
Type-Aware Federated Scheduling for
Typed DAG Tasks on Heterogeneous

Multicore Platforms
Ching-Chi Lin ,Member, IEEE, Junjie Shi , Student Member, IEEE, Niklas Ueter ,

Mario G€unzel , Student Member, IEEE, Jan Reineke, and Jian-Jia Chen , Senior Member, IEEE

Abstract—To utilize the performance benefits of heterogeneous multicore platforms in real-time systems, we need task models that

expose the parallelism and heterogeneity of the workload, such as typed DAG tasks, as well as scheduling algorithms that

effectively exploit this information. In this article, we introduce type-aware federated scheduling algorithms for sporadic typed

DAG tasks with implicit deadlines running on a heterogeneous multicore platform with two different types of cores. In type-

aware federated scheduling, a task can be executed in one of the three strategies: Exclusive Allocation, Semi-Exclusive

Allocation, and Sequential and Share. In Exclusive Allocation, clusters of cores of both core types are exclusively allocated to

tasks, while cores of only one type are exclusively allocated to tasks in Semi-Exclusive Allocation. The workload of the other

type from tasks in Semi-Exclusive Allocation and the workload from tasks in Sequential and Share share the cores that are not

exclusively allocated to any task. We prove that our type-aware federated scheduling algorithm has a capacity augmentation

bound of 7.25. We also show that no constant capacity augmentation bound can be obtained without Semi-Exclusive Allocation.

Compared to the state of the art, the type-aware federated scheduling algorithm achieves better schedulability, especially for

task sets with skewed workload.

Index Terms—Heterogeneous multicore platforms, parallel tasks, DAG, federated scheduling, capacity argumentation bound

Ç

1 INTRODUCTION

THE development of heterogeneous multicore platforms
has been thriving in recent years. A heterogeneous mul-

ticore platform consists of multiple types of execution units,
each with different performance and energy characteristics.
Heterogeneous platforms aim to provide higher perfor-
mance and more energy efficiency compared with homoge-
neous platforms. One concrete example for heterogeneous
computing systems is the integration of main processing
units with accelerators. For example, NVIDIA Tegra [19]
and Samsung Exynos [21] SoCs integrate ARM processors

with GPUs, while Xilinx Versal [24] integrate processors
with AI accelerators on one chip.

To fully utilize the potential of a heterogeneous multi-
core system, we can analyze the tasks and determine the
appropriate execution unit for running each code segment.
Typed directed acyclic graphs (typed DAGs) commonly
represent for modeling parallel real-time tasks running on
heterogeneous multicore platforms. In a typed DAG task,
each vertex represents a code segment that must be exe-
cuted sequentially on a particular type of execution unit.
Fig. 1 shows an example of a typed DAG task.

Scheduling typed DAG tasks with real-time constraints on
heterogeneous multicore platforms is an emerging research
topic. Most of the prior work [3], [9], [16], [18] focuses on sched-
uling un-typed real-time DAG tasks on heterogeneous plat-
forms, and proposes methods for determining the core type
each code segment (i.e., each vertex in a DAG) should be exe-
cuted on. For typed DAG tasks, Han et al. [13] analyze the
worst-case response time (WCRT) of a typedDAG task running
on heterogeneous multicore platforms, and propose WCRT
boundswith self sustainability [2]. In their follow-uppaper [14],
they propose a federated scheduling algorithm [17] for typed
DAG tasks running on heterogeneousmulticore platforms.

We note that the state of the art for federated scheduling
of typed DAG tasks considers only two execution modes,
i.e., heavy and light, independently of the heterogeneity of
the workload distribution. However, we prove that no fed-
erated scheduling approach with only two execution modes
(like that in [14]) may yield a constant capacity augmenta-
tion bound as soon as tasks with a density greater than 1 are

� Ching-Chi Lin, Junjie Shi, Niklas Ueter, Mario G€unzel, and Jian-Jia Chen
are with the Design Automation for Embedded Systems Group, TU Dort-
mund University, 44227 Dortmund, Germany. E-mail: {chingchi.lin,
junjie.shi, niklas.ueter, mario.guenzel, jian-jia.chen}@tu-dortmund.de.

� Jan Reineke is with Real-Time and Embedded Systems Lab, Saarland Uni-
versity, 66123 Saarbr€ucken, Germany. E-mail: reineke@cs.uni-saarland.de.

Manuscript received 2 March 2022; revised 21 July 2022; accepted 20 August
2022. Date of publication 29 August 2022; date of current version 7 April
2023.
This work was supported in part by European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
under Grants 865170 and 101020415, in part by Deutsche Forschungsgemein-
schaft (DFG) Sus-Aware under Grant 398602212, in part by the Federal Min-
istry of Education and Research (BMBF) in the course of the project 6GEM
under Grant 16KISK038, and in part by Collaborative Research Center SFB
876, subproject A3 under Grant 124020371, http://sfb876.tu-dortmund.de/)
(Corresponding author: Ching-Chi Lin.)
Recommended for acceptance by C. Silvano.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TC.2022.3202748, provided by the authors.
Digital Object Identifier no. 10.1109/TC.2022.3202748

1286 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9518-2809
https://orcid.org/0000-0002-9518-2809
https://orcid.org/0000-0002-9518-2809
https://orcid.org/0000-0002-9518-2809
https://orcid.org/0000-0002-9518-2809
https://orcid.org/0000-0002-9879-1394
https://orcid.org/0000-0002-9879-1394
https://orcid.org/0000-0002-9879-1394
https://orcid.org/0000-0002-9879-1394
https://orcid.org/0000-0002-9879-1394
https://orcid.org/0000-0002-6722-4805
https://orcid.org/0000-0002-6722-4805
https://orcid.org/0000-0002-6722-4805
https://orcid.org/0000-0002-6722-4805
https://orcid.org/0000-0002-6722-4805
https://orcid.org/0000-0001-7575-7014
https://orcid.org/0000-0001-7575-7014
https://orcid.org/0000-0001-7575-7014
https://orcid.org/0000-0001-7575-7014
https://orcid.org/0000-0001-7575-7014
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
mailto:chingchi.lin@tu-dortmund.de
mailto:junjie.shi@tu-dortmund.de
mailto:niklas.ueter@tu-dortmund.de
mailto:mario.guenzel@tu-dortmund.de
mailto:jian-jia.chen@tu-dortmund.de
mailto:reineke@cs.uni-saarland.de
http://sfb876.tu-dortmund.de/
https://doi.org/10.1109/TC.2022.3202748
https://doi.org/10.1109/TC.2022.3202748

classified as heavy, in Section 3. Capacity augmentation
bounds [17] are one of the standard metrics to quantify
the performance of scheduling algorithms for real-time
systems.

In this paper, we introduce a type-aware federated
scheduling algorithm for scheduling sporadic typed DAG
tasks with implicit deadlines on a heterogeneous multicore
platform with two types of cores. In our type-aware feder-
ated scheduling, each task is executed following one of
three strategies:

1) Exclusive Allocation: a cluster of cores consisting of
both core types is exclusively allocated to the task.

2) Semi-Exclusive Allocation: a cluster of cores consisting
of one core type is exclusively allocated to the task.
Workload of the other type is scheduled sequentially
on a single core shared with other tasks.

3) Sequential and Share: both types of workload in the
task are scheduled with other tasks on shared cores.
Workload within a task is executed sequentially.

The formal definition of each execution strategy is given
in Section 4. We explain how tasks are scheduled, and ana-
lyze their corresponding schedulability in Section 5. We
then prove that our type-aware federated scheduling algo-
rithm has a capacity augmentation bound of 7.25 in
Section 6.

In the type-aware federated scheduling algorithm devel-
oped in Section 5, we adopt several rigid “enforcement
rules” [8] to simplify the structure of the scheduling prob-
lem, and to allow the derivation of a capacity augmentation
bound. Specifically, purely based on the parameters of a
task, these enforcement rules determine the number of cores
exclusively allocated to tasks in Exclusive Allocation and
Semi-Exclusive Allocation strategies in Section 5.2. While
such enforcement rules often yield constant capacity aug-
mentation bounds, as reported by Chen et al. [8], they may
also harm performance in practice by unnecessarily con-
straining scheduling.

Thus, in Section 7, we go on to explore an improved algo-
rithm with the same capacity augmentation bound but
without employing explicit enforcement rules. The
improved algorithm is based on four principles: 1.) a
sequence of attempts is made to determine the most appro-
priate execution strategy instead of a greedy decision based
solely on the parameters of a task, 2.) preference is given to
sharing over exclusive allocation where possible, 3.) the
number of exclusively allocated cores is minimized for
Semi-Exclusive Allocation, and 4.) combinatorial optimization
is applied for Exclusive Allocation. By scheduling a task set
with fewer dedicated cores, the improved type-aware

federated scheduling algorithm can achieve higher schedul-
ability in practice without sacrificing the augmentation
bound.

To summarize, the contributions of this paper are as
follows:

� We design a type-aware federated scheduling algo-
rithm for scheduling sporadic typed DAG tasks with
implicit deadlines on a heterogeneous multicore
platform with two core types in Section 5.

� We prove a capacity augmentation bound of 7.25 for
our type-aware federated algorithm in Section 6.

� We improve the type-aware federated scheduling
algorithm by eliminating enforcement rules in Sec-
tion 7. The improved algorithm maintains a capacity
augmentation bound of 7.25 and is shown to exhibit
better performance in our experimental evaluation.

� The evaluation results show that our type-aware fed-
erated scheduling algorithms achieve better schedul-
ability on synthetic workload compared to the state
of the art, especially for task sets with a skewed
workload.

2 SYSTEM MODEL AND ANALYSIS BACKGROUND

In this paper, we focus on a heterogeneous multicore plat-
form with two different types of execution units, i.e., cores.
Let Q ¼ fa; bg be the set of core types. Existing heteroge-
neous computing systems such as NVIDIA Tegra [19] and
Samsung Exynos [21] integrate two types of execution units,
i.e., CPUs and GPUs, on one chip.

We present the task model in Section 2.1 and the problem
formulation in Section 2.2. Capacity augmentation bounds
are defined in Section 2.3, followed by a summary of sus-
pension-aware schedulability analysis in Section 2.4, which
we rely on in our new type-aware federated scheduling
algorithm.

2.1 Typed DAG Task

A typed sporadic real-time DAG task ti is a 5-tuple ti ¼
ðGi ¼ ðVi;EiÞ; gi;vi; Ti;DiÞ, where

� Vi is a set of vertices, in which a vertex corresponds
to a piece of code that must be executed sequentially.

� Ei � Vi �Vi is the set of directed edges in Gi. A
directed edge ðu; vÞ in Ei indicates a precedence con-
straint of the execution order of the vertices u and v
in Vi, i.e., v cannot start its execution before u fin-
ishes when ðu; vÞ 2 Ei.

