
ROLLED: Racetrack Memory Optimized
Linear Layout and Efficient Decomposition

of Decision Trees
Christian Hakert , Asif Ali Khan , Kuan-Hsun Chen , Fazal Hameed,

Jeronimo Castrillon , Senior Member, IEEE, and Jian-Jia Chen, Senior Member, IEEE

Abstract—Modern low power distributed systems tend to integrate machine learning algorithms. In resource-constrained setups, the

execution of themodels has to be optimized for performance and energy consumption. Racetrackmemory (RTM) promises to achieve

these goals by offering unprecedented integration density, smaller access latency, and reduced energy consumption. However, to access

data in RTM, it needs to be shifted to the access port first.We investigate decision trees and develop placement strategies to reduce the

total number of shifts in RTM. Decision trees allow profiling during training, resulting in tree paths’ access probabilities.Wemap tree

nodes to RTM so that the total number of shifts is minimal. Concretely, we present two different placement approaches: 1) where tree

nodes are closely packed and placed uniformly in a single RTM location and 2) where decision tree nodes are decomposedto separate

RTM blocks.We discuss theoretical cost models for both approaches, we formally prove an upper bound of 4� for the unified and an

upper bound of 12� for the decomposed organization towards the optimal placement.We conduct a thorough experimental evaluation to

compare our algorithms to the state-of-the-art placement strategies Our experimental evaluations show that the unified and decomposed

solutions reduce the number of shifts by 58:1% and 80:1%, respectively, leading to a 53:8% and 46:3% reduction in the overall runtime and

52:6% and 61:7% reduction in the energy consumption, compared to a naive baseline.

Index Terms—Non-volatile memory, decision tree, optimal linear ordering, racetrack memory

Ç

1 INTRODUCTION

THE rise of non-volatile memories (NVMs) as SRAM and
DRAM competitive memory technologies allows sys-

tems to benefit from their richer densities, lower per-bit cost
and energy consumption and comparable access latencies.
Especially in battery-powered embedded systems, mainte-
nance cycles can be significantly increased by carefully
exploiting the advantages of NVMs and reduce the overall
system energy consumption. An important application for

low power computing “on the edge” is data processing and
gathering, e.g., for distributed sensor nodes. Such setups
can be improved by executing machine learning models
already on the edge. One popular candidate for resource-
constrained and efficient classification models are decision
trees, since they do not require complex arithmetic opera-
tions and are highly configurable with only a few parame-
ters. Assuming a decision tree should be executed on the
edge to classify data points on the fly, the memory layout of
the decision tree has to be carefully considered to achieve
both energy efficiency and performance optimization.

Racetrackmemory (RTM) is a new class ofNVM,which fea-
tures high integration density, low unit cost, and low energy
consumption at the cost of access pattern specific shift laten-
cies [1]. In RTM, data cannot be randomly accessed; it needs to
be shifted to an access port first before it can be read out. Thedis-
tance, i.e., how far the data needs to be shifted, defines the addi-
tional shift latency. Researchers target the problem of optimally
mapping data structures to RTM, with respect to the shift
latency by proposing placement heuristics, since exhaustively
searching for the optimal placement is often not feasible [2], [3].
The heuristics usually profile the access probabilities of the
data objects either in advance or during runtime. The major
shortcoming of such placement heuristics is that they treat all
data objects equally and, therefore, consider all data objects
possibly being accessed pairwise consecutively.

A single cell in RTM is a magnetic nanowire equipped
with one or more access ports and can store up to 100 data
bits. The nanowires are grouped into domain block clusters
(DBCs) that allow accessing all bits of a data word in parallel.

� Christian Hakert, Asif Ali Khan, and Jeronimo Castrillon are with the
Department of Computer Science, Technische Universitat Dortmund,
44227 Dortmund, Germany. E-mail: christian.hakert@tu-dortmund.de,
{asif_ali.khan, jeronimo.castrillon}@tu-dresden.de.

� Kuan-Hsun Chen is with Informatik 12, TU-Dortmund, 44227 Dort-
mund, Germany. E-mail: k.h.chen@utwente.nl.

� Fazal Hameed is with the Department of Electrical Engineering, Institute
of Space Technology, Islamabad 44000, Pakistan.
E-mail: fazal.hameed@ist.edu.pk.

� Jian-Jia Chen is with the DesignAutomation of Embedded Systems, TUDort-
mund, 44227Dortmund, Germany. E-mail: jian-jia.chen@cs.tu-dortmumd.de.

Manuscript received 16 September 2021; revised 1 July 2022; accepted 20 July
2022. Date of publication 8 August 2022; date of current version 7 April 2023.
This work was supported in part by Deutsche Forschungsgemeinshaft (DFG),
through the project OneMemory under Grant 405422836, in part by SFB876 A1
under Grant 124020371, in part by DART-HMS under Grant 437232907, in
part by TraceSymm under Grant 366764507, and in part by CO4RTM under
Grant 450944241.
(Corresponding author: Christian Hakert.)
Recommended for acceptance by R. Wang.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TC.2022.3197094, provided by the authors.
Digital Object Identifier no. 10.1109/TC.2022.3197094

1488 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9992-9415
https://orcid.org/0000-0001-9992-9415
https://orcid.org/0000-0001-9992-9415
https://orcid.org/0000-0001-9992-9415
https://orcid.org/0000-0001-9992-9415
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5007-445X
mailto:christian.hakert@tu-dortmund.de
mailto:asif_ali.khan@tu-dresden.de
mailto:jeronimo.castrillon@tu-dresden.de
mailto:k.h.chen@utwente.nl
mailto:fazal.hameed@ist.edu.pk
mailto:jian-jia.chen@cs.tu-dortmumd.de
https://doi.org/10.1109/TC.2022.3197094
https://doi.org/10.1109/TC.2022.3197094

The RTM array then consists of multiple DBCs, where each
DBC has multiple locations. The selection of a target DBC in
RTM requires no shifting and allows random accessing
while accessing DBC locations is still sequential and requires
shift operations. This provides an additional tuning knob,
i.e., how data objects are placed within DBCs to minimize
the necessary shifts and how they are distributed across
DBCs. Existing optimization approaches to reduce the shift
overhead try to find relations and dependencies between
data objects and try to place such objects close together in
order to reduce the shift overhead. As these approaches
however have to assume a very generic structure of data
objects, achieving optimality is likely not feasible.

Hence, we study domain specific placement approaches
for decision trees in this paper, which assume a more con-
crete and simpler structure of the data objects, limited to the
structure of binary trees. We investigate two strategies for
organizing decision trees across racetrack DBCs. In the first
approach, we place the entire decision tree into a single
DBC [4]. The width of the DBC is chosen such that a single
position contains an entire node of the decision tree. This
approach uses the decision tree nodes’ probabilities but con-
siders the nodes themselves as black boxes.

The decision tree node data structure consists of pointers
to child nodes (two in the case of binary trees) and the node
data (the split decision value). In every iteration of the tree
traversal, only one child’s pointer needs to be retrieved
from the RTM. However, since all elements in the unified
node are tightly coupled, the entire DBC is shifted to
retrieve a particular node. The second approach uses this
observation to decouple the pointer and data elements and
store them in separate DBCs, resulting in a split value DBC,
a left pointer DBC, and a right pointer DBC. This decompo-
sition enables accessing RTM at the DBC granularity,
thereby avoiding unnecessary shifts. For instance, if the tree
is traversed towards the left child, only the split value and
the left pointer DBCs need to be shifted, and the right
pointer DBC remains unaffected.

The unified and decomposed approaches impose differ-
ent costs in terms of required racetrack shifts during the tra-
versal of the decision trees. We develop theoretical cost
models that allow further argumentation and discussion
about optimal solutions for the placement problem. We
introduce a domain-specific placement algorithm and com-
pare it to the optimal placements for both approaches. For
both cases, we also proof and find upper bounds, i.e., we
make sure that our placement algorithm delivers a solution
that never requires more than 4� the number of shifts of an
optimal solution on the unified organization. For the decom-
posed organization, we prove that our placement algorithm
does not cause more than 12� the number of shifts an opti-
mal solution would cause.We further prove that any specific
placement on the unified organization cannot cause more
than 3� shifts on the decomposed organization.

In addition to the theoretical proofs and reasoning, we
conduct a thorough experimental evaluation to compare the
unified and decomposed approaches and our domain-spe-
cific placement algorithm to the state-of-the-art RTM place-
ment algorithms. We compare the different solutions in
terms of shift operations, runtime, and energy consumption.
Concretely, we make the following contributions:

� A unified and a decomposed nodes’ organization
approach for decision trees on racetrack memory,
including their formal cost models.

� A domain-specific placement algorithm for decision
trees, including formal proofs of the upper bound
towards the optimal solution on both organization
approaches.

� Experimental evaluation and comparison to state-of-
the-art methods, including end-to-end latency and
energy evaluation.

2 SYSTEM MODEL AND PROBLEM DEFINITION

In this work, we target low-power embedded systems for
machine learning inference. A typical scenario for such sys-
tems could be the deployment of battery-powered sensor
nodes. Instead of transmitting the raw sensor data via radio
transmission, the system could locally perform the model
inference and only submit the derived result, thereby consid-
erably saving transmission energy. The target system is
assumed to be equipped with a simple CPU core (e.g., few
MHz clock rate), a small main memory (e.g., SRAM or
DRAM) and integrated RTM scratchpad memory. The RTM
scratchpad is assumed to not be covered by further caches
and directly serve requests from the CPU core. The system
architecture is illustrated in Fig. 1. Mapping the RTM
scratchpad to a certain memory location may reduce the
average access latency, the energy consumption for accesses
to that memory location can be drastically reduced. This
work assumes that the decision tree model is mapped to this
RTM scratchpad memory, so the access patterns of the tree
nodes determine the access latency and energy consumption.
Thiswork further assumes that the execution of a single deci-
sion tree is not parallelized acrossmultiple cores, since paral-
lelism in random forests is usually achieved by executing
different trees on different cores in parallel.

