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Abstract—The great quest for adopting AI-based computation for safety-/mission-critical applications motivates the interest towards

methods for assessing the robustness of the application w.r.t. not only its training/tuning but also errors due to faults, in particular soft

errors, affecting the underlying hardware. Two strategies exist: architecture-level fault injection and application-level functional error

simulation. We present a framework for the reliability analysis of Convolutional Neural Networks (CNNs) via an error simulation engine

that exploits a set of validated error models extracted from a detailed fault injection campaign. These error models are defined based

on the corruption patterns of the output of the CNN operators induced by faults and bridge the gap between fault injection and error

simulation, exploiting the advantages of both approaches. We compared our methodology against SASSIFI for the accuracy of

functional error simulation w.r.t. fault injection, and against TensorFI in terms of speedup for the error simulation strategy. Experimental

results show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up

to 63x w.r.t. TensorFI, that only implements a limited set of error models.

Index Terms—Soft errors, convolutional neural networks, cross-layer reliability analysis, error modeling and simulation, fault injection
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1 INTRODUCTION

THERE is a growing interest in employing CNNs for per-
ception functionalities in a wide range of application

domains, including safety- and mission-critical ones (e.g.,
automotive, robots and avionics and aerospace). As a repre-
sentative example, let us consider the Advanced Driver
Assistance System (ADAS) in the automotive scenario [1];
CNNs are employed to detect the lanes of the track, to iden-
tify pedestrians and obstacles, to interpret road signs and
traffic lights [2], [3]. Based on such observations, subsequent
planning modules in the ADAS take trajectory and control
decisions. In this context, CNNs are generally executed on
Graphic Processing Units (GPUs) since the Single Instruc-
tion Multiple Data (SIMD) architecture is particularly well-
suited to speed up the highly data-parallel elaborations that
characterize these applications, allowing to meet the strict
real-time requirements imposed by the ADAS [2].

The design of digital systems in the automotive domain is
regulated by the ISO 26262 standard [4], and the functionali-
ties offered by an ADAS are classified and regulated by the
Society of Automotive Engineers (SAE). Both standards
require the system to expose a very high degree of reliability
and to provide fault detection/management mechanisms.
Although radiation-induced faults have historically been
considered a concern mainly in the aerospace domain, it has

been demonstrated that soft errors, such as Single Event
Upsets (SEUs) [5], may interfere with the functionality of
electronic systems also at the ground-level [6], with an esti-
mated ratio of two transient faults every thousand billion
hours, on average. In 2019 the number of cars traveling in
Europe has been 268 millions (see [7]), leading to an estimate
of a fault per car every 3.7 hours, whichmay be a concern.

It is thus paramount to be able to evaluate the resiliency
of CNN-based applications against soft errors within their
application context, to determine how to harden the system
to achieve the desired/required reliability level. CNNs, and
in general image processing and Machine Learning (ML)
applications, may expose an intrinsic degree of fault resil-
ience due to several reasons: i) they may deal with noisy
inputs (e.g., sensors) or data quantizations, ii) their outputs
may be probabilistic estimates, or iii) produced data (such
as image) may be used by a human, whose perceptual limi-
tations provide resiliency to a certain level of inexactness [8].
Furthermore, studies have investigated how the internal
redundancies of ML models offer a certain degree of fault
resilience [9], [10], [11], [12].

To define novel hardening techniques specific for CNNs,
it is necessary to be able to accurately identify the vulner-
abilities against faults of the application and of the various
parts of it; that is to analyze the effects of the faults occur-
ring in the underlying hardware platform on the behavior
of the application itself. Thus, for this class of applications,
hardening techniques are moving from the classical bit-wise
correct/corrupted checking of the outputs towards a usabil-
ity-based classification, to answer the question “is the down-
stream system able to correctly carry out its task with the
produced, possibly corrupted, output?” [13].

To support this strategy, the novel contribution we propose is
an accurate and fast cross-layer framework for the reliability
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analysis of CNN-based applications against soft errors, that stud-
ies the effects of such faults not merely on the different outputs,
but also on the final functionality within the entire system.