� gi: Vi ! Q is a function that assigns each vertex v in
Vi to its core type. Thus, in a typed DAG task, each
vertex is explicitly bound to be executed on a specific
type of core.

� vi: Vi ! Rþ is a function that defines the WCET of
each vertex v in Vi on its assigned core type. We
assume viðvÞ > 0 for any v inVi.

� Ti > 0 is the minimum amount of time between two
consecutive releases of ti.

� Di is the relative deadline of ti. If a task is released at
time ri, all of its vertices must finish their executions
no later than ri þDi.

Fig. 1. Example of a typed DAG task with two types of vertices. Each cir-
cular and rectangular vertex represents a code segment that must be
executed sequentially on an execution unit of the corresponding type.
The number in a vertex indicates the WCETof the vertex.

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1287

Based on the information specified above, we can derive
the WCET of a task ti on type a and type b cores as

Ca
i ¼

X
v:v2Vi^giðvÞ¼a

viðvÞ and Cb
i ¼

X
v:v2Vi^giðvÞ¼b

viðvÞ:

For example, in Fig. 1, Ca
i ¼ 24 for type a (circular) and Cb

i ¼
12 for type b (rectangular) vertices.

We define a path p in Gi as a sequence of vertices con-
nected via edges that starts at a source vertex, i.e., a vertex
without predecessors, and ends at a sink vertex, i.e., a vertex
without successors. We use PathsðGiÞ to denote the set of
all paths in Gi. The length of a path is the sum of the verti-
ces’ WCETs on the path. The path with the longest length is
called the critical path. We denote the critical path length of
Gi as Li. As the underlying graph is acyclic, Li can be com-
puted in linear time based on a topological ordering of the
vertices. We further define La

i (respectively, Lb
i) to be the

length of the critical path in Gi by considering only the exe-
cution times on type a (respectively, b) vertices. That is,

Lx
i ¼ max

p2PathsðGiÞ

X
v:v2p^giðvÞ¼x

viðvÞ; x 2 fa; bg;

where PathsðGiÞ is the set of all paths through Gi. La
i

(respectively, Lb
i) can be computed in the same way as Li by

temporarily setting the weights of all nodes of type b
(respectively, a) to zero, and apply algorithm such as topo-
logical sorting to find the longest path in the modified
DAG. By definition, La

i � Li, L
b
i � Li, and Li � La

i þ Lb
i .

In this paper, we consider implicit-deadline task systems,
in which Di ¼ Ti for every task ti. The utilization of task ti

on type a and type b is defined as Ua
i ¼

Ca
i

Ti
and Ub

i ¼
Cb
i

Ti
,

respectively. Furthermore, the worst-case response time Ri

of task ti is an upper bound on the response time of all jobs
of ti. Due to the assumption of implicit-deadline tasks, we
have Ri � Ti for every task ti if ti meets its deadline.

2.2 Problem Formulation

We consider scheduling a set of N implicit-deadline spo-
radic typed DAG tasks T ¼ ft1; t2; . . . ; tNg on a heteroge-
neous multicore platform with Ma type a cores and Mb type
b cores, where the parameters and characteristics of each
sporadic DAG task are defined in Section 2.1. Our objective
is to design a scheduling algorithm that generates a task-to-
core mapping and a schedule for T, so that all jobs of the
tasks in T finish before their deadlines. For simplicity of
presentation, we implicitly assume that Ca

i > 0 and Cb
i > 0

for every task ti 2 T, whilst Ca
i ¼ 0 or Cb

i ¼ 0 is discussed in
Section B.

The following theorem shows that the problem is NP-
hard in the strong sense even for special cases.

Theorem 1. The typed DAG scheduling problem is NP-hard in
the strong sense even if (1) Ma ¼ 1 and Mb ¼ 1, (2) T consists
of a single task, and (3) the graph consists of chains, in which
each vertex has one unit execution time.

Proof. We show that this special case of the typed DAG
scheduling problem is identical to a special case of the job
shop scheduling problem. In the job shop scheduling
problem, given n jobs and m machines, where a job must

be processed on the machines in a given order, the objec-
tive is to minimize the makespan for completing all jobs.
We consider a job shop scheduling with two shops (type a
and type b), in which each shop has one machine (Ma ¼ 1
andMb ¼ 1). Specifically, the scheduling problem to mini-
mize the makespan is denoted as J2jchains; pij ¼ 1jCmax in
three-field classification notation of scheduling problems
and is NP-hard in the strong sense [23, Table 3].

Next, we construct an input instance of the studied
problem, reduced from the decision version of the J2
jchains; pij ¼ 1jCmax problem. Consider an instance with
n jobs in the J2jchains; pij ¼ 1jCmax problem, in which
D is given as the makespan constraint of the schedule.
Each job must be executed on the two shops, alternating
several times. Each execution in a shop takes one time
unit. We can reduce this instance to an input instance of
the studied problem by mapping the n jobs to one sin-
gle task with n chains with a deadline D. A chain is a
sequence of vertices where each vertex has only one
predecessor and one successor, except for the head and
tail vertex. In each chain, the operation alternates from
the executions on type a and type b, each with unit exe-
cution time. Since J2jchains; pij ¼ 1jCmax can be reduced
to the studied problem in polynomial time, we reach
the conclusion. tu

2.3 Capacity Augmentation Bound

The capacity augmentation bound, originally proposed
in [17], is a metric for analyzing the quality of a scheduling
algorithm. We first recall their definition for homogeneous
multiprocessor systems. A scheduling algorithm has a
capacity augmentation bound of 1

r
(0 < r � 1) if any task

set T that satisfies the following conditions is schedulable
by the algorithm onM cores:X

ti2T
Ui � rM and 0 < Li � rDi; 8ti 2 T;

where Li is the length of the critical path of task ti.
Since the total utilization

P
ti2T Ui can be calculated in

linear time, capacity augmentation bounds immediately
yield efficient schedulability tests. Li et al. [17] proved that
federated scheduling for implicit-deadline DAG sporadic
tasks on homogeneous multiprocessor systems has a capac-
ity augmentation bound of 2. They also showed that a
scheduling algorithm that has capacity augmentation
bound of 1

r
also guarantees a resource augmentation bound

(speed-up factor) of 1
r
.1

For our studied problem with two cores types, a schedul-
ing algorithm has a capacity augmentation bound of 1

r

(0 < r � 1) if any task set T that satisfies the following con-
ditions is schedulable by the algorithm on Ma type a cores
andMb type b cores

P
ti2T Ua

i � rMaP
ti2T Ub

i � rMb
and 0 < Li � rDi; 8ti 2 T:

1. Chen [4] showed that federated scheduling does not admit con-
stant speedup bounds for constrained-deadline task systems. There-
fore, we focus on implicit-deadline tasks.

1288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

2.4 Existing Suspension-Aware Analysis

We intend to analyze the studied problem using a technique
originally applied to the analysis of self-suspending tasks
under preemptive static-priority scheduling on uniprocessor
systems. To motivate the application of suspension-aware
analysis for uniprocessor systems, consider the following two
example settings:

1) A Semi-Exclusive Allocation task is assigned two
exclusive cores of type a and executes its type b
workload sequentially on a single type b core shared
with other tasks. In our example, in Fig. 2a, coreb1 is
the shared type b core. From the perspective of this
core, the task’s executions on its exclusive cores can
be modeled as suspensions, and one is left with a
uniprocessor scheduling problem on coreb1. The max-
imum suspension time can be analyzed separately,
based on the number of exclusively assigned cores.

2) Similarly, a Sequential and Share task assigned to one
shared type a and one shared type b core can be
modeled as a suspending task from each core’s
perspective.

We now summarize an existing jitter-based suspension
analysis for static-priority preemptive scheduling that we
later employ in the analysis of Semi-Exclusive Allocation
tasks. How to properly map a given Semi-Exclusive Alloca-
tion task to this self-suspension model is discussed later in
Section 4.2.

Let tk be a dynamic self-suspending task with a worst-
case execution time Ck > 0 and a maximum suspension
time Sk � 0. Suppose that hpðtkÞ is the set of the higher-pri-
ority self-suspending tasks running on the same core with
task tk. Further assume that Ri is an upper bound for the
worst-case response time of ti with Ri � Ti for ti 2 hpðtkÞ.
A (sufficient) schedulability test of an implicit-deadline
task tk under static-priority preemptive scheduling due to
Chen et al. [7] is

90 < t � Tk; Ck þ Sk þ
X

ti2hpðtkÞ

tþRi � Ci

Ti

� �
Ci � t: (1)

We note that Chen et al. in [7] further proposed a unify-
ing schedulability test framework, which can also be
applied in our analysis without affecting our theoretical
analysis. Here, we use the jitter-based analysis for sim-
plicity of presentation. We employ Eq. (1) in Theorem 9

to validate the schedulability of a Semi-Exclusive Alloca-
tion task.

3 LIMITATION OF EXISTING METHODS

In federated scheduling, tasks are classified as heavy or light
based on some metrics. For example, the state of the art pro-
posed byHan et al. [14] classifies the tasks based on their den-
sity, i.e., the ratio of their totalWCET to their deadline. In their
paper, a task is heavy if its density is greater than 1; otherwise
it is light. A heavy task is allocated to dedicated cores utilizing
its DAG structure for potential parallel execution, whilst the
vertices of a light task are sequentially executed on the remain-
ing cores in competitionwith other light tasks.

We demonstrate that such federated scheduling with only
two execution strategies does not yield a constant augmenta-
tion bound for scheduling typedDAG tasks on heterogeneous
multi-core systems, due to tasks with skewed workload, i.e.,
heavy workload on one core type but extremely light work-
load on the other type. The heavyworkloadmakes it impossi-
ble to schedule such tasks in the light execution strategy,
while scheduling them in the heavy execution strategy wastes
resources, which may ultimately result in non-schedulability
due to an insufficient number of cores in the system.

Theorem 2. Federated scheduling with only the light and heavy
execution strategies has a capacity augmentation bound of
VðmaxfMa;MbgÞ whenever a task ti with Ca

i þ Cb
i > Ti is

classified as heavy.

Proof. Consider the following example. Suppose we have a
heterogeneous multi-core system consisting of Ma > 1
type a cores and 1 type b core. Given two fully parallel
typed DAG tasks t1 and t2, i.e., there are no dependencies
between vertices with different types within each task.
Both of them have the same period T � 1. For t1, C

a
1 ¼

hðT � 1Þ and Cb
1 ¼ 1, where h is a scaling factor. For t2,

Ca
2 ¼ 1 and Cb

2 ¼ 1.
Whenever h > 1, t1 is classified as a heavy task as

Ca
1 þ Cb

1 > T . As there is no available type b core any-
more, it is not possible to execute the light task t2. There-
fore, federated scheduling with only heavy and light
execution strategies is not able to schedule both of them
whenever h > 1. Since T � 1 and h > 1, we have
Cb
1
þCb

2
T ! 0 and 1 <

Ca
1
þCa

2
T < h. Therefore, the capacity

augmentation bound of such federated scheduling is at
least Ma

h
, which approachesMa, when h approaches 1. tu

4 EXECUTION MODES AND ALLOCATIONS

The limitation of existing federated scheduling shown in
Theorem 2 can be conquered by introducing a third execu-
tion strategy, Semi-Exclusive Allocation, described at the
introduction of this paper. As there are two types of cores,
this third execution strategy actually has two concrete incar-
nations resulting in four concrete execution modes in total.