2.1 Decision Tree and Probabilistic Model

In this work, we consider Decision Trees as the inference
model, where the leaf nodes contain the prediction values
of the model under supervised learning. The input data is
classified by its values for a fixed amount of features. Each
inner node in the decision tree compares exactly one feature
value from the input data with a fixed split value, deciding
if the inference goes further to the left or the right child.
Decision trees are a famous inference model for resource
constrained machine learning. Furthermore, decision trees,
in contrast to graph based networks, allow a probabilistic
view on required data objects for the execution.

Each tree consists of nodes N ¼ fn0; n1; . . . ; nm�1g,
divided into inner nodes Ni and leaf nodes Nl with N ¼
Ni [Nl and Ni \Nl ¼ Oslash; , n0 is the root node. Each

Fig. 1. System memory architecture.

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1489

node nx 2 N n fn0g has exactly one parent node P ðnxÞ. Each
node consists of three values: a split value, a pointer to the
left child, and a pointer to the right child. In the unified orga-
nization, the entire node is mapped to a single array element
in a consecutive array of sizem. In the decomposed organiza-
tion approach, we place each component of a node into a sep-
arate array, resulting in three arrays of sizem. The indices of
all components of a node in different DBCs, however, have to
be synchronized. If the split value of node nx is stored at
index i, its corresponding left and right pointer values must
also be stored at index i in their corresponding arrays. For a
single array, the racetrack shifting cost of accessing index i
and jwith 0 � i; j < m is ji� jj. A valid placement of nodes
N to array indices I : N ! f0; 1; . . . ;m� 1gmust be bijective.

The inference model always starts at the root node and fol-
lows a certain path according to the comparisons at each node
until reaching at a leaf node. By following the probabilistic
model proposed in [5], each comparison is modeled as a Ber-
noulli experiment, by which each node is assigned a probabil-
ity to be accessed from the parent node prob : N ! ½0; 1� � Q

with probðn0Þ ¼ 1 and 8np 2 Ni :
P

nx2N :P ðnxÞ¼np probðnxÞ ¼ 1.

That is, the sum of the probabilities of the children of the node
np is 1.

2.2 RTM Cell Structure

The basic unit of storage in an RTM is a magnetic nanowire
called track. Each track consists of multiple small magnetic
regions (domains) which are separated by domain walls, and
each of them has its own magnetization orientation as
shown in Fig. 2. A domain in a track represents a single bit
(i.e., a “0” or “1”) determined by its magnetization orienta-
tion. Each track is equipped with a single or multiple access
ports responsible for performing a read or a write operation
that requires the desired domain to be shifted along the
track towards the access port by applying an electrical cur-
rent. After aligning the desired domain to the respective
access port, the relevant data is either read by sensing its
magnetization orientation or written by updating its magne-
tization orientation.

2.3 RTM Architecture

The hierarchical organization of RTM, like other memory
technologies, consists of banks, subarrays, domain wall
block clusters (DBCs), tracks, and domains as depicted in
Fig. 3. Each structure at the highest level (e.g., bank) is
decomposed into smaller structures at the next level (e.g.,
subarray). An RTM’s essential structure is a DBC that con-
tains T tracks, each comprising K domains. A single DBC
can store K data objects with T -bit, where each object is
stored in an interleaved pattern across the T tracks. Under a
single port and K domains per track assumption, the shift
cost to access a particular data object in a DBC may range
from zero to T � ðK � 1Þ.

A DBC can store up to 100 data objects, i.e., K can be as
high as 100 [1]. However, many recent designs consider
K ¼ 64, which is more realistic and enables efficient utiliza-
tion of the address bits This work also assumes that 64
nodes of a decision tree can be placed within a single DBC,
containing a subtree of the maximal depth of 5. Since we
use balanced decision trees in this paper, larger trees can be
easily split into such subtrees by introducing dummy
leaves, pointing to the next subtree. Subtrees in different
DBCs can be accessed without additional shifting costs.

2.4 State-of-the-Art Data Placement in RTMs

Recent works [2], [3] propose compiler-guided approximate
and optimal solutions for objects placement in RTMs. A
memory access trace S is represented with an undirected
graph of the formGðV;EÞwhere V is the set of vertices repre-
senting data objects and E is the set of edges between
vertices. Each edge has an associated edge weight value cor-
responding to the number of consecutive occurrences of the
connecting vertices. The heuristic in [3] maintains a single
group g and assigns objects to it. In the first step, the data
object with the highest access frequency (number of accesses)
in S is assigned to it. Afterward, the remaining data objects
(i.e., vertices in V) are appended to g one by one by prioritiz-
ing the vertex with the highest adjacency score. The chrono-
logical order in which vertices are added to the group
determines the assignment of the corresponding data objects
to the DBC, from left to right. However, this may lead to
many costly long shifts because the data object with the high-
est frequency is placed on one end of the DBC. To overcome
this problem, ShiftsReduce [2] uses a two-directional group-
ing to place the data objects with the highest access fre-
quency in themiddle of the DBC and places temporally close
accesses at nearby locations inside the RTM.

2.5 Problem Definition

In this work, we focus on placement optimization to mini-
mize the number of racetrack shifts for decision trees, which
are trained beforehand, on memory devices with a single
access port. This work is not about changing any logic struc-
ture of the decision tree, we take a logic representation of a
trained tree as an input and determine a memory mapping,
which maintains the logic structure. The problem is defined
as follows:

� Input:Abinary decision tree, consisting of a setN with
m nodes, where each node is associated with a proba-
bility to be accessed from its parent. The probability is

Fig. 2. RTM cell structure.

Fig. 3. An overview of the RTM hierarchical organization.

1490 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

profiled on the training dataset. The information of the
rooted tree is defined in Section 2.1.

� Output: A bijective placement of tree nodes to mem-
ory array indices that uses the node access probabili-
ties and minimizes the required racetrack shifts
while accessing the tree nodes during inference. The
objective of minimized racetrack shifts is different
for the unified and decomposed organizations.

Fig. 4 illustrates a simplified instance of the problem. The
input is the logic tree structure with profiled probabilities
on the left, the output is a mapping of nodes to array indices
on the right. The mapping results in a total expected shifting
cost. For the upper mapping, the cost for shifting from the
root to n1 and back to the root is 2, the cost for shifting to n2

and back is 4, thus weighted with the probability, the cost is
0:2 � 2þ 0:8 � 4. Following the same consideration, the lower
mapping is an optimized (yet not optimal) mapping, caus-
ing an expected cost of 2.4.

Due to the rooted tree structure, each node nx in N has a
unique access path from the root to nx. We use rlpathðnxÞ to
denote the set containing all nodes from the root node down
to nx. With the help of this, we declare the absolute
access probability of node nx as absprobðnxÞ ¼ Pnz2rlpath
ðnxÞprobðnzÞ. In addition, every node nx 2 N has a sub-
tree with a subset of leaf nodes leafsðnxÞ 	 Nl where
8ny 2 leafsðnxÞ : nx 2 rlpathðnyÞ.
Definition 1.

For a given node nx 2 N , the sum of probabilities of its
direct children must always be 1 (cf. Section 2.1). By defini-
tion, the absolute probability of nx can be then expressed as:

absprobðnxÞ ¼
X

ny2leafsðnxÞ
absprobðnyÞ (1)

3 UNIFORM ORGANIZATION

This section presents our unified organization approach, i.e.,
placing all components of the decision tree node at one index
in the DBC. We first define the cost model of decision tree
execution for this approach and introduce our novel place-
ment strategy subsequently. We deliver a formal proof,
assessing the optimality of our strategy.

3.1 Cost Model

Given some valid placement I, the expected cost to infer an
input value, i.e., following a path from the root to a leaf, is
given by Eq. (2):

Cdown ¼
X

nx2Nnfn0g
absprobðnxÞ � jIðnxÞ � IðP ðnxÞÞj (2)

After finishing one inference iteration, the DBC needs to be
shifted back to the root node so that the next inference

iteration can again start at the root. The expected cost of
shifting from leaf nodes back to the root node is given by
Eq. (3):

Cup ¼
X
nx2Nl

absprobðnxÞ � jIðnxÞ � Iðn0Þj (3)

Combining them leads to the total expected shifting cost
under the profiled dataset (Eq. (4)):

Ctotal ¼ Cdown þ Cup (4)

An optimal placement I
 for a decision tree on racetrack
memory in the unified organization approach is a place-
ment that reduces Ctotal to the absolute minimum. This
problem is an instance of the Optimal Linear Ordering (OLO)
problem [6], [7], [8]. The OLO problem, in general, is to map
the nodes of a graph G to slots, where all slots are in a row,
and adjacent slots are one unit apart, such that the total sum
of arc weights multiplied with the distance between the
nodes, connected by the arc, is minimal. The OLO (or also
called Optimal Linear Arrangement) problem is an instance of
the Quadratic Assignment Problem and is NP-complete [9].
As a special case, the OLO problem for rooted trees with the
root node on the leftmost position can be optimally solved
in time complexity OðmlogmÞ [6]. Although decision trees
are a rooted tree structure, the node access structure is a
cyclic graph, since a leaf node is always followed by the
root node for the next data tuple. Ignoring the cost of this
arc in the access graph (i.e., only optimizing Cdown) makes
the optimization of the racetrack shifts within decision trees
an instance of a rooted tree, but is not optimal for the total
cost Ctotal. Therefore we analyze the optimally of the solu-
tion for Cdown on Ctotal in the following.