If we exclude radiation testing, which is very expensive
and does not provide enough internal controllability and
observability, most relevant methods for reliability analy-
sis fall into two main families: architecture-level Fault
Injection [14], [15], [16] and application-level Fuctional
Error Simulation [17], [18], [19]. Architecture-Level Fault
Injection, FI in short, provides controllability and observ-
ability, as well as high accuracy, because of the ability of
emulating the physical effects of the faults in the architec-
ture components. The main drawback of Fault Injection
(FI) techniques is the long time and effort required to inte-
grate the FI features within the application under analysis
and then to deploy them on the target architecture. More-
over, since faults may either be not activated or produce
no observable error, extensive FI campaigns may be
required to collect a statistically relevant amount of cor-
rupted data. Application-Level Fuctional Error Simulation,
Fuctional Error Simulation (FES) in short, provides shorter
development and deployment times, it can be applied
very early during the design process, and it ensures that
every experiment produces a corrupted output. The main
drawback resides in the accuracy; it is crucial that the
adopted error models are representative of the effects that
faults in the hardware may induce in the data processed
by the application. Indeed, as discussed in [20], FES tools
frequently used in past works adopt inaccurate error mod-
els; therefore, there is the necessity to fill the gap between
the fault occurrence at the hardware layer and the error
manifestation at software one.

This paper proposes CLASSES (Cross-Layer AnalysiS
framework for Soft-Errors effectS in CNNs), a novel cross-
layer framework for an early, accurate and fast reliability
analysis of CNNs accelerated onto GPUs when affected by
SEUs. The proposal bridges the gap between fault injection
and error simulation, by leveraging both methods in dif-
ferent phases exploiting their advantages. Cross-Layer
AnalysiS framework for Soft-Errors effectS in CNNs
(CLASSES) consists of two parts. The former is a system-
atic approach for accurate error modeling: i) an architec-
ture-level FI tool is exploited to perform an extensive fault
injection campaign on each one of the basic operators used
in CNNs, collecting all corrupted data; ii) the outcomes
are then automatically analyzed to derive the corruption
patterns that faults may induce in the output of each con-
sidered operator; iii) corruption patterns are then used to
define a set of error models integrated into the error simu-
lation engine, constituting the second part of the frame-
work. In particular, for the FES part we exploited
TensorFlow [21], at present one of the most popular ML
design frameworks. The error simulator is used to analyze
in a faster and easier way the reliability of the entire appli-
cation. Moreover, according to the peculiarities of the con-
sidered class of applications, the error simulator analyses
CNN outputs by means of a usability-based classification
strategy, specifically defined by the designer. As a result,
our proposal enables an early but accurate evaluation of
the reliability of any CNN. The contributions of our pro-
posal can be summarized as follows:

� a cross-layer framework for evaluating CNNs robust-
ness against faults affecting the underlying hardware
platform;

� a designed and implemented semi-automated error
modeling tool based on architecture-level FI in GPU;

� a set of validated functional error models for CNNs
executed onto GPU; and

� a designed and implemented fully-automated error
simulator integrated within TensorFlow.

The solution we designed is flexible, allowing the frame-
work to integrate a different FI tool (for instance the
recent [22], [23] and new ones that will emerge), based on
the adopted development environment, to produce the
error models required to support the FES appropriately.

We analyze the framework performance and outcomes
by comparing it against two representative FI and FES
engines for CNNs accelerated onto GPU, namely SAS-
SIFI [15] and TensorFI [17]. Due to implementation limita-
tions for existing tools, we used both the YOLO V3
CNN [24], and two smaller size benchmarks, LeNet-5 [25]
and CIFAR10 [26].

With respect to the baselines, we compared accuracy and
speedup of the proposed FES solution against the FI process
carried out with SASSIFI; CLASSES achieves about 99%
accuracy in terms of effect of the fault on the final YOLO V3
output with about a 6x speedup. A second evaluation refers
to the quality of the FES approach with respect to the facili-
ties offered by TensorFI, by comparing the available error
models and the obtained speedup in executing the simula-
tion on the same workload with the smaller CNNs, achiev-
ing a speedup from 44x to 63x. While the speedup is a
secondary aspect considering the rapid evolution and
developments in FI tools, it is the ease of use of the error
models, the functional classification of the outputs and the
final reliability analysis the elements we focus on. We
adopted GPUs as a platform, because they are the most
commonly selected devices for accelerating CNNs; nonethe-
less we claim that the tools can be re-targeted for different
devices, while the methodology remains the same.

The remainder of the paper is organized as follows. Sec-
tion 2 presents background on CNNs and on GPUs, while
Section 3 reviews the related work on FI and FES for CNNs.
Section 4 discusses CLASSES in its details and Section 6
presents the identified error models. Section 7 then dis-
cusses the results of the application of our framework to a
set of real-world CNNs, and the comparison against SAS-
SIFI and TensorFI. Section 8 summarizes the main advan-
tages of the methodology, and finally, Section 9 concludes
the paper.