We use a similar notation of federated scheduling in the
literature to name these four execution modes (resulting
from three execution strategies): Heavyab, Light, Heavya, and
Heavyb, in which the former two are adopted in the state of
the art [14], whilst the latter two correspond to the Semi-
Exclusive Allocation strategy introduced in this paper:

Fig. 2. Suspending behavior of a DAG task on shared cores. (a) a Semi-
Exclusive Allocation task can be modeled as a self-suspending task run-
ning on coreb1; (b) Suspending behavior of a Sequential and Share task
from the perspectives of corea and coreb.

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1289

� For a task ti in the Heavyab mode, a cluster of cores
consisting of ma

i type a cores and mb
i type b cores is

exclusively allocated to a task, where ma
i and mb

i are
positive integers. (Section 4.1)

� For a task ti in the Light mode, both types of the ver-
tices are scheduled on one corresponding type of
core together with other tasks. Vertices within a task
are executed sequentially. (Section 4.3)

� For a task ti in the Heavya mode, ma
i type a cores are

exclusively allocated to task ti. Vertices of type b of
task ti are sequentially scheduled on one type b core
together with other tasks. (Section 4.2)

� For a task ti in the Heavyb mode, mb
i type b cores are

exclusively allocated to task ti. Vertices of type a of
task ti are sequentially scheduled on one type a core
with other tasks. (Section 4.2)

In this section, we explain how tasks in these four modes
are scheduled. How to determine which mode a task is in
and how many cores are exclusively allocated to each task
is discussed in Section 5.

4.1 Exclusive Allocation

A task ti is in the Heavyab mode if ma
i type a cores and mb

i

type b cores are exclusively allocated to the task. Under this
scenario, there is no inter-task interference from other tasks,
as only task ti is executed on these cores. Therefore, the
schedulability of task ti depends only upon the internal
schedule of ti on thema

i type a cores andmb
i type b cores.

In this section, we assume that ma
i and mb

i are given. The
details on the determination of ma

i and mb
i are discussed in

Sections 5 and 7.
Deriving a feasible schedule to meet the timing constraint

of ti under the specified ma
i and mb

i is a challenging prob-
lem. One approach is to formulate the scheduling problem
as a combinatorial problem and solved with constraint pro-
gramming [20], which requires high complexity to solve a
problem instance. As different combinations of ma

i and mb
i

have to be considered in our algorithm, using constraint
programming is a solution with very high complexity.

Our paper adopts an alternative solution, which applies
work-conserving scheduling algorithms to schedule task ti
on the dedicated cores. The list scheduling algorithm has
been analyzed and adopted in the literature. Specifically,
list scheduling for a DAG task executed only on one core
type has been widely explored in real-time systems. As an
example, consider that ti is a DAG task with only type a
workload. The analysis from Graham [11] shows that the
makespan of a list schedule of a job of a DAG task on ma

i

cores is upper bounded by Li þ ðCa
i � LðtiÞÞ=ma

i , where Li

is the critical path length of task ti. If the above upper
bound is no more than Ti, then the jobs of ti can always
meet their timing constraints on the ma

i cores assigned to ti
exclusively.

Extending the analysis of list scheduling to a typed DAG
task with multiple core types, as the problem studied in this
paper, has been recently provided by Han et al. [13]. Their
analysis for two core types can be summarized as follows:

Lemma 3. (Theorem 3.1 by Han et al. [13] (rephrased)) The
worst-case response time of a typed DAG task ti exclusively
allocated on ma

i type a cores and mb
i type b cores for any

positive integers ofma
i andm

b
i is at most

maxp2PathsðGiÞ Lðp; aÞ þ Lðp; bÞ þ Ca
i � Lðp; aÞ

ma
i

þ Cb
i � Lðp; bÞ

mb
i

� �
;

(2)

where PathsðGiÞ is the set of all paths in Gi, Lðp; aÞ and
Lðp; bÞ are the sum of the WCETs of type a vertices and type b
vertices on the path p, respectively. That is, Lðp; aÞ isP

v:v2p^giðvÞ¼a viðvÞ.
Proof. This comes from Theorem 3.1 in [13]. We rephrase their

Eq. (4) by taking the maximum among all paths instead of
defining a critical path. Moreover, Definition 3.1 in [13]
defines a scaled graph inwhich the result is equivalent to the
subtraction of the execution time (volume in their definition)
by the contribution to the length on each core type. tu
We can weaken the above condition in a way that is still

sufficient for our capacity augmentation bound analysis.
Specifically, an over-approximation of Eq. (2) can be
achieved by separately considering the type a and the type b
critical paths. The lengths of these paths are La

i and Lb
i ,

respectively.

Lemma 4. The value of Eq. (2) is upper bounded by

La
i þ Lb

i þ
Ca

i � La
i

ma
i

þ Cb
i � Lb

i

mb
i

: (3)

Proof. We can rewrite Eq. (2) into Lðp; aÞð1� 1
ma

i
Þ þ

Lðp; bÞð1� 1
mb

i

Þ þ Ca
i

ma
i
þ Cb

i

mb
i

. By definition, Lðp; aÞ � La
i and

Lðp; bÞ � Lb
i for any path p 2 PathsðGiÞ. We reach the

conclusion asma
i � 1 andmb

i � 1. tu
Han et al. [13] show that the worst-case response time

bound (the one we rephrased into Eq. (2)) is self-sustainable,
i.e., adding more cores from one type for exclusive execu-
tion of ti does not make a feasible schedule of ti infeasible.
We note that Han et al. [13] also provide a tighter analysis.
However, we only need the weaker analysis here for our
worst-case analysis.

4.2 Semi-Exclusive Allocation

If Ca
i � Ti and Cb

i is positive but very small, exclusively
allocating a type b core to such ti would be a waste, even
making the task set not schedulable as demonstrated by
the example in the proof of Theorem 2. In this case, it is
more resource efficient to allow other tasks to also execute
on the type b core that task ti is assigned to. In other
words, ti should not be the only task executed on this
core of type b. Interestingly, the execution behavior
of task ti in this scenario can be modeled as a dynamic
self-suspending task on a type b core, as shown in the
example in Section 2.4.

Lemma 5. Suppose that ti is in the Heavya mode, exclusively
allocated with ma

i type a cores. The execution behavior of task
ti on the type b core with sequential execution can be modeled
as a dynamic self-suspending task. Under list scheduling, the

maximum suspension time Sb
i is at most La

i þ
Ca
i
�La

i
ma

i
and

worst-case execution time is Cb
i under the same minimum

inter-arrival time Ti.

1290 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Symmetrically, Sa
i ¼ Lb

i þ
Cb
i
�Lb

i

mb
i

if ti is inHeavyb mode.

Proof. A task ti in the Heavya mode can be modeled as a
dynamic self-suspending task running on a type b core as
follows. In task ti, suspending from the execution on the
type b core implies that only the workload of type a is exe-
cuted. That is, the suspension time from the type b core is
at most the amount of time executing Ca

i on the dedicated
ma

i type a cores with the critical path length of La
i . This is

upper bounded using Lemma 4 as list scheduling is
applied. By setting the worst-case execution time C0i ¼ Cb

i

and maximum suspension time S0i ¼ La
i þ

Ca
i
�La

i
ma

i
, we can

construct a dynamic self-suspending task t0i running on a
type b core which is a conservative approximation of task
ti.

The symmetric case for task in the Heavyb mode is
identical. tu

4.3 Sequential Execution Without Exclusive
Allocation

When both Ca
i and Cb

i are small, executing task ti sequen-
tially can also be a feasible option. In this treatment, we can
consider that the vertices in Vi are ordered by a total order
(using topological sort) and executed one after another.

Definition 6. Suppose that a typed DAG task ti is sequentially
executed without any exclusive allocation on the cores, i.e., ti is
in the Light mode. At any time t, if a job of task ti is not com-
pleted yet, either

� the job executes or is blocked by some higher-priority
job on a type a core (i.e., the job suspends from the type
b core), or

� the job executes or is blocked by some higher-priority
job on a type b core (i.e., the job suspends from the type
a core).

The execution can be modeled as a 3-tuple ðCa
i ; C

b
i ; TiÞ with

sequential executions in an interleaving manner on type a and
type b cores. tu

5 TYPE-AWARE FEDERATED SCHEDULING

In this section, we discuss the Federated Scheduling para-
digm. We provide the schedulability analysis for each exe-
cution mode in Section 5.1. In Section 5.2, we describe how
to determine the execution mode of a task, and how many
cores are exclusively allocated to each task in the Heavyab,
Heavya, and Heavyb modes.

According to the definition, we have four task execution
modes: Heavyab, Heavya, Heavyb, and Light, as described in
Section 4. Table 1 summarizes the four execution modes.

We start with the definition of the type-aware federated
static-priority preemptive scheduling for typed DAG tasks.

Definition 7. Type-aware federated static-priority preemp-
tive scheduling for typed DAG tasks:

1) Each task is in one of the four task execution modes:
Heavyab,Heavya,Heavyb, and Light.

2) If task ti is in theHeavyab,Heavya, orHeavyb mode,
a cluster of cores with the corresponding core types are
dedicated to ti. That is, each of these cores only has one
task assigned to it.

3) For the core type without exclusive allocation of task ti,
the task is assigned to be executed on one assigned
core. When there are multiple tasks assigned to a core,
static-priority preemptive scheduling on the core is
applied. tu

We use rate monotonic scheduling priority assignment,
i.e., a task ti has a higher priority than a task tk if Ti � Tk, in
which ties are broken arbitrarily. For the rest of this paper, we
use p to denote a core of type a and q to denote a core of type b.
The set of tasks that are assigned to core p and core q are
denoted as Ca

p and Cb
q, respectively. Ca

pðtkÞ (respectively,
Cb

qðtkÞ) is the set of tasks that are assigned to core p (respec-
tively, q) that have higher priorities than tk. Under type-
aware federated static-priority preemptive scheduling,

when a task ti is in Ca
pðtkÞ (respectively, Cb

qðtkÞ) and the

WCET of ti on core p is Ca
i (respectively, on core q is

Cb
i), a job of ti can block a single job of tk from execution

with at most Ca
i time units on core p (respectively, Cb

i

times units on core q).