3.2 Optimal Linear Ordering for Decision Trees

In this section, we prove an upper bound of the optimality
of a placement, only considering Cdown, on the studied prob-
lem of optimizing Ctotal. Therefore, we show how an opti-
mal solution for Ctotal can be transformed into a solution,
which has the form of the output of the optimal algorithm
for optimizing Cdown. For the different transformation steps,
we explain the caused increase in shifting cost. Ultimately,
we derive the upper bound from the fact that the trans-
formed solution must not be better than the derived solu-
tion for Cdown.

Throughout this section we use the notation defined in
Table 1:

Fig. 4. Simplified example of optimized decision tree mapping.

TABLE 1
Placement Notation

Placement Explanation

I arbitrary placement
I
 optimal placement which optimizes Ctotal

C
opt total cost Ctotal caused by I

I
optimal placement which optimizes Cdown

C
#down Cdown caused by I
#

I

arbitrary placement with the root on the left

I

optimal placement with the root on the left

C

 �

down Cdown caused by I

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1491

Suppose that C
opt is the minimum expected cost Ctotal of
the optimal placement I
 of the decision tree. In the follow-
ing, we show how to derive a sub-optimal placement, which
at most causes 4 times the cost of C
opt. A root leaf path,
defined as rlpathðn‘Þ, from the root node n0 to a leaf node
n‘ 2 Nl in a placement I ismonotonically increasing if IðnxÞ >
IðP ðnxÞÞ for every node nx in rlpathðn‘Þ n fn0g. Contrarily,
such a path is monotonically decreasing if IðnxÞ < IðP ðnxÞÞ
for every node nx in rlpathðn‘Þ n fn0g.
Definition 2. We define placement I unidirectional if all paths

in the given decision tree are monotonically increasing in this
placement.

Definition 3. We define placement I bidirectional if every path
in the decision tree is either monotonically increasing or mono-
tonically decreasing.

Lemma 1. Let I
be a placement which only minimizes C
#down
and ignores C
#up. Then,

C
#down � C
opt (5)

Proof. This comes from the definition as certain terms in the
objective function are removed and all terms are positive.tu
We now restate an existing property that was already

used by Adolphson and Hu [6] regarding the optimization
of I
when the root has to be put on the leftmost position.

Lemma 2 (Page 410 in [6]). (restated) There exists an optimal

unidirectional placement I

for the OLO problem when the

input is a rooted tree, i.e., C

 �

down ¼ C
#down, under the con-
straint that the root is on the left most position.

Deriving a unidirectional or bidirectional placement
induces the special property that optimizing Cdown implic-
itly optimizes Cup, which is shown by the following lemma.

Lemma 3. If a placement I is unidirectional or bidirectional,
Cdown ¼ Cup.

Proof. The full proof can be found in the appendix,
available online. Basically, in a unidirectional mapping
the leaf is always the right most node, thus going from
the root to the lead (down) is the same distance as going
from the leaf to the root (up). tu
In the following, we point out the relation between a

placement I and a placement I

which puts the root on the
leftmost position.

Lemma 4. Any placement I can be converted into a placement I

which places the root on the left most position by increasing the
expected cost of C

down with at most a factor of 2:

C

down � 2 � Cdown (6)

Proof. For spatial and readability reasons, the full proof
can be found in the appendix, available in the online
supplemental material. The basic concept how to con-
struct this transformation is illustrated in Fig. 5, where
the original mapping is illustrated in the top and the
new mapping is illustrated in the bottom. The root is

moved to the left most position. A symmetric amount
of nodes around the original root is interleaved, such
that the distance to the of each interleaved node is at
most doubled. All other nodes can remain at their posi-
tion, since the movement of the root increases their dis-
tance by a factor of less than 2. tu
Suppose that I

is an optimal unidirectional placement of

the rooted tree (with the root on the leftmost position) and
optimizes the cost C

 �
down. Further suppose that I
is an

optimal placement which optimizes C
#down. We conclude the

following corollary:

Corollary 1.

C

 �

down � 2 � C
#down (7)

Proof. I
is an unconstrained placement that achieves the
optimal C
#down. By Lemma 2, we know that I

is an optimal

placement for the cost C

 �

down under the condition that the
root is on the left most position. Therefore, C
#down is a lower
bound of any solution when the root is on the left most
position. By Lemma 4, I
can be converted into a place-
ment I

, in which the root is put to the left most position,

with a cost up to C

down � 2 � C
#down. Therefore, I

, as the

optimal placement under the root constraint, must not

cause a higher cost C

 �

down than C

down. tu
Theorem 1. An optimal unidirectional placement has an approx-

imation factor of 4 of the studied problem.

Proof. Based on Lemma 3, we know that the expected cost,
denoted as C

 �
total, of the optimal unidirectional place-

ment for the decision tree (including the down- and up-
parts) is exactly 2 � C
 �

down. Therefore, together with Cor-
ollary 1 and Lemma 5, we reach the conclusion.

C

 �

total ¼ 2 � C
 �
down � 4 � C
#down � 4 � C
opt:

tu
We now explain how to derive an optimal unidirectional

solution that minimizes C

 �

down efficiently. Adolphson and
Hu [6] proposed an algorithm to solve this case optimally. Spe-
cifically, according to [6], the OLO problem for rooted trees
with the root mapped to the leftmost slot is to find an optimal
allowable linear ordering of tree nodes. An allowable linear
ordering in their terminologymeans that if node np ¼ P ðnxÞ is
the parent of node nx, it has to be left of nx in the ordering. The
algorithm from Adolphson and Hu always derives an optimal
allowable linear ordering to minimize the OLO problem in
OðmlogmÞ time complexity. The algorithm is implemented by
recursively condensing subtrees underneath every node. This
means, the algorithm decides whether further nodes of the

Fig. 5. Reassignment of nodes and root to the left.

1492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

underlying subtree should be placed close to the node, or if
another node with relative high access probability should be
put close in the mapping. This is achieved by dynamically
keeping track of internal weights, which relate the node access
probability and the length of mapped subtree nodes under-
neath. The algorithm basically skips mapping subtree nodes,
once the increasing expected cost of other nodes exceeds the
gain in expected cost for subtree nodes. Please note that the
OLO problem is studied further in the literature and even
more efficient algorithms for rooted trees are proposed (e.g.,
Skodinis proposes an algorithm with OðmÞ runtime complex-
ity [10]). However, these algorithms differ in their time com-
plexity, but all of them provide optimal solutions to the OLO
problem for rooted trees. In this paper we base on the linear
allowable property from Adolphson and Hu. In addition, we
compute the tree layouts offline, thus both, OðmlogmÞ and
OðmÞ, are feasible for all our trees.

4 BIDIRECTIONAL LINEAR ORDERING

Deriving a placement by the algorithm from Adolphson and
Hu at most causes 4� the cost compared to the optimal
solution for the unified organization approach. The algo-
rithm from Adolphson and Hu has the major drawback of
placing the root node to the leftmost slot in any solution,
which is not optimal when the cost for going back from leafs
to the root between inferences is considered.

Algorithm 1. BLOMapping Algorithm

Given a tree with root nr

TL left subtree of nr

TR right subtree of nr

IL OLOmapping of TL

IR OLO mapping of TR

returnfreverseðILÞ; 0; IRg

Our novel proposed algorithm computes a Bidirectional
Linear Ordering (BLO) (Algorithm 1). We map the two sub-
trees underneath the root by the algorithm from Adolphson
and Hu, which derives a placement IL for the left subtree
and a placement IR for the right subtree (Fig. 6). Both place-
ments cause an expected cost of at least two shifts less than
the total expected cost of the entire tree since one node, and
therefore a shift at least by one slot is missing on every root
leaf path to a leaf and back to the root. We then form the
final BLO placement by placing I� ¼ freverseðILÞ; 0; IRg. In
this placement, two shifts are then added again to every
root leaf path into and out of the right and left subtree, thus
C�total � Ctotal. In consequence, the upper bound of 4� holds
for BLO as well. The amount of shifts, however, is expected
to be reduced by using BLO instead of OLO.

The reverse ordering can be done in OðmÞ, the placement
of the root is performed with constant time overhead.
Therefore, the time complexity of BLO is OðmlogmÞ.

5 DECOMPOSED ORGANIZATION

The last two sections explain the unified organization
approach and discuss how the optimal linear ordering prob-
lem is related to our shifts minimization objective. This sec-
tion focuses on the decomposed organization approach and
analyzes how OLO and BLO perform for the decomposed
trees. We revise the cost model and provide another formal
proof about the solution’s optimality for the OLO problem.

The decomposed approach is motivated by two major
challenges in the unified organization approach: (1) it
requires very wide DBCs and is less scalable (ii) leaf nodes
that make � 50% of the total number of tree nodes do not
need to store pointers for left and right child nodes. How-
ever, since the node information in the unified approach is
tightly coupled, storage can not be optimized. This leads to
storage wastage and yields suboptimal latency and energy
consumption.

