineering Depart-
ment, Tsinghua University. His research interests
include mainly focuses on memristor, computer
architecture, and processing-in-memory.

https://github.com/CMA-ES/pycma

1328

Huazhong Yang (Fellow, IEEE) received the BS
degree in microelectronics, in 1989, and the MS
and PhD degrees in electronic engineering from
Tsinghua University, Beijing, in 1993 and 1998,
respectively. In 1993, he joined the Department of
Electronic Engineering, Tsinghua University, Bei-
jing, where he has been a professor since 1998. He
was Awarded the Distinguished Young Researcher
by NSFC in 2000, Cheung Kong Scholar by the Chi-
nese Ministry of Education (CME), in 2012, science
and Technology Award first prize by China Highway
and Transportation Society in 2016, and Technological Invention Award first
prize by CME in 2019. His current research interests include wireless sen-
sor networks, data converters, energy-harvesting circuits, nonvolatile pro-
cessors, and brain inspired computing. He has also served as the chair of
Northern China ACM SIGDA Chapter science 2014, general co-chair of
ASPDAC’20, navigating committee member of AsianHOST’18, and TPC
member for ICCCAS’07, ASQED’09, and ICGCS’10.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Yu Wang (Fellow, IEEE) received the BS and
PhD (with honor) degrees from Tsinghua Univer-
sity, Beijing, in 2002 and 2007, respectively. He is
currently a tenured professor with the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity. His research interests include brain inspired
computing, application specific hardware com-
puting, parallel circuit analysis, and power/reli-
ability aware system design methodology. He has
authored and co-authored more than 200 papers
in refereed journals and conferences. He has
received 4 best paper awards from leading conferences, including
ASPDAC 2019 and FPGA 2017, and 10 Best Paper Nominations. He is
a recipient of DAC under 40 Innovator Award (2018). He served as TPC
chair for ICFPT 2019 and 2011, track chair for DATE 2017-2019 and
GLSVLSI 2018. Currently, he serves as associate editor of IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) and ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES).

AN

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