5.1 Schedulability Analysis

Given the execution mode of a task, we can validate the
schedulability of the task based on the following theorems.

Theorem 8. A task in theHeavyab mode meets its deadline if the
worst-case response time in Lemma 3 or 4 is no more than its
relative deadline.

Proof. As there is no other task assigned to the cores exclu-
sively allocated to the task, the theorem holds naturally. tu
Theorems 9 and 10 are the schedulability tests for tasks in

the Heavya, Heavyb, and Light mode. As the tests in
Theorems 9 and 10 require the worst-case response time Ri

of a higher-priority task ti, when analyzing the schedulabil-
ity of tk, we should also set the corresponding Rk after han-
dling tk accordingly. That is, Rk is set to be the minimum t
satisfying the corresponding condition applied for tk in
Eqs. (4), (5), or (6).

Theorem 9. Suppose that Ri � Ti; 8ti 2 Cb
qðtkÞ. Task tk in the

Heavya mode assigned to core q (i.e., core type b) meets its
deadline if

90 < t � Tk; Cb
k þ Sb

k þ
X

ti2Cb
qðtkÞ

tþRi � Cb
i

Ti

� �
Cb

i � t: (4)

TABLE 1
Summary of the Execution Modes

Mode Type a Type b Schedulability Analysis

Heavyab Exclusive
allocation

Exclusive
allocation

Response time analysis in [13]
or constraint programming

Heavya Exclusive
allocation

Shared Dynamic self-suspension task
on type b core, Eq. (4) in

Theorem 9
Heavyb Shared Exclusive

allocation
Dynamic self-suspension task

on type a core, Eq. (5) in
Theorem 9

Light Shared Shared Sequential execution, based on
[15] and restated in Theorem 10

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1291

Suppose that Ri � Ti; 8ti 2 Ca
pðtkÞ. Symmetrically, tk in the

Heavyb mode assigned to core p (i.e., core type a) meets its
deadline if

90 < t � Tk; Ca
k þ Sa

k þ
X

ti2Ca
pðtkÞ

tþRi � Ca
i

Ti

� �
Ca

i � t: (5)

Proof. According to Lemma 5, the execution behavior of a
task tk in the Heavya mode (Heavyb mode, respectively)
can be modeled as a dynamic self-suspending task run-
ning on core q with type b (core p with type a, respec-
tively). By substituting the worst-case execution time Ck

and the maximum suspension time Sk with Cb
k and Sb

k (C
a
k

and Sa
k , respectively) in the schedulability test in Eq. (1),

we reach the conclusion. tu

Theorem 10. Suppose that Ri � Ti; 8ti 2 Ca
pðtkÞ [Cb

qðtkÞ.
Task tk in the Light mode assigned to core p of core type a and
core q of core type b meets its deadline if

90 < t � Tk;

Ca
k þPti2Ca

pðtkÞ
tþRi�Ca

i
Ti

l m
Ca

i

þ Cb
k þPti2Cb

qðtkÞ
tþRi�Cb

i
Ti

� �
Cb

i

0
BB@

1
CCA � t: (6)

Proof. This comes from the symmetric view of execution
on core p and on core q using Theorem 1 in [15] (stated
in the Appendix), available online. In [15], Huang et al.
provide a resource-centric symmetric timing analysis
for real-time tasks on multi-core platforms with shared
resources. We adopt their timing analysis for tk by con-
sidering core p as a resource shared by all t0 2 Ca

p. By
setting B, i.e., the overhead for requesting the shared
resource, in [15] to 0, the response time of tk is upper
bounded by XðtÞ þ SðtÞ according to Theorem 1 in [15],
where XðtÞ is the amount of time that tk is accessing
the shared resource, and SðtÞ is the amount of time that
tk is suspended from the shared resource (core p). This
also corresponds to Definition 6. Since that XðtÞ is

upper bounded by Ca
k þ

P
ti2Ca

pðtkÞ
tþRi�Ca

i
Ti

l m
Ca

i and SðtÞ

is upper bounded by Cb
k þ

P
ti2Cb

qðtkÞ
tþRi�Cb

i
Ti

� �
Cb

i , the

theorem holds. tu

5.2 Greedy Type-Aware Federated Scheduling
Algorithm

After presenting the analysis and the scheduling philoso-
phy, we present our scheduling algorithm based on a
greedy approach. The algorithm consists of two parts.
In the first part, we classify the tasks in the input task set
T into four classes based on a control parameter r,
0 < r � 0:5:

1) Task ti is in the Heavyab mode when Ca
i > rTi and

Cb
i > rTi.

2) Task ti is in the Heavya mode when Ca
i > rTi and

Cb
i � rTi

3) Task ti is in the Heavyb mode when Ca
i � rTi and

Cb
i > rTi

4) Task ti is in the Light mode when Ca
i � rTi and Cb

i �
rTi

For a given r, this step classifies the tasks in T into four
disjoint sets. Here, we use Hab, Ha, Hb, and LI to denote
these four sets for simplicity.
In the second part, we first handle the number of cores exclu-
sively allocated to the tasks inHab,Ha, andHb.

1) For a task ti in Hab, we set ma
i ¼

Ca
i
�La

i
Ti
2�La

i

� �
and mb

i ¼
Cb
i
�Lb

i
Ti
2�Lb

i

� �
.

2) For a task ti inHa, we setma
i ¼

Ca
i
�La

i
Ti
3�La

i

� �
.

3) For a task ti inHb, we setmb
i ¼

Cb
i
�Lb

i
Ti
3�Lb

i

� �
.

If any of the above setting of ma
i and/or mb

i is negative,
we return failure. Otherwise, we allocate the dedicated
cores for the tasks in Hab, Ha, and Hb accordingly. By
enforcing the number of dedicated cores allocated to tasks
with the above procedure, the derivation of the capacity
augmentation bound is easier to present. This, however, may
sacrifice the schedulability.

Let M]
a be Ma �

P
ti2Hab[Ha ma

i and M]
b be Mb �P

ti2Hab[Hb mb
i as the remaining number of type a and type b

cores after allocating the dedicated cores. If it is not possible
to allocate enough dedicated cores, i.e., if M]

a < 0 or M]
b <

0, we return failure. Otherwise, we continue to schedule
and partition the tasks inHa,Hb, and LI to resolve the com-
petition on the sharedM]

a type a cores andM]
b type b cores.

We order the priorities of the tasks in Ha, Hb, and LI in
the rate-monotonic manner, and start from the task with the
highest priority (shortest Ti). Suppose the next task to be
assigned is tk.

1) If tk is in LI, we try to assign it on a core p of core
type a and a core q of core type b, and apply the
schedulability test in Theorem 10. If it is not possible
under any combination, we return failure; otherwise,
one combination of p and q is selected to assign task
tk onto.

2) If tk is in Ha, we try to assign it on a core q of type b,
and apply the schedulability test in Theorem 9. If it
is not possible, we return failure; otherwise, one q is
selected to assign task tk onto.

3) Symmetrically, if tk is in Hb, we try to assign it on a
core p of type a like above.

After all tasks are feasibly assigned and scheduled, the
task-to-core mapping is returned as a feasible solution.
Discussions of the parameters of the greedy algorithm

Selection of r: The greedy algorithm classifies the tasks
into four execution modes according to the control parame-
ter r. If we pick a small r, more tasks are in the Heavyab

mode, which requires more exclusively allocated cores. On
the other hand, a larger r results in more Light tasks. There-
fore, r should be carefully selected, detailed in Section 6.

Fitting strategies: first fit, worst fit, best fit: For the tasks in
the Light, Heavya, and Heavyb modes, finding a core p of core
type a and/or a core q of core type b can be formulated as a
bin packing problem. We can apply existing fitting strategies

1292 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

such as First-Fit, Worst-Fit, or Best-Fit to find a core (or a pair
of cores) that is schedulable for the task. For First-Fit, we
assign the task to the first core (or first pair of cores in the Light
mode) in the list that can schedule the task by following pre-
defined indexes of cores. For Best-Fit (Worst-Fit, respectively),
a task in theHeavya orHeavyb mode is assigned to the feasible
core that has the highest utilization (lowest utilization, respec-
tively) after assigning the task. Furthermore, a task in the Light
mode is assigned to the pair of feasible cores that have the
highest sum of utilization (lowest sum of utilization, respec-
tively) after assigning the task for Best-Fit (Worst-Fit, respec-
tively). Note that we only assign the task to an unused core,
i.e., a core that has not been assigned with any task yet, if the
task is not schedulable on any used core.

Time complexity: We can directly compute the number of
type a and type b cores that are exclusively allocated to tasks
inHab,Ha, andHb. For tasks that share cores, i.e., tasks in the
Light, Heavya, andHeavyb modes, there are at most OðMaMbÞ
possible combinations of p and q when considering tk. The
schedulability test in Theorems 9 and 10 and their worst-case
response time analysis require OðkTkÞ time complexity. The
time complexity of the fitting strategy to select cores for tk is
OðMaMbÞ. Therefore, the overall time complexity is
OðN2MaMbTNÞ, where TN is the maximum inter-arrival time
of the givenN tasks. The time complexity is pseudo-polyno-
mial, which can be reduced by approximating the tests in
Theorems 9 and 10 in polynomial time [7].

6 CAPACITY AUGMENTATION BOUND

We prove the capacity augmentation bound of our greedy
type-aware federated scheduling algorithm in Section 5.2
in this section. First, we provide the upper bound for the
total number of type a and type b cores that exclusively
allocated to tasks in Theorem 13. We then prove the sched-
ulability of the workload that share the remaining cores.
The capacity augmentation bound our greedy type-aware
federated scheduling algorithm is proved to be 7.25 in
Theorem 17.

To prove the upper bound for the total number of type a
and type b cores that exclusively allocated to tasks, we
derive the following two lemmas. Recall that we enforced
the number of dedicated cores allocated to tasks in the

Heavyab mode as ma
i ¼

Ca
i
�La

i
Ti
2�La

i

� �
and mb

i ¼
Cb
i
�Lb

i
Ti
2�Lb

i

� �
in the

algorithm. Similarly, ma
i ¼

Ca
i
�La

i
Ti
3�La

i

� �
and mb

i ¼
Cb
i
�Lb

i
Ti
3�Lb

i

� �
for

tasks in the Heavya mode and Heavyb mode, respectively.