The DBC size is generally defined by two parameters, i.e.,
the number of (useful) domains per track and the number of
tracks per DBC. Increasing the number of domains per track
increases the capacity but at the cost of increased latency
and increased position-error rate [11]. Similarly, the number
of tracks per DBC affects the number of address bits,
decoder’s size, and ultimately performance and energy con-
sumption. For a fixed size RTM, increasing the number of
tracks per DBC reduces the number of DBCs and requires
fewer address bits. However, this comes at the cost of stor-
age wastage and increased energy consumption. Smaller
width DBCs allow for storing different memory objects in
different parts of the RTM that can be accessed and con-
trolled independently. This also avoids wasting the RTM
storage space.

We propose a decomposed approach to find a better
solution to store decision trees in optimized width DBCs.
We split every tree node into three components: (1) the split
value/feature index, which is used to decide on an incom-
ing data tuple to traverse the tree further to the left or right;
(2) the left child pointer, and (3) the right child pointer. We
place all these three components in separate DBCs at syn-
chronized indices, leading to one DBC for right child
pointers, one for left child pointers, and one for split values
and feature indices. It should be noted here that we assume
all DBCs to have the same width, such that they can be arbi-
trarily allocated to the split values or pointer values. As the
indices need to be synchronized (i.e. the right pointer of
node nx has the same index in the right pointer DBC as the
left pointer in the left pointer DBC), the placement I is mod-
eled in the same manner as before. The central advantage of
the decomposed DTs is that the width of the DBCs is
reduced, and the right pointer and left pointer DBCs do not
need to store leaf nodes which can result in a considerable
reduction in the memory footprint of the DTs (of � 33%).
From the programming perspective, only few changes are
required to access the decomposed organization during
inference. In the unified organization, every tree node is
stored as one object in an array, thus access to the three

Fig. 6. Suboptimal placement correction.

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1493

node elements require an access at the corresponding array
index and the according offset within the object. For the
decomposed organization, the three node components are
stored as three different objects in three arrays. Thus, the
array index for the current node stays the same, but instead
of accessing different offsets within one object, accesses for
the same index in different arrays need to be performed.
This induces minor changes of the decision tree code.

Although the proposed decomposition can be realized
straightforwardly, it yields a different optimization objec-
tive. The decision tree inference causes a different cost in
the decomposed structure. Eventually, an optimal place-
ment for a unified decision tree may not be optimal for its
corresponding decomposed tree. Therefore, we need to
revisit the upper bound of our proposed BLO algorithm,
respecting the modified structure of an optimal placement.
In order to formalize the decomposition, we introduce the
notation in Table 2.

It should be noted here that we consider the cost as a num-
ber of shifts within the DBCs. ADBC shift in RTM is different
from the bit shifts, which are dependent on the DBC width.
We hereby count shifts for the unified organization scenario
with the same weight as shifts for the decomposed organiza-
tion scenario to make the cost definitions comparable and
relate them. However, when it comes to the realization of the
decomposed DBCs, every shift contributes 1

3 to the bit shifts
and energy consumption compared to a single shift in the
unified DBC. Hence, if a placement results in 3� the cost on
decomposed DBCs as on unified DBCs, ultimately, the
energy consumption penalty is roughly the same in both
cases.

For the rest of this section, we first revisit the cost model
for our decomposed approach and then define the objective.
We subsequently analyze and adjust the upper bound on
our BLO placement.

5.1 Revisited Cost Model

During inference of the decomposed tree, the split value
always has to be checked first. Thus, the split value DBC
has to be shifted to every node during inference and there-
fore features the same cost for traversing the tree down
(Cdecomp

split;down) and back to the root (Cdecomp
split;up) as for the unified

organization approach:

Cdecomp
split;down ¼

X
nx2Nnfn0g

absprobðnxÞ � jIðnxÞ � IðP ðnxÞÞj (8)

Cdecomp
split;up ¼

X
nx2Nl

absprobðnxÞ � jIðnxÞ � Iðn0Þj (9)

For the right pointer and left pointer DBC, the decision to
shift to a certain index depends on the previous decision on
the split value. Indeed, only the right pointer DBC or the
left pointer DBC needs to be shifted for any node, but not
both. Constructing the cost for this requires additional defi-
nitions. In the following, we denote the left child of node nx

by LCðnxÞ and the right child RCðnxÞ, respectively:
Definition 4. We define pathðnx; nyÞ ¼ fni1 ; ni2 ; . . . ; nimg as a

part of a root leaf path where ni1 ¼ nx and nim ¼ ny and
P ðnixÞ ¼ nix�1 or as the empty set if nx is neither a direct, nor
an indirect parent of ny.

Definition 5. We define isleftðnxÞ for all nodes nx 2 N n fn0g
as 1 if nx ¼ LCðP ðnxÞÞ and as 0 for all other cases. We sym-
metrically define isrightðnxÞ for all nodes nx 2 N n fn0g as 1
if nx ¼ RCðP ðnxÞÞ and as 0 for all other cases.

Definition 6. We define LP ðnxÞ as the leftmost parent of node
nx for all nodes nx 2 N n fn0g: 8ny 2 pathðLP ðnxÞ; nxÞ n
fLP ðnxÞg : LCðnyÞ 62 pathðLP ðnxÞ;
nxÞ ^ LCðLP ðnxÞÞ 2 pathðLP ðnxÞ; nxÞ

If such a node does not exist, LP ðnxÞ ¼ �. In other words,
the leftmost parent is the closest node to nx on its path from
the root, where the left child is taken (illustrated in Fig. 7).

We symmetrically define RP ðnxÞ as the rightmost parent of
node nx for all nodes nx 2 N n fn0g:
8ny2pathðRP ðnxÞ; nxÞ n fRP ðnxÞg : RCðnyÞ 62 pathðRP ðnxÞ;

nxÞ ^RCðRP ðnxÞÞ 2 pathðRP ðnxÞ; nxÞ
If such a node does not exist, RP ðnxÞ ¼ �.

These definitions imply that for all nodes ny 2 pathðLP
ðnxÞ; nxÞ n fLP ðnxÞg in between a node nx and LP ðnxÞ,
isleftðnyÞ ¼ 0. This also holds symmetrically for the RP def-
inition. With the help of Definitions 5 and 6 we can investi-
gate every node within the tree and compute the shifting
distance in the left pointer and right pointer DBC if that spe-
cific node requires an inference of the right or left pointer
DBC. This leads to the cost for traversing the right and left
pointer DBC down:

Cdecomp
lptr;down ¼

X
nx2Nnfn0g

absprobðnxÞ � isleftðnxÞ�

jIðP ðnxÞ � IðLP ðP ðnxÞÞÞÞj (10)

Cdecomp
rptr;down ¼

X
nx2Nnfn0g

absprobðnxÞ � isrightðnxÞ�

jIðP ðnxÞ � IðRP ðP ðnxÞÞÞÞj (11)

For simplicity, we denote that jx; �j ¼ 0 for an arbitrary num-
ber x. The cost for going up the tree between two inferences
is not necessarily the cost for shifting back to the root in the
left pointer and right pointer DBC. Instead, there is a set of
nodes, which are candidates to be accessed first in the right

Fig. 7. Illustration of the left most parent of a node (2 exmaples).

TABLE 2
Decomposition Notation

Cdecomp
down =Cdecomp

up =

Cdecomp
total

denotes the cost for an unconstrained arbitrary
placement I to traverse the tree in decomposed
DBCs.

C
decomp
down =C
decomp

up =

Cdecomp

total

denotes the cost in decomposed DBCs for an
optimal placement I
decomp, which optimizes
C
decomp

total .

C

decomp

down =C

decomp

up =

C

decomp

total

denotes the cost for an optimal placement I

with
the root on the left most position, which is caused
on decomposedDBCs and optimizes C

down.

1494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

and left pointer DBCs, i.e. the nodes nx where LP ðnxÞ ¼ � or
RP ðnxÞ ¼ �, respectively. Thus, for computing the estimated
cost, all these candidates need to be considered with their
respective absolute probabilities:

Cdecomp
lptr;up ¼

X
nx2Nl

absprobðnxÞ �
X

nr:LP ðnrÞ¼�

absprobðnrÞ � probðLCðnrÞÞ � jIðnrÞ � IðLP ðnxÞÞj (12)

Cdecomp
rptr;up ¼

X
nx2Nl

absprobðnxÞ �
X

nr:RP ðnrÞ¼�

absprobðnrÞ � probðRCðnrÞÞ � jIðnrÞ � IðRP ðnxÞÞj (13)

Combining these partial costs, the total cost can be deduced
by adding all components:

Cdecomp
down ¼ Cdecomp

split;down þ Cdecomp
lptr;down þ Cdecomp

rptr;down (14)

Cdecomp
up ¼ Cdecomp

split;up þ Cdecomp
lptr;up þ Cdecomp

rptr;up (15)

Cdecomp
total ¼ Cdecomp

down þ Cdecomp
up (16)

5.2 Towards Optimal Decomposition

Due to the revisited cost model, the considerations about an
optimal decision tree placement to the decomposed DBCs
also need to be revisited. This section conducts a proof
about the relation of the placement solution produced by
the OLO algorithm to the optimal solution.