Lemma 11. For any 0 < r � 1=4, when 0 < La
i � rTi < Ca

i

and 0 < Lb
i � rTi < Cb

i , under the greedy type-aware feder-
ated scheduling algorithm, for every task ti 2 Hab, we have

ma
i �

Ua
i

r
and mb

i �
Ub
i

r
: (7)

Proof. The algorithm sets

ma
i ¼

Ca
i � La

i
Ti
2 � La

i

& ’
¼

Ua
i �

La
i

Ti

1
2�

La
i

Ti

2
666

3
777:

If Ua
i � 1=2, since 0 < La

i =Ti � r � 1=4, we have

ma
i �

Ua
i � r
1
2� r

& ’
� Ua

i � 1
4

1
2� 1

4

þ 1 ¼ 4Ua
i �

Ua
i

r
: (8)

If Ua
i < 1=2, since La

i =T
a
i � r < Ua

i , we have

ma
i ¼

Ua
i �

La
i

Ti

1
2�

La
i

Ti

2
666

3
777 ¼ 1 � Ua

i

r
: (9)

The case formb
i is identical. tu

Lemma 12. For any 0 < r � 1=6, when 0 < La
i � rTi < Ca

i

and 0 < Lb
i � rTi < Cb

i , under the greedy type-aware feder-
ated scheduling algorithm we have

ma
i �

Ua
i

r
; 8ti 2 Ha and mb

i �
Ub
i

r
; 8ti 2 Hb: (10)

Proof. For a task ti inHa, the algorithm sets

ma
i ¼

Ca
i � La

i
Ti
3 � La

i

& ’
¼

Ua
i �

La
i

Ti

1
3�

La
i

Ti

2
666

3
777:

If Ua
i � 1=3, since 0 < La

i =Ti � r � 1=6, we have

ma
i �

Ua
i � r
1
3� r

& ’
� Ua

i � 1
6

1
3� 1

6

& ’
¼ 6Ua

i � 1
� �

� 6Ua
i � 1þ 1 ¼ 6Ua

i �
Ua
i

r
; (11)

If Ua
i < 1=3, since La

i =T
a
i � r < Ua

i , we have

ma
i ¼

Ua
i �

La
i

Ti

1
3�

La
i

Ti

2
666

3
777 ¼ 1 � Ua

i

r
: (12)

The case formb
i is identical for task ti inHb. tu

By the above two lemmas, we have the following
theorem.

Theorem 13. For any 0 < r � 1=6, when 0 < La
i � rTi and

0 < Lb
i � rTi for every task ti 2 T,

X
ti2Hab[Ha

ma
i �

X
ti2Hab[Ha

Ua
i

r
(13)

and

X
ti2Hab[Hb

mb
i �

X
ti2Hab[Hb

Ub
i

r
: (14)

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1293

Proof. It comes from the combination of Lemmas 11
and 12. tu
Next, we prove the schedulability of the tasks in the

Heavya, Heavyb, and Light modes on the remaining cores.
We need the following lemma which is based on the gener-
alized utilization-based analysis framework by Chen et al.
[5].

Lemma 14. Suppose that Ti � Tk and yi > 0 for every i 2 Y
and xk > 0. The following condition

80 < t � Tk; xk þ
X
i2Y

tþ Ti

Ti

� �
yi > t; (15)

implies that

X
i2Y

yi
Ti

> ln
3

2þ xk
Tk

 !
: (16)

Proof. The proof can be achieved by following the sug-
gested procedure in [5] by specifying the corresponding
parameters. It can be found in the Appendix, available in
the online supplemental material. tu
Recall that M]

a ¼Ma �
P

ti2Hab[Ha ma
i and M]

b ¼
Mb �

P
ti2Hab[Hb mb

i are the remaining number of type a and
type b cores after allocating the dedicated cores. We have
the following two lemmas.

Lemma 15. For any 0 < r � 1=6, when 0 < La
i � rTi and

0 < Lb
i � rTi for every task ti 2 T, if task tk in Ha is the first

task that cannot be feasibly scheduled on one of the M]
b > 0

cores under the greedy type-aware federated scheduling algo-
rithm, then X

ti2LI[Ha

Ub
i > rM]

b: (17)

Similarly, if task tk in Hb is the first task that cannot be feasi-
bly scheduled on one of theM]

a > 0 cores, thenX
ti2LI[Hb

Ua
i > rM]

a: (18)

Proof. By Theorem 9, for every core q among the M]
b type b

cores, we have

80 < t � Tk; Cb
k þ Sb

k þ
X

ti2Cb
qðtkÞ

tþRi � Cb
i

Ti

� �
Cb

i > t: (19)

Since higher-priority tasks meet their deadlines before
considering tk, we have Ri � Ti for every task ti 2
Cb

qðtkÞ. Therefore,

80 < t � Tk; Cb
k þ Sb

k þ
X

ti2Cb
qðtkÞ

tþ Ti

Ti

� �
Cb

i > t: (20)

Recall that ma
k is set to

Ca
k
�La

k
Tk
3 �La

k

� �
when tk is in Ha. Since

La
k � rTk � Tk=6, by Lemma 5, we have

Sb
k � La

k þ
Ca

k � La
k

ma
k

� La
k þ

Ca
k � La

k
Ca
k
�La

k
Tk
3 �La

k

¼ Tk

3
:

Furthermore, since
Cb
k

Tk
� r � 1=6, we have

Cb
k
þSb

k
Tk
� 1=2.

To prove a lower bound on
P

ti2Cb
qðtkÞ U

b
i , we adopt the

generalized utilization-based analysis framework stated

in Lemma 14 by reformulating Eq. (20) using xk as Cb
k þ

Sb
k and yi as C

b
i for every ti 2 Cb

qðtkÞ

80 < t � Tk; xk þ
X

ti2Cb
qðtkÞ

tþ Ti

Ti

� �
yi > t: (21)

By adopting Lemma 14, the condition in Eq. (21) leads to

X
ti2Cb

qðtkÞ
Ub
i > ln

3

2þ Cb
k
þSb

k
Tk

0
B@

1
CA � ln

3

2:5

� �
> 1=6 � r:

Since every higher-priority task ti is dedicated to at
most one core q under the type-aware federated schedul-
ing paradigm, we know that

rM]
b <

XM]
b

q¼1

X
ti2Cb

qðtkÞ
Ub
i �

X
ti2LI[Ha

Ub
i :

The other case forM]
a follows as well. tu

Lemma 16. For any 0 < r � 1=7:25, when 0 < La
i � rTi and

0 < Lb
i � rTi for every task ti 2 T, if task tk in LI is the first

task that cannot be feasibly scheduled on one of the M]
a > 0

type a cores together with one of theM]
b > 0 type b cores under

the greedy type-aware federated scheduling algorithm, then

P
ti2LI[Ha Ub

i

M]
b

þ
P

ti2LI[Hb Ua
i

M]
a

> 2r: (22)

Thus, either Eqs. (17) or (18) holds.

Proof. By Theorem 10 and the fact Ri � Ti for every higher-
priority task ti before considering tk, for every of core p
among the M]

a type a cores and every of core q among the
M]

b type b cores, we have

80 < t � Tk;

Ca
k þ Cb

k þ
X

ti2Ca
pðtkÞ

tþ Ti

Ti

� �
Ca

i þ
X

ti2Cb
qðtkÞ

tþ Ti

Ti

� �
Cb

i > t:

Therefore, for all combinations of M]
aM

]
b pairs of p and

q, the above condition holds. By summing up all these
M]

aM
]
b inequalities, we have

80 < t � Tk;

M]
aM

]
bðCa

k þ Cb
kÞ þM]

b

X
ti2LI[Hb

tþ Ti

Ti

� �
Ca

i

þM]
a

X
ti2LI[Ha

tþ Ti

Ti

� �
Cb

i > M]
aM

]
bt: (24)

1294 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Dividing both sides withM]
aM

]
b , we have

80 < t � Tk;

Ca
k þ Cb

k þ
X

ti2LI[Hb

tþ Ti

Ti

� �
Ca

i

M]
a

þ
X

ti2LI[Ha

tþ Ti

Ti

� �
Cb

i

M]
b

> t: (25)

We again utilize Lemma 14 like the proof of Lemma 15.

By setting xk to Cb
k þ Sb

k and yi to
Ca
i

M
]
a

þ Cb
i

M
]
b

for ti 2 LI, yi to
Ca
i

M
]
a

for ti 2 Hb, and yi to
Cb
i

M
]
b

for ti 2 Ha in the above condi-

tion when adopting Lemma 14, we have

X
ti2LI[Hb

Ua
i

M]
a

þ
X

ti2LI[Ha

Ub
i

M]
b

> ln
3

2þ Cb
k
þCb

k
Tk

� ln
3

2þ 2r

� ln
3

2þ 2=7:25
¼ 2

7:2428 	 	 	 >
2

7:25
: (26)

tu
We are ready to prove the capacity augmentation bound

of the greedy type-aware federated scheduling algorithm.

Theorem 17. The capacity augmentation bound of the greedy
type-aware federated scheduling algorithm is at most 7.25.
That is, when r is 1=7:25, if

maxfLa
i ; L

b
ig � Li � rTi; 8ti 2 T andX

ti2T
Ua
i � rMa and

X
ti2T

Ub
i � rMb; (27)

then the greedy type-aware federated scheduling algorithm
guarantees to derive a feasible schedule.

Proof. Suppose for contrapositive that the algorithm fails to
derive a feasible solution.

As the first case, suppose that this is due to the exclu-
sive allocation phase. By Theorem 13, we know that

either Ma <
P

ti2Hab[Ha ma
i �

P
ti2Hab[Ha

Ua
i
r

or Mb <P
ti2Hab[Hb mb

i �
P

ti2Hab[Hb
Ub
i
r
. This concludes the case.

For the second case, the exclusive allocation is success-
ful and, therefore,M]

a � 0 andM]
b � 0. By Theorem 13,X

ti2Hab[Ha

Ua
i � ðMa �M]

aÞr (28)

X
ti2Hab[Hb

Ub
i � ðMb �M]

bÞr: (29)

Suppose that the algorithm fails when it tries to assign
task tk. There are three further sub-cases:

� Sub-case 1: tk 2 Ha, i.e., it cannot find a core q
among the M]

b type b cores to assign tk. It holdsP
ti2LI[Ha Ub

i > rM]
b if M]

b ¼ 0 and otherwise by
Lemma 15. Together with Equation (29) we obtainX

ti2T
Ub
i ¼

X
ti2Hab[Hb

Ub
i þ

X
ti2LI[Ha

Ub
i > rMb: (30)

� Sub-case 2: tk 2 Hb, i.e., it cannot find a core p
among the M]

a type a cores to assign to tk. It holds

P
ti2LI[Hb Ua

i > rM]
a if M]

a ¼ 0 and otherwise by
Lemma 15. Together with Equation (28) we obtain

X
ti2T

Ua
i ¼

X
ti2Hab[Ha

Ua
i þ

X
ti2LI[Hb

Ua
i > rMa: (31)

� Sub-case 3: tk 2 LI, i.e., it cannot find a pair of
cores p; q among the M]

a type a cores and the M]
b

type b cores to assign to tk. If M]
a ¼ 0, thenP

ti2LI[Hb Ua
i > rM]

a and together with Equa-
tion (28), we obtain Equation (31). If M]

b ¼ 0, thenP
ti2LI[Ha Ub

i > rM]
b and together with Equa-

tion (29), we obtain Equation (30). If M]
a > 0 and

M]
b > 0, then we apply Lemma 16. In particular,P
ti2LI[Ha U

b
i

M
]
b

> r or

P
ti2LI[Hb U

a
i

M
]
a

> r holds and

therefore we obtain Equations (31) or (30) as well.
Hence, we reach the conclusion that one of the
assumptions in Eq. (27) is violated, and the theo-
rem is proved. tu

7 IMPROVED SCHEDULING ALGORITHM

The greedy type-aware federated scheduling algorithm in Sec-
tion 5 is presented based on several rigid “enforcement rules,”
i.e., choice of parameters, that guide the algorithm to achieve a
capacity augmentation bound of 7.25. However, these enforce-
ment rules may lead to poor performance in practical set-
tings [8]. In this section, we introduce an improved type-aware
federated scheduling algorithm without the enforcement on
the parameters. The improved algorithmdetermines the execu-
tion mode of a task and assigns the task to cores one task after
another based on four principles.We also prove that the capacity
augmentation bound of the improved algorithm remains 7.25.