Throughout this section, we clarify the relation between
placements for the unified organization approach, the cost
they cause on the decomposed organization, and how a
placement for unified DBCs can be constructed from a
placement for decomposed DBCs. First, we have to clarify
the relation between the cost Ctotal for an arbitrary place-
ment I on a unified DBC and the cost Cdecomp

total the exact
placement causes on decomposed DBCs. Intuitively, the
cost for the unified DBC can be seen as the cost for the DBC
containing the split and feature values since this DBC has to
access every node. In the following, a restructuring of the
cost model is considered:

Lemma 5.

Cdecomp
split;down ¼

X
nl2Nl

absprobðnlÞ�
X

nx2rlpathðnlÞnfn0g
jIðnxÞ � IðP ðnxÞÞj (17)

Cdecomp
lptr;down ¼

X
nl2Nl

absprobðnlÞ�
X

nx2rlpathðnlÞnfn0g
isleftðnxÞ � jIðP ðnxÞÞ � IðLP ðP ðnxÞÞÞj (18)

Cdecomp
rptr;down ¼

X
nl2Nl

absprobðnlÞ�
X

nx2rlpathðnlÞnfn0g
isrightðnxÞ � jIðP ðnxÞÞ � IðRP ðP ðnxÞÞÞj (19)

The cost for traversing the tree down in decomposed DBCs can
be restructured as a per path cost, which is weighted with the
absolute probability of the leaf node on this root leaf path.

Proof. From the definition of the tree structure, we know
that probabilities are entirely inherited. Thus, summing

up the absolute probabilities of all leaf nodes underneath a
certain node nx must result in the absolute probability of
this node: absprobðnxÞ ¼

P
nl2leafsðnxÞ absprobðnlÞ. In

Eq. (17), each distance between each node and the parent
is weighted with exactly this sum of absolute probabilities
of underlying leafs, since for every leaf the entire root leaf
path is considered. Consequently, Eq. (17) can be rewritten
to Eq. (8). The same principle can be applied to Eq. (18)
(transofrms to Eq. (10)) and to Eq. (19) (transforms to
Eq. (11)). tu

Lemma 6.

Cdecomp
lptr;down � Cdecomp

split;down ¼ Cdown (20)

Cdecomp
rptr;down � Cdecomp

split;down ¼ Cdown (21)

The summed cost for shifting down in decomposed DBCs in the
left and right pointer tree is smaller than the cost for shifting
down in the split value DBC, which is equal to the cost for
shifting down in the unified DBC case.

Proof. The full proof can be found in the appendix, avail-
able in the online supplemental material. Basically, the
left and right pointer DBCs visit a subset of nodes from
the split DBC, thus there cannot be more shifts. tu

Lemma 7.

Cdecmp
down � Cdecomp

total (22)

The cost for traversing the tree down in a decomposed place-
ment is a part of the total shifting cost (compare to Lemma 1).

Proof. Cdecomp
total is the sum of Cdecomp

down and Cdecomp
up , where

Cdecomp
up itself is a sum of non-negative terms. tu

Lemma 8.

Cdown � Cdecomp
down (23)

The summed cost for shifting through the decomposed DBCs
while traversing the tree downwards is at at least the cost of
shifting through a tree on a unified DBC downwards with the
same placement.

Proof. From the definition of the cost function, we know that
Cdown ¼ Cdecomp

split;down. We further know that Cdecomp
rptr;down and

Cdecomp
lptr;down only consists of a sum of terms which are either 0

or positive. According to Eq. (14),Cdecomp
down is the sum of only

these 3 components. Thus,Cdown ¼ Cdecomp
split;down � Cdecomp

down . tu
Next, we need to consider the cost relation of a linear

allowable placement produced by OLO. As reported by
Adolphson and Hu, there is always a linear allowable place-
ment, which features the optimal cost Cdown under the con-
straint that the root is placed to the leftmost position [6].
Thus, we denote the cost of such an optimal linear allowable
placement in the following by C

...
... .

Lemma 9.

C

decomp

lptr;up � C

decomp

split;up ¼ C

down (24)

C

decomp

rptr;up � C

decomp

split;up ¼ C

down (25)

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1495

The cost for shifting up in the left and right pointer DBCs in a
linear allowable placement can be upper bounded by the cost
for shifting up in the split value DBC, which is the same cost
as shifting down in the unified DBC case.

Proof. This proof can be found in the appendix, available in
the online supplemental material. The considerations are
similar to Lemma 6. tu

Corollary 2.

C

decomp

total � 6 � C
down ¼ 3 � C
total (26)

If a linear allowable placement is deployed to decomposedDBCs,
the total cost for shifting through the decomposed DBCs is at
most 6� the cost of shifting the unified DBC downwards.

Proof. Eq. (26) follows from the definition of the cost model

(Eq. (16)) and Lemmas 9, 6 and 3: C

decomp

lptr;down � C

down,

C

decomp

rptr;up � C

up, C

decomp

split;down ¼ C

down, C

decomp

lptr;up � C

up ¼
C

down, C

decomp

rptr;down � C

up ¼ C

down, C

decomp

split;up ¼ C

up ¼ C

down.

In total, C
 ð

total
 decompÞ consists of 6 terms, which are all

upper bounded by C

down. Lemma 3 further leads to

C

total ¼ 2 � C
down. tu
Combining the above considerations, we can construct

the according upper bound.

Theorem 2.

C

down � 2 � Cdecomp
total (27)

Any placement for decomposed trees can be transformed into a
placement with the root on the left most position, where the
cost for traversing the tree downwards in a unified DBC is at
most 2� the cost for traversing the entire tree on decomposed
DBCs.

C

decomp

total � 12 � C
decomp
total (28)

An optimal linear allowable placement for shifting downwards
in a unified DBC, as obtained by OLO, is an upper bound of
12 of the optimal placement for decomposed DBCs.

Proof. Eq. (27) directly follows from Lemmas 7, 8 and 4.
Eq. (28) can be proven by contradiction. Suppose that

the optimal linear allowable placement for a unified DBC

C

down would cause a cost C

decomp

total larger than 12� of
the optimal placement for decomposed DBCs C
decomp

total .

According to Corollary 2, we know that the optimal place-

ment must have at least a cost of 16 on the unifiedDBC then,

thus C

down > 12 � 16 � C
decomp
total , C

down > 2 � C
decomp

total . We

further know that according to Eq. (27)we can build a solu-

tion for the unified DBC with a cost less than 2 � C
decomp
total ,

which contradicts the optimality of C

down. tu

5.3 Towards Bidirectional Linear Optimization

The BLO heuristic (Section 4) can be applied to the decom-
posed organization scenario without any limitation. The
consideration that the BLO extension does not introduce
additional shifting cost, however, does not remain valid for

this scenario. Potentially, the left or right pointer DBC can
be shifted from a certain node within the right subtree to
another node within the left subtree, without loading the
root and vice versa. Thus, both nodes may be placed closer
in the OLO placement as in the BLO placement. However,
the proof upper bounds the cost for going up and down in
the left and right pointer DBCs with the cost for the split
value DBC, i.e., with the cost of starting at the root and end-
ing at a leaf in Lemma 9. Theorem 2 consequently takes this
bound in to determine the ultimate upper bound. Hence,
under this worst-case scenario, upper bound of 12� is valid
for BLO and OLO.

6 EVALUATION

In addition to the proven upper bound of our BLO algo-
rithm on unified and decomposed organisation, this section
presents experimental evaluation of the BLO algorithm and
provides a comparison to the state-of-the-art. The proven
upper bounds for BLO consequently hold for the state-of-
the-art methods, since these cannot achieve better perfor-
mance than the optimum. The relation between these
approach in realistic scenarios, however, is empirically
studied in this section. We first discuss the shifts reduction
of different solutions and then show the impact of shifts
reduction on the runtime and energy consumption.

6.1 Experimental Setup

In order to compare our Bidirectional Linear Ordering
(BLO) approach to the state-of-the-art (i.e., ShiftsReduce [2]
and Chen et al. [3]) on unified and decomposed organiza-
tion, we adopt an open-source framework published in [12]
and select eight typical machine learning classification data-
sets from the UCI Machine Learning Repository [13] and
[14]: adult, bank, magic, mnist, satlog, sensorless-drive,
spambase, and wine-quality. For each dataset, we use 75%
of the data for training and 25% for testing. We train deci-
sion trees by using tree classifiers in the sklearn package
[15]. We run the default configuration of sklearn, without
tuning hyper-parameters.

To derive differently sized trees, we specify themaximum
depth of the trees, e.g., DT1 means that the tree has a maxi-
mum depth of 1, thus two levels, and DT3 means that the
tree has four levels. After the trees are generated, we profile
the node probabilities on the training data by counting how
often each node’s left child or the right child is visited. This
delivers us empirical branch probabilities and absolute node
access probabilities. For further evaluation, we simulate the
execution of the decision trees by generating a code imple-
mentation, which produces a trace of visited nodes during
the data inference.We infer the data points from the test data
on the trees and generate a node access trace, which provides
the node access paths on a logic level. Subsequently, we place
the trees to RTM with different layouts and compute the
required amount of shifts by considering the node access
trace and the node mapping. Based on the amount of shifts,
wen can also compute the latency and energy consumption.
Concretely, we compare the following.

� Naive / NaiveD: A baseline breadth-first order place-
ment in which indices are assigned to tree nodes

1496 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

layer-wise in increasing order. The placement is used
for the unified (Naive) and decomposed organiza-
tion (NaiveD).

� ShiftsReduce / ShiftsReduceD: The state-of-the-art data
placement algorithm from [2]. We evaluate the heu-
ristic on the unified organization (ShiftsReduce) and
the decomposed organization (ShiftsReduceD).