7.1 Algorithm Description

The improved algorithm works based on four principles:

1) P-Attempt: For each task tk, the algorithm attempts to
determine the execution mode of the task with the
following preference order: Light > (Heavya _
Heavyb) > Heavyab. More precisely, when considering
task tk, the algorithm tries to assign at first tk in the
Light mode, in case of failure, followed by another
attempt of the Heavya _ Heavyb mode. In case execut-
ing task tk in all of these three modes is not feasible
(based on the schedulability tests presented in Sec-
tion 5.1), task tk is assigned to the Heavyab mode,
which is validated at the end of the algorithm, i.e.,
principle P-Exclusive here.

2) P-Share: The algorithm prefers to share cores, i.e., it
tries to assign tasks to the shared cores already
assigned with certain higher-priority tasks, and only
assigns the task to a core without any task assigned
on it when such an option is not possible.

3) P-Efficient: When a task is in the Heavya or Heavyb

mode, the number of exclusively allocated cores is
minimized just to meet its deadline. That is, the sus-
pension time from core q of type b (symmetrically
core p of type a) can be extended as long as the task
meets its deadline.

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1295

4) P-Exclusive: For the tasks that are in the Heavyab

mode, there are potentially multiple choices of ma
i

and mb
i for ti. We search for the best combination of

them by a combinatorial approach.
Algorithm1provides the pseudocode of the improved algo-

rithm. After its initialization, it tries to assign task tk by follow-
ing the P-Attempt principle, divided into four blocks: Lines 4 - 8
are for the Light mode attempt, Lines 9 - 37 are for the Heavya

mode attempt, Lines 38 - 45 are for the Heavyb mode attempt,
and Line 46 temporarily assigns tk to the Heavyab mode. If an
earlier attempt is successful, the flag success is marked as true,
and there is no need for subsequent attempts.

Light Mode Attempt LI
 (Lines 4 - 8). The algorithm first
tries to execute task tk in the Light mode if possible. The
function Light_Attempt (pseudocode in the Appendix),
available in the online supplemental material, returns a pair
of cores (p, q) on which tk can be feasibly executed on these
two cores, by validating the schedulability using Theo-
rem 10. By following the P-Share principle, the algorithm
prefers sharing cores. That is, whenever possible, task tk
should be assigned on cores ðp; qÞwhich already had certain
higher-priority task(s) assigned onto them. Only if this
option is not possible, the algorithm tries to assign task tk to
a core p of type a and/or a core q of type b which was not
yet assigned with any higher-priority tasks. If there are mul-
tiple valid core pairs, the algorithm applies a fitting strategy
to choose one. Recall that finding a pair of cores for a task
can be formulated as a bin packing problem, as discussed in
Section 5.2. Any fitting strategy can be applied.

Heavya Mode AttemptHa
 (Lines 9 - 37). If task tk can not
be scheduled in the Light mode and Cb

k � rTk, the algo-
rithm tries to schedule the task in the Heavya mode with
an objective to minimize the number of exclusively allo-
cated type a cores, following the P-Efficient principle. To
minimize the number of type a cores exclusively allocated
to tk, we use a function HeavyA_Attempt (pseudocode in
the Appendix), available in the online supplemental mate-
rial, which returns the minimum number of type a cores
exclusively needed for task tk when its type b execution is
assigned on a specified core q, together with the other
tasks Cb

q assigned on it. This calculation is based on
Lemma 5 and Theorem 9.

It also follows the P-Share principle by first trying to find
a type b core q
 which already has higher-priority task(s)
assigned on it. Therefore, it starts from the P-Share principle
in Lines 11 - 23 if sharing the execution of task tk on a type b

core q
 does not result in more than
Ca
k
�La

k
Tk=3�La

k

l m
type a cores in

the greedy type-aware federated scheduling algorithm. If

sharing is not possible, then the algorithm further attempts
to assign tk on a core q without any higher-priority tasks on

it and
Ca
k
�La

k

ðTk�Cb
k
Þ�La

k

� �
(calculated by the function HeavyA_At-

tempt) exclusively type a cores. If r � 1=6, then the condition

Cb
k � rTk implies that

Ca
k
�La

k

ðTk�Cb
k
Þ�La

k

� �
� Ca

k
�La

k
Tk=3�La

k

l m
.

Heavyb Mode Attempt Hb
 . The case of the Heavyb mode
is symmetric to the case of the Heavya mode. The pseudo-
code of the counter part can be found in the Appendix,
available in the online supplemental material.

Algorithm 1. Improved Type-aware Federated Scheduling

Input: T;Ma;Mb; r;
Output: Assignment of tasks to cores
1: Ca

p ;; 8p ¼ 1; . . . ;Ma, Cb
q ;; 8q ¼ 1; . . . ;Mb, T0 T,

Hab
 ;,Ha
 ;,Hb
 ;, LI
 ;; "Initialization.
2: while T0 is not empty do
3: pop out task tk with the smallest Tk from T0;
4: if the pair ðp; qÞ Light_Attempt(tk) can be found then
5: Ca

p Ca
p [ftkg andCb

q Cb
q [ftkg;

6: LI
 LI
 [ftkg;
7: continue; "Lightmode successful
8: end if
9: if Cb

k � rTk then
10: success false;
11: ifCb

q is ; for every q then
12: ma

k 1;
13: else
14: ma

k minCb
q 6¼; HeavyA_Attempt(tk; q);

15: q
 argminCb
q 6¼; HeavyA_Attempt(tk; q);

"ties broken arbitrarily
16: end if
17: ifma

k � ðCa
k � La

kÞ=ðTk=3� La
kÞ

� �
then

"try to assign tk withma

k type a cores exclusively and

to core q
 of type b
18: if there arema

k cores of pwithCa
p ¼ ; then

19: Cb
q
 Cb

q
 [ftkg;
20: findma

k cores of pwithCa
p ¼ ; and setCa

p ftkg;
21: success true;
22: end if
23: end if
24: if success is false and there exists q withCb

q ¼ ; then
"try to assign tk with ma

k type a cores exclusively and a new
type b core q

25: find a core q withCb
q ¼ ;;

26: ma
k HeavyA_Attempt(tk; q);

27: if there arema
k cores of pwithCa

p ¼ ; then
28: Cb

q ftkg;
29: findma

k cores of pwithCa
p ¼ ;, setCa

p ftkg;
30: success true;
31: end if
32: end if
33: if success is true then
34: Ha
 Ha
 [ftkg;
35: continue; "Heavya mode successful
36: end if
37: end if
38: if Ca

k � rTk then
39: success false;
40: perform the counterpart of Lines 11 to 32 for the Heavyb

mode;
41: if success is true then
42: Hb
 Hb
 [ftkg;
43: continue; "Heavyb mode successful
44: end if
45: end if
46: Hab
 Hab
 [ftkg; "Heavyab mode left for later

inspection
47: end while
48: Xa the remaining number of type a cores withCa

p ¼ ;;
49: Xb the remaining number of type b cores withCb

p ¼ ;;
50: if isFeasible_HeavyAB(Hab
,Xa,Xb) then
51: returnCa

p andCb
q for every p; q;

52: else
53: returnfailure;
54: end if

1296 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

Heavyab Mode (Destiny)Hab
 . After examining all the tasks,
those thatwere not assigned to be in the Light,Heavya, orHeavyb

modes have to be checked whether they can be executed in the
Heavyab mode, based on the P-Exclusive principle. Let Xa and
Xb be the remaining number of type a and type b cores with no
task assigned on them, respectively. The function isFeasible_-
HeavyAB builds a dynamic programming table to assign cores
to the tasks inHab
 and validates whether the tasks inHab
 can
be feasibly scheduled under exclusive allocations. Let
P ðH;0Ma;

0M 0
bÞ be True if the tasks inH0 can be feasibly sched-

uled under exclusive allocations of M 0
a type a cores and M 0

b

type b cores. As the boundary condition, P ð;;Ma;
0M 0

bÞ is True
for anyM 0

a � 0;M 0
b � 0 and P ðH;0Ma;

0M 0
bÞ is False ifM 0

a < 0
or M 0

b < 0. Furthermore, if task tk can be feasibly scheduled
on ma

k type a cores and mb
k type b cores, the function

Schðtk;ma
k;m

b
kÞ isTrue; otherwise is False.

P ðH0 [tkf g;Ma;
0M 0

bÞ ¼
_

ma
k
�0;mb

k
�0

P ðH;0M 0
a �ma

k;M
0
b �mb

kÞ ^ Schðtk;ma
k;m

b
kÞ

� 	
:

Schedulability test for Schðtk; ma
k;m

b
kÞ can be done by

any approaches in Section 4.1. If the adopted test is self-
sustainable of the schedulability test, we can find feasible
assignments of task tk by performing binary searches on
the number of both core types. Note that there can be
multiple pairs of ðma

k;m
b
kÞ that Schðtk;ma

k;m
b
kÞ returns

True, and we only care about the pairs that are not domi-

nated by other pairs. We say that a pair (ma
k;m

b
k) is domi-

nated by (ma0
k ; m

b0
k) if m

a
k � ma0

k and mb
k � mb0

k since if tk is

schedulable on (ma0
k ; m

b0
k) cores then it must also be

schedulable on (ma
k;m

b
k) cores due to the self-sustainable

of the schedulability test.
We apply the standard dynamic programming approach

to validate whether P ðHab
; Xa;XbÞ is True or not. If it is
True, we backtrack the dynamic programming table and
return a feasible assignment. The proposed algorithm then
returns a feasible solution if we can feasibly schedule the
tasks inHab
 and returns failure if not.