� Chen / ChenD.: The data placement algorithm from
[3], evaluated on the unified organization (Chen)
and the decomposed organization (ChenD).

� BLO / BLOD: Our proposed bidirectional linear
ordering solution for unified trees. It is evaluated on
the unified and decomposed organization.

� MIP / MIPD: The mixed integer programming for-
mulation of the cost model (Eq. (4) for unified orga-
nization and Eq. (16) for decomposed organization).
The solver, in case it converges, returns the optimal
tree placement.

We replay the node access trace for all configurations to
derive the total amount of required racetrack shifts. For the
decomposed trees, the performance and energy numbers
reported in this section consider all, i.e., the split value and
pointers DBCs. Although the number of RTM shifts already
allows a quantitative comparison of the different placement
approaches, we further compute the energy consumption
and total runtime on a realistic model derived from the vari-
ous memory placements. For the runtime, we use the per-
access and per-shift latencies in Table 3 and compute the
overall runtime. Given the amount of RTM accesses naccesses

and the total amount of shifts in between nshifts, the total
runtime for the unified organization is runtime ¼
‘R � naccesses þ ‘S � nshifts. In the case of decomposed trees,
since the DBCs are not moved synchronously, the total run-
time also includes the penalty to align pointer DBCs. The

total energy consumption is derived from read and shift
dependent dynamic energy consumption and from the run-
time dependent static energy consumption (leakage):
energy ¼ eR � naccesses þ eS � nshifts þ p � runtime, where the
parameters can be found in Table 3.

As previously mentioned, we only investigate the race-
track shifts caused when inferring data points on the deci-
sion trees. Since we assume that the decision trees are
mapped to an isolated scratchpad memory for our target
system, the memory accesses to the decision trees are not
disrupted by any operating system interaction. However,
the total energy consumption and latency still strongly
depend on concurrent applications and the underlying sys-
tem software. This could be investigated by further full-sys-
tem simulation, which is out of the scope of this paper.

6.2 RTM Shifts Analysis

Figs. 8 and 9 compare the total amount of RTM shifts for dif-
ferent placements for the unified and decomposed DBCs,
respectively. All results are normalized to the naive place-
ment. The MIP formulation is implemented in the Gurobi
optimizer [16] and is given a time limit of 8 hours per data-
set and per tree configuration. For the DT1 and DT3 instan-
ces in all datasets, the MIP converges to the optimal
solution. In all other cases, the results are based on the Gur-
obi heuristic. Results which are worse than 1:2� of the base-
line are not illustrated in the figures.

A detailed analysis of the results shows that for the cases
where the MIP and MIPD finds an optimal placement (for
DT1 and DT3), BLO and BLOD achieves the same or only
marginally worse results than the optimum. This supports
the heuristic design principle of BLO (Section 4). Compared
to state-of-the-art solutions, it can be observed that BLO and
BLOD achieve the best reduction in shifts for most of the
investigated cases. This supports the design concept of a
domain specific placement approach, which can achieve
better results by assuming a simpler structure. Considering
the geometric mean (geomean) improvement over all evalu-
ated datasets and trees, BLO reduces the amount of bit shifts
by 58:1% compared to the naive placement (see Fig. 8).
ShiftsReduce reduces them by 50:8%. BLO thus further
reduces the amount of necessary bit shifts by 14:3% upon
ShiftsReduce.

In the decomposed trees (BLOD), the absolute number of
RTM bit shifts compared to the unified trees reduces (BLO)
by an average of 37:6%. However, for the same unified
naive placement baseline, BLOD reduces the amount of

TABLE 3
RTM Parameters Values for a 128KiB SPM

Ports per track, domains per track 1, 64
Tracks per DBC: unified, decomposed 96, 32
Leakage power [mW]: unified, decomposed p 36.2, 36.9
Write energy [pJ]: unified, decomposed eW 106.8, 40.7
Read energy [pJ]: unified, decomposed eR 62.8, 23.4
Shift energy [pJ]: unified, decomposed eS 51.8, 17.3
Write latency [ns]: unified, decomposed lW 1.79, 1.75
Read latency [ns]: unified, decomposed lR 1.35, 1.32
Shift latency [ns]: unified, decomposed lS 1.42, 1.39

Fig. 8. Comparison of total shifts during inference.

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1497

RTM bit shifts by a geomean 80:1%, compared to 58:13% by
BLO (see Fig. 9). Compared to the MIPD solution, BLOD
performs slightly better than the unified BLO placement in
terms of RTM shifts. The ShiftsReduceD and ChenD solu-
tions report comparable improvement for the decomposed
and the unified trees. Note that the placement decisions in
all heuristics are based on the training dataset while they
are evaluated on the test dataset.

The reduction of the total shifts does not directly imply a
similar improvement in runtime and energy consumption.
To estimate the shifts reduction impact on the runtime and
energy consumption, we consider a realistic setup as
explained in Section 2.3. Larger decision trees are first split
into smaller trees, and the placement heuristic is then exe-
cuted on multiple trees of maximal depth of 5. Note that the
assignment of these smaller trees to different DBCs may
affect the cost of the overall shift. Techniques such as [17] can
be applied to distribute tree nodes to different DBCs intelli-
gently, but this is beyond the scope of this work. For the run-
time and energy consumption results, we use decision trees
up to DT5 and present the results in Section 6.4.

6.3 Unified versus Decomposed DTs

Although the previous results report the performance of the
BLO and BLOD algorithm on the unified and decomposed
trees, the question which of both realizations should be used
for a concrete system remains open. Eq. (26) implies that any
linear allowable placement cannot cause more than 3� shifts
on the decomposed DBCs as on the unified DBCs. Under the
ideal assumption that each single DBC in the decomposed
setup only needs 1

3 of bit-lines and therefore also only yields 1
3

of the energy consumption, the decomposed setup cannot be

worse than the unified setup in no scenario. In reality, how-
ever, constructing the decomposed setup may create addi-
tional static overheads or consume additional resources
(such as chip space or leakage power), which is only desir-
able if the decomposed setup can significantly reduce the
resource consumption.

In order to assess the resource savings when considering
the decomposed setup, we take the placement of all configu-
rations and replay the node access traces on the unified and
decomposed organizations. We compute the relation of the
total amount of shifts for all configurations in the unified and
decomposed approaches. Theoretically, the ratio between
the unified shifts and the decomposed shifts must range
between 1� and 3� . We evaluate this and show the ratios
based on experimental results in Fig. 10. For trees with a
maximum depth of 1 i.e., DT1, the decomposed and unified
approaches result in exactly the same amount of shifts in all
placements. This is because a DT1 has 2 levels, thus only a
single node with pointers which is mapped to the first loca-
tion in a single DBC (unified) or multiple DBCs (decom-
posed). Therefore, no shifts in the right and left pointer DBC
are required. Note that we assume that the access ports in all
DBCs are initially aligned to the first position. For deeper
trees, the increase in shifts ratio shows similar trend for all
placement approaches. For the deepest trees considered in
this evaluation, the number of shifts in the decomposed trees
can be as high as 2.59 for the BLO algorithm.

In the decomposed organization, the highest shift reduc-
tion is expected from scenarios where the pointer DBCs are
rarely shifted. For DT1, the best case is achieved because the
left and right pointer DBCs do not need to be shifted at all. As
the trees get deeper, the probability of frequently accessing

Fig. 9. Comparison of total shifts during inference on decomposed trees.

Fig. 10. Increase of total shifts during inference between unified and decomposed trees.

1498 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

left and right pointers also increases. Thus, for deeper trees
the shifts reduction in the decomposed setup is reduced,
which can be seen in the reported results aswell.

However, focusing on the realistic tree sizes of at most 3
or 4 layers, which can be placed into a single DBC, the
experimental data suggests that the amount of shifts is
increased by at most a factor of 2� when switching to the
decomposed setup. This is a considerable margin to lever-
age static overheads from the the decomposition and pro-
vide a reduction in the total resource consumption.

6.4 Runtime and Energy

BLO reduces the total runtime by 53:8% compared to the
naive placement, as shown in Fig. 11. In comparison, for the
same baseline, ShiftsReduce and BLOD reduce the total run-
time by 45:7% and 46:3%, which are 13:3% and 13:9% longer
compared to the BLO, respectively. Comparing this to the
reduction of shifts for trees with maximum depth of 5 only,
BLOD reduces the required shifts by 85:1%, BLO by 77:5%,
and ShiftsReduce by 72:4%. Thus BLOD, compared to BLO
and ShiftsReduce, further reduces the amount by shifts by
9:8% and 17:5% respectively. This suggests that a reduction
in shifts may not necessarily result in the runtime reduction,
or at least not with the same proportion. When comparing
Figs. 8 and 9 to Figs. 11 and 12, please note the different
scaling on the y axis and that results are averaged across
datasets for the latter figures.

In the decomposed placement approach, the total run-
time increases due to the alignment time in the pointers
DBCs. The split value DBC is checked first to determine
whether a pointer DBC needs to be accessed or not. Subse-
quently, depending on the node access probabilities, a shift
request may be sent to the left or the right pointer DBC. The
lazy shift approach in pointers DBCs improves the overall
shift energy due to the reduced amount of shifts. However,
this negatively impacts the runtime due to the shift penalty

required to align the access port to the desired location if it
is not aligned with the split value DBC. To quantify the
impact of the decomposed approach on the runtime, we
compare it with other methods, as presented in Fig. 11. For
the same baseline (naiveD), BLOD has an average runtime
overhead of 7.5% compared to BLO. Consequently, BLOD
also increases the leakage energy compared to BLO How-
ever, this deterioration in the leakage energy is offset by the
reduction both in the shift and access component of the
energy (cf. Fig. 13). Similarly, other decomposed approaches
(e.g., naiveD, MLPD) induces a runtime penalty compared
to their unified counterparts (e.g., naive, MLP).

BLOD achieves the most reduction in energy consump-
tion compared to all other approaches. This is because the
total energy consumption of RTM is largely dependent
upon the number of bit shifts, which affect the shift energy
and the runtime, which determine the leakage energy.
Figs. 12 and 13 show the overall energy consumption and
the energy breakdown of different placement approaches

Fig. 11. Runtime of different configurations for different tree size. The results are average across all benchmarks.

Fig. 12. Energy consumption of different configurations for different tree size. The results are average across all benchmarks.

Fig. 13. Energy consumption breakdown into shifts energy, leakage
energy and access energy for various configurations. BLOD records
the lowest shift and total energy consumption compared to all other
configurations.

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1499

for the unified and the decomposed DBCs normalized to the
naive placement. Compared to the naive solution, BLOD
delivers a 61:7% reduction in the RTM energy consumption,
compared to 52:6% in BLO and 45:8% in ShiftsReduce for
the same baseline.

Fig. 13 highlights that the energy efficiency of BLOD com-
pared to existing unified approaches is achieved via a signifi-
cant reduction in the energy consumed by the shift operation
and a slight reduction in the access energy. The leakage
energy, compared to the naive solution (NaiveD), is also
reduced by 44:7%. The improvement in the shift energy is
due to reduced shift cost, while the reason for the leakage
energy saving is the reduced runtime (cf. Fig. 11). Compared
to the unified BLO solution, despite an increase in the leak-
age energy by 16:2%, the decomposed approach consumes
17:3% less energy. Overall, for the naive baseline (Naive),
BLOD on average achieves (95.3%, 35%, 21.5%, 17.3%, 150%,
1.7%) more energy reduction compared to (Chen, ShiftsRe-
duce, MLP, BLO, naiveD,MLPD).

7 RELATED WORK

A rich body of research has explored the efficient employ-
ment of RTM at various levels in the memory hierarchy for
numerous application domains and system setups. In this
context, optimization techniques for RTM have been pro-
posed to facilitate their adoption in the register file [18],
[19], [20], scratchpads [2], [21], [22], caches [23], [24], [25],
[26], [27], [28], [29], [30], network-on-chip [31], off-chip
memory [32], and solid state drives [33]. Therefore, RTM
can be fitted in all levels of the memory hierarchy, making it
a promising candidate for universal memory.

To provide performance, area, and energy benefits, vari-
ous optimizations have been proposed in the literature at
cell-level [28], circuit-level [29], layout-level [27], [30], [34],
and cross-level [35]. RTM’s leakage power and capacity
advantages give it a competitive edge over existing memory
technologies, but the expensive shift operations present a
daunting challenge. In this context, various techniques for
RTM shift cost reduction have been proposed, such as run-
time data swapping [25], [28], [36], data compression [26],
[37], preshifting [18], [38], access port management [24],
[25], [28], intelligent instruction [39], and data placement [2],
[3]. For data placement, Chen et al. in [3] present a heuristic
appending data objects according to the adjacency informa-
tion sequentially. Khan et al. in [2] formulate the data place-
ment problem with an integer linear programming and
further propose ShiftsReduce heuristic to enhance the previ-
ous heuristic by introducing a tie-breaking scheme and a
two-directional objects grouping mechanism assuming a
single access port RTMs. Whereas the above techniques are
generalized solutions, this work considers the data objects
of decision trees where the dependencies between tree
nodes strictly limit possible access patterns.

Recently, it has been shown that domain-specific appro-
aches not only guarantee better performance and energy
consumption but also enable better predictability of the run-
time [21]. In fact, the studied problem can be treated as an
instance of the quadratic assignment problem (QAP), which
was introduced in 1957 [40], considering the problem of allo-
cating a set of facilities to a set of locations. When the facilities

are all in a line (like the locations within in a DBC), such a spe-
cial case is named the linear ordering/arrangement problem [7].
Suppose that the number of vertices ism and the length of an
edge is defined as the linear distance between the vertices
involved. Specifically, for tree graphs, the common objective is
to minimize the sum of edge lengths as the total shift cost in
this work. For undirected trees, Shiloach proposes an Oðm2:2Þ
algorithm [41]. For directed trees, Adolphson and Hu in [6]
present an algorithm to derive an optimal placement in
OðmlogmÞ. For the studied problem of this work, Adolphson
and Hu’s algorithm is no longer optimal since the additional
distance induced by shifting back a nanowire from leaves to
the root between two inferences needs to be considered.

The imperfection in the fabrication technologies and fluc-
tuation in the current density required for the shift opera-
tion may cause pinning faults and position errors in RTMs.
Of late, many position error detection and correction
schemes have been proposed to guard RTMs against such
errors and improve their reliability [11], [42], [43]. This
work focuses on reducing the shift operations in RTMs,
which indirectly reduces the probability of position error
but does not explicitly consider this aspect.

8 CONCLUSION

In this paper, we present BLO, a domain-specific placement
heuristic for decision trees on RTM. BLO exploits the knowl-
edge of the internal structure of decision trees and the profiled
probabilities for nodes being accessed, which are gathered on
a previously known dataset. BLO bases on an optimal algo-
rithm to solve the OLO problem for rooted trees [6] and elimi-
nates the main reason for improper placements on RTM. We
introduce two different approaches to organization decision
trees on racetrack memory. The decomposed organization
decouples the storage of decision tree nodes and allows opti-
mization regardingmemory space consumption.

BLO causes at most 4� of the RTM shifts than the optimal
placement on the unified organization. The upper bound is
proven to be 12� on the decomposed organization approach.
Our empirical evaluations show that BLOD delivers the best
bit shifts reduction for the most realistic use-case of decision
trees (depth 5) (geomean of 80%). In terms of runtime, BLO
compared to BLOD performs better due to the longer stalls
in BLOD pointers’ DBCs. In terms of energy consumption,
BLOD outperforms all other configurations.

REFERENCES

[1] R. Bl€asing et al., “Magnetic racetrack memory: From physics to the
cusp of applications within a decade,” Proc. IEEE, vol. 108, no. 8,
pp. 1303–1321, Aug. 2020.

[2] A. A. Khan, F. Hameed, R. Bl€asing, S. S. P. Parkin, and J. Castril-
lon, “ShiftsReduce: Minimizing shifts in racetrack memory 4.0,”
ACM Trans. Archit. Code Optim., vol. 16, Dec. 2019, Art. no. 56.

[3] X. Chen, E. H.-M. Sha, Q. Zhuge, C. J. Xue, W. Jiang, and Y. Wang,
“Efficient data placement for improving data access performance
on Domain-Wall memory,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 24, no. 10, pp. 3094–3104, Oct. 2016.

[4] C. Hakert, A. A. Khan, K.-H. Chen, F. Hameed, J. Castrillon, and
J.-J. Chen, “BLOwing trees to the ground: Layout optimization of
decision trees on racetrack memory,” in Proc. IEEE 58th Annu.
Des. Automat. Conf., 2021, pp. 1111–1116.

[5] S. Buschj€ager and K. Morik, “Decision tree and random forest
implementations for fast filtering of sensor data,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 65, no. 1, pp. 209–222, Jan. 2018.

1500 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

[6] D. Adolphson and T. C. Hu, “Optimal linear ordering,” SIAM J.
Appl. Math., vol. 25, pp. 403–423, 1973.

[7] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis, The
Quadratic Assignment Problem. Berlin, Germany: Springer, 1998,
pp. 1713–1809.

[8] J. D�ıaz, J. Petit, and M. Serna, “A survey of graph layout prob-
lems,” ACM Comput. Surv., vol. 34, pp. 313–356, Sep. 2002.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[10] K. Skodinis, “Computing optimal linear layouts of trees in linear
time,” in Proc. Eur. Symp. Algorithms, 2000, pp. 403–414.

[11] S. Ollivier, D. Kline, R. Kawsher, R. Melhem, S. Bhanja, and A. K.
Jones, “Leveraging transverse reads to correct alignment faults in
domain wall memories,” in Proc. 49th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2019, pp. 375–387.

[12] S. Buschj€ager, K.-H. Chen, J.-J. Chen, and K. Morik, “Realization
of random forest for real-time evaluation through tree framing,”
in Proc. IEEE Int. Conf. Data Mining, 2018, pp. 19–28.

[13] D. Dua and C. Graff, “UCI machine learning repository,” Sch. Inf.
Comput. Sci., Univ. California, Irvine, CA, USA, 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[14] L. Deng, “The mnist database of handwritten digit images for
machine learning research,” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, 2012.

[15] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[16] B. Bixby, “The gurobi optimizer,” Transp. Re-Search Part B, vol. 41,
pp. 159–178, 2007.

[17] A. A. Khan, A. Goens, F. Hameed, and J. Castrillon, “Generalized
data placement strategies for racetrack memories,” in Proc. IEEE
Des. Automat. Test Eur. Conf. Exhib., 2020, pp. 1502–1507.

[18] E. Atoofian, “Reducing shift penalty in Domain wall memory
through register locality,” in Proc. IEEE Int. Conf. Compilers Archit.
Synth. Embedded Syst., 2015, pp. 177–186.