Time complexity: The time complexity of the improved
type-aware federated scheduling algorithm can be
derived as follows. For tasks that share cores, i.e., tasks
in the Light, Heavya, and Heavyb modes, the time complex-
ity is OðN2MaMbTNÞ, where TN is the maximum inter-
arrival time of the given N tasks, as discussed in Sec-
tion 5.2. For tasks with dedicated cores, we can construct
the dynamic programming table with time complexity
OðNMaMbÞ by keeping only the non-dominated entries in
the table. The overall time complexity is OðN2MaMbTNÞ,
which is pseudo-polynomial and can be reduced by
approximating the tests in Theorems 9 and 10 in polyno-
mial time [7].

7.2 Capacity Augmentation Bound

We prove that the capacity augmentation bound of the
improved type-aware federated scheduling algorithm is still
7.25 in this section. Due to the structural similarity of the
greedy type-aware federated scheduling algorithm and the
improved version, most of results from Section 6 can be
applied with proper restatements.

Lemma 18. (Extension of Lemma 12) For any 0 < r � 1=6,
when 0 < La

i � rTi < Ca
i and 0 < Lb

i � rTi < Cb
i , let m

a0
i

(respectively, mb0
i) be the number of type a (respectively type b)

cores allocated to ti if task ti is successfully assigned to Ha

(respectivelyHb
) in Algorithm 1, we have

ma0
i �

Ua
i

r
; 8ti 2 Ha
 and mb0

i �
Ub
i

r
; 8ti 2 Hb
:

(32)

Proof. As Algorithm 1 does not allocate more than ma
i ¼

Ua
i
�L

a
i

Ti

1
3�

La
i

Ti

& ’
cores for ti when ti 2 Ha
, with the same proce-

dure of the proof of Lemma 12, we reach the conclusion.tu
Lemma 19. (Extension of Lemma 16) For any 0 < r �

1=7:25, let task tk be first light task in Algorithm 1, which is
classified as a light task in LI but cannot be feasibly assigned
during the Light mode attempt, i.e., not in LI
. If such a task
tk exists, thenP

ti2LI
[Ha
 Ub
i

Mb
þ
P

ti2LI
[Hb
 Ua
i

Ma
> 2r: (33)

Proof. The same proof procedure of Lemma 16 can be
applied by replacing M]

a with Ma and M]
b with Mb and by

adopting Lemma 18 instead of Lemma 12. tu
Lemma 20. (Extension of Lemma 15) For any 0 < r � 1=6,

when 0 < La
i � rTi and 0 < Lb

i � rTi for every task ti 2 T, if
task tk inHa is the first task that cannot not be feasibly scheduled
after the Heavya mode attempt under Algorithm 1, then

Ub
k þ

X
ti2LI
[Ha
[Hb

Ub
i > rMb: (34)

or

Ua
k þ

X
ti2LI
[Ha
[Hb

Ua
i > rMa: (35)

The same condition holds, if task tk in Hb is the first task that
cannot not be feasibly scheduled after the Heavyb mode attempt
under Algorithm 1.

Proof.We prove the case that task tk inHa, as the other case
is symmetric. In this case, Ua

k > r. The reason why task tk
is not assigned to core q is because the procedure between
Line 9 and Line 32 in Algorithm 1 fails. There are two sce-
narios of such a failure:

� Insufficient type a cores are available: AsAlgorithm 1

attempts to use up toma
k ¼

Ca
k
�La

k
Tk
3 �La

k

� �
type a cores. In

this case,
P

ti2Ha
[Hb
[LI
 U
a
i > ðMa �ma

kÞr, lead-
ing to Eq. (35).

� Task tk cannot be assigned to any type b core q
under the schedulability test: In this case, the
same procedure in the proof of Lemma 15 can be
applied, leading to

P
ti2LI
[Ha
[Hb
 Ub

i > rMb, as
well as Eq. (34). tu

Lemma 21. Let Xa andXb be the integers defined in Line 48 and
Line 49 of Algorithm 1, respectively. When r is set to 1=7:25

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1297

and maxfLa
i ; L

b
ig � Li � rTi, after Line 49 of Algorithm 1,

one of the following three conditions holds:

1)
P

ti2Ha
[Hb
[LI
 U
a
i > rMa,

2)
P

ti2Ha
[Hb
[LI
 U
b
i > rMb, or

3)
P

ti2Ha
[Hb
[LI
 U
a
i > rðMa �Xa � 1Þ andP

ti2Ha
[Hb
[LI
 U
b
i > rðMb �Xb � 1Þ.

Proof. Suppose that right after assigning task tk there
are two type b cores with core utilization > 0 and < r.

In Appendix, available in the online supplemental

material, we show that this is not possible unlessP
ti2Ha
[Hb
[LI
 U

a
i > rMa. The condition that there is at

most one type b core with core utilization > 0 and < r

implies that
P

ti2Ha
[Hb
[LI
 U
b
i > rðMb �Xb � 1Þ holds.

The symmetric part of
P

ti2Ha
[Hb
[LI
 U
a
i >

rðMa �Xa � 1Þ holds with the same proof procedure.
Therefore, one of the three conditions in the statement of
the lemma holds. tu

Theorem 22. The capacity augmentation bound of the improved
type-aware Federated Scheduling algorithm is at most 7.25
when r is set to 1=7:25.

Proof. The proof is similar to that of Theorem 17 by contra-
positive. Suppose that Algorithm 1 fails to assign a certain
task in T.

� Case 1: LI nLI
 6¼ ;, i.e., a light task tk fails to be
assigned after the Light mode attempt: In this
case, Eq. (33) from Lemma 19 concludes the
capacity augmentation bound.

� Case 2: Ha n ðLI
 [Ha
Þ 6¼ ;, i.e., a Heavya task tk
fails to be assigned after the Light mode and the
Heavya mode attempts: In this case, Lemma 20
concludes the capacity augmentation bound.

� Case 3: Hb n ðLI
 [Hb
Þ 6¼ ;, i.e., a Heavyb task tk
fails to be assigned after the Light mode and the
Heavyb mode attempts: In this symmetric case,
Lemma 20 concludes the capacity augmentation
bound.

� Case 4: ðLI [Ha [HbÞ n ðLI
 [Ha
 [Hb
Þ ¼ ;, i.e.,
all Light tasks,Heavya tasks, andHeavyb tasks are suc-
cessfully assigned to cores by Line 48 of Algorithm 1.
In this case, Hab
 � Hab and every task ti in Hab

that has Ua
i > r and Ub

i > r. The improved algo-
rithm fails to derive a solutionwhen P ðHab
;Xa;XbÞ
is False due to insufficient amount of cores. One par-

ticular solution is to assign ma
i ¼

Ca
i
�La

i
Ti
2�La

i

� �
type a

cores and mb
i ¼

Cb
i
�Lb

i
Ti
2�Lb

i

� �
type b cores for every task

ti in Hab
. In this case, P ðHab
;
P

ti2Hab
 ma
i ;P

ti2Hab
 mb
iÞ is guaranteed return True. Therefore,

sincema
i andmb

i are integers, eitherXa < Xa þ 1 �P
ti2Hab
 ma

i orXb < Xb þ 1 �Pti2Hab
 mb
i

By applying Lemma 11 we further know that

either
P

ti2Hab

Ua
i
r
�Pti2Hab
 ma

i � Xa þ 1 orP
ti2Hab

Ub
i
r
�Pti2Hab
 mb

i � Xb þ 1. Together with
the three conditions in Lemma 21, we conclude that
either

P
ti2T Ua

i > rMa or
P

ti2T Ub
i > rMb.

Due to the above cases, the capacity augmentation
bound of 7.25 is proven as the contradiction is reached. tu

8 EVALUATION

In this section, we conduct an experimental evaluation of
our proposed algorithms on synthetic task sets.

8.1 Environment Setting

Given Ma type a cores, Mb type b cores, and the target utiliza-
tion U , we generate a task set as follows. The number of DAG
tasks N is selected uniformly at random from ½12�
maxðMa;MbÞ; 2�maxðMa;MbÞ�. We apply the Dirichlet-
Rescale (DRS) algorithm [12] to determine the utilization for
each of theN tasks. The period of a task, i.e., Ti, is selected uni-
formly at random from ½100; 1000�. To generate a DAG, we first
determine the number of nodes by selecting a number uni-
formly at random from ½12� ðMa þMbÞ; 5�maxðMa;MbÞ�,
and apply DRS to generate the utilization for each node. The
Gðn; pÞ algorithm [10] is used to generate the edges between
nodes, with probability pe 2 ½0:1; 0:9�. We generate task sets
with different target utilization, from 0 to 60%� ðMa þMbÞ
with step of 5%� ðMa þMbÞ. For each target, 100 sets are gen-
erated and stored as pure_task_sets. The type of each node
in the pure_task_sets is determined as follows. To evaluate
the effect of the skewness of the workload, we introduce two
parameters: r controls the share of tasks that have a skewed
workload; and P‘ controls the skewness of the skewed tasks.
More specifically, in each task set, we pick r% of the tasks to be
skewed tasks. Skewed tasks are determined to be type a skewed
with a probability of 50% and type b skewed otherwise. For a
type a skewed task, P‘% of the nodes in the task are selected
uniformly at random to be in type b, while the rest of the nodes
are assigned to type a. For non-skewed tasks, each node in a
task has a probabilityMa=ðMa þMbÞ of being assigned type a
and a probabilityMb=ðMa þMbÞ of type b. Note that assigning
types to nodes does not change the structure of a DAG.We use
task sets with different r and P‘ as inputs in our evaluation.
Note that this setupmay result inmany skewed tasks (depend-
ing on parameter r), but theworkload of a task set as awhole is
still expected to be balanced.

We apply the following algorithms in our evaluation:

� FED-IMPROVED: The improved type-aware feder-
ated scheduling algorithm proposed in Section 7
with Theorems 8 and 9 as schedulability tests for
tasks in the Heavyab and Heavya/Heavyb modes,
respectively.

� FED-GREEDY: The greedy type-aware federated
scheduling algorithm proposed in Section 5.2.

� HAN-EMU/GREEDY: federated scheduling algorithms
proposed by Han et al. in [14]. HAN-EMU enumerates
all possible combinations of (ma;mb) for each heavy
task, while HAN-GREEDY applies a penalty-based
greedy algorithm to find a feasible assignment. Note
that their schedulability analysis for light tasks in
Lemma 5.1 in [14] is unsafe as they only considered the
self-suspending behavior of the task under analysis but
not the higher-priority self-suspending tasks. In addi-
tion, their analysis did not consider carry-in jobs, as

1298 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

described by Baker [1]. In our evaluation, the light tasks
are scheduled based on partitioned scheduling as also
presented in our paper, for fairness. Specifically, Sun
and Di Natale [22] demonstrated that the global rate-
monotonic scheduling strategy can be converted to a
partitioned rate-monotonic schedulewithout sacrificing
the schedulability.