[19] M. Moeng, H. Xu, R. Melhem, and A. K. Jones, “ContextPreRF:
Enhancing the performance and energy of GPUs with nonuniform
register access,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24,
no. 1, pp. 343–347, Jan. 2016.

[20] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “Exploration of
GPGPU register file architecture using domain-wall-shift-write
based racetrack memory,” in Proc. IEEE 51st Annu. Des. Automat.
Conf., 2014, pp. 1–6.

[21] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon, “Optimizing
tensor contractions for embedded devices with racetrack memory
scratch-pads,” in Proc. Int. Conf. Lang. Compilers Tools Embedded
Syst., 2019, pp. 5–18.

[22] H. Mao, C. Zhang, G. Sun, and J. Shu, “Exploring data placement
in racetrack memory based scratchpad memory,” in Proc. IEEE
Non-Volatile Memory Syst. Appl. Symp., 2015, pp. 1–5.

[23] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones, “FusedCache: A
naturally inclusive, racetrack memory, dual-level private cache,”
IEEE Trans. Multi-Scale Comput. Syst., vol. 2, no. 2, pp. 69–82,
Apr.–Jun. 2016.

[24] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury,
K. Roy, and A. Raghunathan, “TapeCache: A high density, energy
efficient cache based on domain wall memory,” in Proc. ACM/
IEEE Int. Symp. Low Power Electron. Des., 2012, pp. 185–190.

[25] R. Venkatesan et al., “Cache design with Domain Wall memory,”
IEEE Trans. Comput., vol. 65, no. 4, pp. 1010–1024, Apr. 2016.

[26] H. Xu, Y. Li, R. Melhem, and A. K. Jones, “Multilane racetrack
caches: Improving efficiency through compression and independent
shifting,” in Proc. IEEE 20th Asia South Pacific Des. Automat. Conf.,
2015, pp. 417–422.

[27] C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao,
“Quantitative modeling of racetrack memory, a tradeoff among
area, performance, and power,” in Proc. 20th Asia South Pacific
Des. Automat. Conf., 2015, pp. 100–105.

[28] Z. Sun, X. Bi, W. Wu, S. Yoo, and H. Li, “Array organization and
data management exploration in racetrack memory,” IEEE Trans.
Comput., vol. 65, no. 4, pp. 1041–1054, Apr. 2016.

[29] S.Motaman,A. Iyengar, and S.Ghosh, “Synergistic circuit and system
design for energy-efficient and robust domain wall caches,” in Proc.
ACM/IEEE Int. Symp. LowPower Electron. Des., 2014, pp. 195–200.

[30] Z. Sun, X. Bi, A. K. Jones, and H. Li, “Design exploration of race-
track lower-level caches,” in Proc. IEEE/ACM Int. Symp. Low Power
Electron. Des., 2014, pp. 263–266.

[31] D. Kline, H. Xu, R. Melhem, and A. K. Jones, “Domain-wall mem-
ory buffer for low-energy NoCs,” in Proc. 52nd ACM/EDAC/IEEE
Des. Automat. Conf., 2015, pp. 1-6.

[32] Q. Hu, G. Sun, J. Shu, and C. Zhang, “Exploring main memory
design based on racetrack memory technology,” in Proc. Int. Great
Lakes Symp. VLSI, 2016, pp. 397–402.

[33] E. Park, S. Yoo, S. Lee, and H. Li, “Accelerating graph computation
with racetrack memory and pointer-assisted graph representation,”
in Proc. IEEEDes. Automat. Test Eur. Conf. Exhib., 2014, pp. 1–4.

[34] S. Motaman, A. S. Iyengar, and S. Ghosh, “Domain wall memory-
layout, circuit and synergistic systems,” IEEE Trans. Nanotechnol.,
vol. 14, no. 2, pp. 282–291, Mar. 2015.

[35] G. Sun et al., “From device to system: Cross-layer design explora-
tion of racetrack memory,” in Proc. IEEE Des. Automat. Test Europe
Conf. Exhib., 2015, pp. 1018–1023.

[36] Z. Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design
for ultra high density and low power consumption,” in Proc. 50th
ACM/EDAC/IEEE Des. Automat. Conf., 2013, pp. 1–6.

[37] A. Ranjan, S. G. Ramasubramanian, R. Venkatesan, V. Pai, K. Roy,
and A. Raghunathan, “DyReCTape: A dynamically reconfigurable
cache using domain wall memory tapes,” in Proc. IEEE Des. Auto-
mat. Test Eur. Conf. Exhib., 2015, pp. 181–186.

[38] A. Colaso, P. Prieto, P. Abad, J. A. Gregorio, and V. Puente,
“Architecting racetrack memory preshift through pattern-based
prediction mechanisms,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2019, pp. 273–282.

[39] J. Multanen, P. J€a€askel€ainen, A. A. Khan, F. Hameed, and J. Cas-
trillon, “SHRIMP: Efficient instruction delivery with domain
wall memory,” in Proc. IEEE Int. Symp. Low Power Electron. Des.,
2019, pp. 1–6.

[40] T. C. Koopmans and M. Beckmann, “Assignment problems and the
location of economic activities,” Econometrica, vol. 25, pp. 53–76, 1957.

[41] Y. Shiloach, “A minimum linear arrangement algorithm for undi-
rected trees,” SIAM J. Comput., vol. 8, pp. 15–32, 1979.

[42] C. Zhang et al., “Hi-fi playback: Tolerating position errors in shift
operations of racetrack memory,” in Proc. ACM/IEEE 42nd Annu.
Int. Symp. Comput. Archit., 2015, pp. 694–706.

[43] A. Vahid, G. Mappouras, D. J. Sorin, and A. R. Calderbank,
“Correcting two deletions and insertions in racetrack memory,”
2017, arXiv:1701.06478.

Christian Hakert received the master’s degree in
computer science from TU Dortmund, in 2019. He
is a research associate with TU Dortmund in the
Group of Design Automation for Embedded Sys-
tems with Prof. Jian-Jia Chen. He received the
best student award “Jahrgangsbestenpreis” for
his master degree in 2019. His research interests
include the support and application of non-volatile
main memories in system software and operating
systems.

Asif Ali Khan is a researcher at the chair for com-
piler construction with the Computer Science
Department, TU Dresden, Germany. His research
interests include computer architecture, heteroge-
neous memories, and compiler support for the
memory system. Currently, his research mainly
focuses on exploring the emerging non-volatile
memory technologies in the memory sub systems
and their optimizations for variousmetrics.

Kuan-Hsun Chen received the master’s degree in
computer science from National Tsing Hua Univer-
sity (Taiwan), in 2013, and the PhD (Dr-Ing) degree
in computer science from TU Dortmund University
with a distinction “Summa cum Laude” in 2019. He
is a tenured assistant professor with the Depart-
ment of Computer Science, University of Twente in
the Netherlands. From August 2019 to August
2021, he was a postdoc with TU Dortmund Univer-
sity in Germany. His research interests include
real-time embedded systems, architecture-aware
software design, and dependable computing.

HAKERT ETAL.: ROLLED: RACETRACK MEMORYOPTIMIZED... 1501

http://archive.ics.uci.edu/ml

FazalHameed received the PhD (Dr-Ing) degree in
computer science from the Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, in 2015.
He joined the chair for compiler construction with
the TU Dresden (Dresden, Germany) as post-doc-
toral researcher in March 2016. Before, he worked
on a similar position at the chair of Dependable and
Nano Computing (CDNC) Karlsruhe Institute of
Technology (KIT), Germany. He is currently affili-
atedwith the Institute of SpaceTechnology, Islama-
bad, Pakistan. He mainly works in the architecture

group with a focus on memories. He was a recipient of the CODES+ISSS
2013 Best Paper Nomination for his work on DRAM cachemanagement in
multicore systems. He has served as an external reviewer for major confer-
ences in embedded systems and computer architecture.

Jeronimo Castrillon (Senior Member, IEEE)
received the electronics engineering degree from
the Pontificia Bolivariana University, Colombia, in
2004, the master’s degree from the ALaRI Insti-
tute, Switzerland, in 2006, and the PhD degree
(Dr-Ing) with honors from the RWTH Aachen Uni-
versity, Germany, in 2013. He is a professor with
the Department of Computer Science, TU Dres-
den, where he is also affiliated with the Center for
Advancing Electronics Dresden (CfAED). He is
the head of the chair for compiler construction,

with research focus on methodologies, languages, tools and algorithms
for programming complex computing systems. In 2014, he co-founded
Silexica GmbH/Inc, a company that provides programming tools for
embedded multicore architectures.

Jian-Jia Chen (Senior Member, IEEE) received
the BS degree from the Department of Chemistry,
National Taiwan University, in 2001, and the PhD
degree from the Department of Computer Sci-
ence and Information Engineering, National Tai-
wan University, Taiwan, in 2006. He is professor
with the Department of Informatics, TU Dortmund
University in Germany. He was junior professor
with the Department of Informatics, Karlsruhe
Institute of Technology (KIT) in Germany from
May 2010 to March 2014. Between January 2008

and April 2010, he was a postdoctoral researcher with ETH Zurich, Swit-
zerland. His research interests include real-time systems, embedded
systems, energy-efficient scheduling, power-aware designs, tempera-
ture-aware scheduling, and distributed computing. He received the Euro-
pean Research Council (ERC) Consolidator Award in 2019. He has
received more than 10 best paper awards and Outstanding Paper
awards and has involved in Technical Committees in many international
conferences.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1502 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 5, MAY 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