8.2 Schedulability

We conducted experiments forMa;Mb 2 f4; 16; 32g. We inves-
tigate different values for the parameter r 2 f0%; 50%; 100%g
and P‘ 2 f10%; 5%; 1%g in our evaluation. When
Ma ¼Mb ¼ 16, Fig. 3 shows that FED-IMPROVED outper-
forms the two methods proposed by Han et al. significantly in
all the evaluated cases. When the share of skewed tasks
increases, i.e., r increases from 50% to 100% (Figs. 3a! 3b and
3c! 3d) the performance of none of the evaluated methods is
affected significantly. However, when P‘ is decreased to an
extremely small value, i.e., P‘ ¼ 1%, (Figs. 3e and 3f), all the
evaluatedmethods suffer fromperformance degradation.

Next, we compare the schedulability of the algorithms in
skewed systems for Ma 2 f16; 32g and Mb ¼ 4. Fig. 4 shows
thatFED-IMPROVED outperforms othermethods significantly
in most of the evaluated cases. However, in Fig. 4e, none of the
methods work well due to the extremely unbalanced type con-
figuration, i.e., P‘ ¼ 1% and r ¼ 100%. When P‘ is slightly
smaller than Mb=ðMa þMbÞ (Figs. 4a, 4c, and 4d), FED-
IMPROVED dominates other methods due the ability to han-
dle the heavya tasks. Although FED-GREEDY has a constant
capacity augmentation bound, the decisions about the execu-
tion mode and the number of exclusively allocated cores are
purely based on the parameters of a task, which ”may come at
the expense of poor performance in practical settings” as pointed out
in [8], c.f. Observation 6 in [8]. The two methods proposed by
Han et al. have the same performance in both experiments
since the greedy algorithmHAN-GREEDY finds the same opti-
mal combination for the heavy tasks as the enumeration algo-
rithmHAN-EMU.

9 CONCLUSION

In this paper, we introduce type-aware federated schedul-
ing algorithms for sporadic typed DAG tasks with implicit
deadlines on heterogeneous multicore platforms with two
types of cores. Each task is executed in one of four modes:
Heavyab, Heavya, Heavyb, and Light. Our proposed algorithm
determines the execution mode for each task, and schedules
tasks in each mode accordingly. We prove that the capacity
augmentation bound of the proposed greedy algorithm is
7.25. Furthermore, we improve the algorithm by eliminating
enforcement rules. The improved algorithm maintains a
7.25 capacity argumentation bound, but is shown to exhibit
better performance in our experimental evaluation.

REFERENCES

[1] T. P. Baker, “Multiprocessor EDF and deadline monotonic sched-
ulability analysis,” in Proc. IEEE Real-Time Syst. Symp., 2003,
pp. 120–129.

[2] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in
Proc. IEEE 27th Int. Real-Time Syst. Symp., 2006, pp. 159–168.

[3] S. Baskiyar and R.Abdel-Kader, “Energy aware DAG scheduling on
heterogeneous systems,” Clust. Comput., vol. 13, no. 4, pp. 373–383,
2010.

[4] J.-J. Chen, “Federated scheduling admits no constant speedup fac-
tors for constrained-deadline dag task systems,” Real-Time Syst.,
vol. 52, no. 6, pp. 833–838, Nov. 2016.

[5] J.-J. Chen, W.-H. Huang, and C. Liu, “k2U: A general framework
from k-point effective schedulability analysis to utilization-based
tests,” in Proc. Real-Time Syst. Symp., 2015, pp. 107–118.

[6] J.-J. Chen, W.-H. Huang, and C. Liu, “Automatic parameter deri-
vations in k2U framework,” 2016, arXiv:1605.00119.

[7] J.-J. Chen, G. Nelissen, and W.-H. Huang, “A unifying response
time analysis framework for dynamic self-suspending tasks,” in
Proc. Euromicro Conf. Real-Time Syst., 2016, pp. 61–71.

[8] J.-J. Chen, G. von der Br€uggen, W.-H. Huang, and R. I. Davis, “On
the pitfalls of resource augmentation factors and utilization
bounds in real-time scheduling,” in Proc. Euromicro Conf. Real-
Time Syst., 2017, pp. 9:1–9:25.

[9] K. Chronaki et al., “Task scheduling techniques for asymmetric
multi-core systems,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 7, pp. 2074–2087, Jul. 2017.

[10] P. Erd€os, “On random graphs I,” Publicationes Mathematicae
(Debrecen), vol. 6, pp. 290–297, 1959.

Fig. 3. Schedulability of different approaches whenMa =Mb. Fig. 4. Schedulability of different approaches whenMa 6¼ Mb.

LIN ETAL.: TYPE-AWARE FEDERATED SCHEDULING FOR TYPED DAG TASKS ON HETEROGENEOUS MULTICORE PLATFORMS 1299

[11] R. L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM J. Appl. Math., vol. 17, no. 2, pp. 416–429, 1969.

[12] D. Griffin, I. Bate, and R. I. Davis, “Generating utilization vectors
for the systematic evaluation of schedulability tests,” in Proc. IEEE
41st Real-Time Syst. Symp., 2020, pp. 76–88.

[13] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu, “Response
time bounds for typed DAG parallel tasks on heterogeneous
multi-cores,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 11,
pp. 2567–2581, Nov. 2019.

[14] M. Han, T. Zhang, Y. Lin, and Q. Deng, “Federated scheduling for
typed DAG tasks scheduling analysis on heterogeneous multi-
cores,” J. Syst. Archit., vol. 112, 2021, Art. no. 101870.

[15] W.-H. Huang, J.-J. Chen, and J. Reineke, “MIRROR: Symmetric tim-
ing analysis for real-time tasks on multicore platforms with shared
resources,” in Proc. Des. Automat. Conf., 2016, pp. 158:1–158:6.

[16] D. Kim, Y. Ko, and S. Lim, “Energy-efficient real-time multi-core
assignment scheme for asymmetric multi-core mobile devices,”
IEEE Access, vol. 8, pp. 117324–117334, 2020.

[17] J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Analysis of global EDF for
parallel tasks,” in Proc. Euromicro Conf. Real-Time Syst., 2013, pp. 3–13.

[18] S. Moulik, R. Devaraj, and A. Sarkar, “HEALERS: A heteroge-
neous energy-aware low-overhead real-time scheduler,” IET Com-
put. Digit. Tech., vol. 13, no. 6, pp. 470–480, 2019.

[19] NVIDIA. NVIDIA Tegra K1 SoC. Accessed: Sep. 7, 2022. [Online].
Available: https://developer.nvidia.com/embedded/tegra-k1

[20] F. Rossi, P. van Beek, and T. Walsh, Ed. Handbook of Constraint Pro-
gramming, vol. 2 of Foundations of Artificial Intelligence. Amsterdam,
Netherlands: Elsevier, 2006.

[21] Samsung. Samsung Exynos series. Accessed: Sep. 7, 2022. [Online].
Available: https://semiconductor.samsung.com/processor/

[22] Y. Sun and M. D. Natale, “Assessing the pessimism of current
multicore global fixed-priority schedulability analysis,” in Proc.
ACM Symp. Appl. Comput., 2018, pp. 575–583.

[23] V. G. Timkovsky, “Is a unit-time job shop not easier than identical
parallel machines?,” Discrete Appl. Math., vol. 85, no. 2, pp. 149–162,
1998.

[24] Xilinx. Xilinx versal series. Accessed: Sep. 7, 2022. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/acap/versal.html

Ching-Chi Lin (Member, IEEE) received the MSc
andPhDdegrees in computer science and informa-
tion engineering from National Taiwan University,
Taiwan, in 2010 and 2018, respectively. He is a
postdoc with the chair for Design Automation of
EmbeddedSystems (DAES), TUDortmundUniver-
sity, Germany, since 2020. His research interests
include parallel computing, scheduling algorithms,
and distributed systems.

Junjie Shi (Student Member, IEEE) received the
master’s degree in electronic technology and
information technology from TU Dortmund Uni-
versity, Germany, in 2017, and currently working
toward the PhD degree with TU Dortmund Uni-
versity. His research interests are resource-shar-
ing protocols for real-time systems, resource
aware scheduling for machine learning algo-
rithms, and computation offloading for real-time
systems.

Niklas Ueter received the master’s degree in com-
puter science from TU Dortmund University, Ger-
many, in 2018 and now is working toward the PhD
degree with TU Dortmund University, supervised by
Prof. Dr. Jian-Jia Chen. His research interests are in
the area of embedded and real-time systems with a
focus on real-time scheduling.

MarioG€unzel (StudentMember, IEEE) received the
MSc degree from the Faculty of Mathematics, the
University of Duisburg-Essen, Germany, in 2019.
Since that time he is currently working toward the
PhD degree with the chair for Design Automation of
Embedded Systems, TU Dortmund University, Ger-
many, where he is supervised by Prof. Dr. Jian-Jia
Chen. His research interest is in the area of embed-
ded and real-time systems. Currently, he focuses his
research on the schedulability analysis of self-sus-
pending task sets.

Jan Reineke received the BSc degree in comput-
ing science from the University of Oldenburg, in
2003, and the MSc and PhD degrees in computer
science with Saarland University, in 2005 and
2008, respectively. He is a Professor of computer
science with Saarland University, Germany.
Before joining Saarland University, in 2012, he
was a postdoctoral scholar with UC Berkeley
from 2009 to 2011. His research centers around
problems with the boundary between hardware
and software. In 2012, he was selected as an

Intel Early Career Faculty Honor Program Awardee. He was the PC chair
of EMSOFT 2014, the International Conference on Embedded Software,
a Topic co-chair with DATE 2016 and the PC chair of WCET 2017, the
International Workshop on Worst-Case Execution Time Analysis. His
papers have been Awarded 7 paper awards, most recently at Oakland
(2021), RTSS (2018, 2019), and ECRTS (2017). In 2021, he has been
Awarded an ERC Advanced Grant.

Jian-Jia Chen (Senior Member, IEEE) received
the BS degree from the Department of Chemistry,
National Taiwan University, in 2001, and the PhD
degree from the Department of Computer Sci-
ence and Information Engineering, National Tai-
wan University, Taiwan, in 2006. He is Professor
with the Department of Informatics, TU Dortmund
University, Germany. He was Junior Professor
with the Department of Informatics, Karlsruhe
Institute of Technology (KIT), Germany from May
2010 to March 2014. His research interests

include real-time systems, embedded systems, energy-efficient schedul-
ing, power-aware designs, temperature-aware scheduling, and distrib-
uted computing. He received the European Research Council (ERC)
Consolidator Award, in 2019. He has received more than 10 best paper
awards and outstanding paper awards and has involved in Technical
Committees in many international conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1300 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

https://developer.nvidia.com/embedded/tegra-k1
https://semiconductor.samsung.com/processor/
https://www.xilinx.com/products/silicon-devices/acap/versal.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