2 BACKGROUND

This section provides a brief background introduction of the
two key elements of the proposed application context,
namely CNN and GPU.

2.1 CNN

A Convolutional Neural Network [25] is a Deep Learning
model generally employed in image processing and com-
puter vision to derive a semantic representation from the
input images to accomplish a high-end task, such as item
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classification, object detection and image segmentation. As
shown in Fig. 1, a CNN is internally organized in a sequence
of layers, each one processing multidimensional data,
known as tensors, by means of operators. A tensor consists of
a multi-dimensional stack of bi-dimensional matrices of val-
ues, called feature maps, generating a multidimensional
grid. As an example, an image can be seen as three stacked
feature maps, each one for a color channel, thus producing
a 3D tensor. There are several operators, that can be
grouped into the following classes:

� Convolution, used to “learn” and extract features
from the input by inferring the appropriate weights;

� Batch normalization, used to fix the data distribution,
speeding up the learning process;

� Activation function, a mathematical function applied
element-wise to mimic the biological activation of a
neuron. Common examples are the Sigmoid func-
tion, the softmax one and the Rectified Linear Unit
(ReLU) one;

� Max-pooling (and similar dimensionality reduction
operators), used to reduce the size of the tensor for
increasing the degree of generalization;

� Element-wise operators for classical math operations
or single-element manipulation, such as addition,
multiplication, exponent and bias addition.

Since operators are general in the size of the input/out-
put tensors, they are characterized by a set of hyper-param-
eters, specifying the actual size of the processed tensors.
Operators belonging to these classes are usually organized
in a sequence of layers devoted to the feature learning; each
operator takes in input and produces in output tensors of
specific sizes based on the structure of the CNN (as shown
in the example in left-hand side of Fig. 1). The result pro-
duced by the feature learning is a tensor as well, that is con-
sidered as final output of the CNN when the goal is for
instance image segmentation or object identification. When
the application goal is classification, the CNN contains a sec-
ond part where the final tensor is first flattened and then is
fed into a fully-connected Neural Network and a softmax
function to produce the set of probabilities representing the
likelihood of the identified object to be classified according
to a set of classes.

Given the complexity of designing a CNN from scratch, a
number of ML design frameworks, such as TensorFlow [21],
Caffe [27], PyTorch [28] and Keras [29], has been developed.
They provide general and extensible programming interfa-
ces in high-level languages (e.g., Python and C++) to easily
specify the structure of a CNN in terms of a dataflow model
by instantiating operators available in the framework

repository to create a graph. Moreover, these frameworks
provide tools to automatically train the model to set the val-
ues for the parameters within each instantiated operator.
Finally, they feature automated back-end support to target
several processing devices such as CPUs or GPUs to opti-
mize performance.

2.2 GPU

With reference to the NVIDIA architecture [30], a GPU is a
many-core organized in an array of Streaming Multiproces-
sors (SMs) (left-hand side of Fig. 2). The SM is in turn struc-
tured following the SIMD paradigm, thus with a single
control unit scheduling and dispatching instructions, and a
grid of simple arithmetic cores, memory load/store units
and other special functional units for math operations,
namely streaming cores, LD/STs and SFUs, respectively in
the central part of Fig. 2. Then, each single streaming core is
internally implemented to read data from the register file
(i.e., the operand collector), execute either integer or floating
point operations and store results in the register file (result
queue).

A kernel is a software function accelerated on the GPU by
means of a large grid of threads grouped in a number of
blocks. Threads compute on separate portions of data. Each
threads’ block is dispatched by the block scheduler to a sin-
gle SM for its execution; the group is subdivided into warps,
executed with the SIMD paradigm; indeed the SM contains
multiple warp schedulers and dispatch units (2 in the
figure) to execute concurrently several warps. Branch
instructions, where divergences may occur among threads
in the same warp, are executed by means of predicated
approach; all alternative branches are executed in sequence
for the entire warp and, each single thread is active only in
the selected branch while it is disabled in the other ones.
Finally, the dispatching unit schedules several interleaving
warps to maximize the SM throughput.

The GPU has a memory hierarchy organized in a off-chip
global memory and two levels of caches, a unified L2 and a
per-SM L1. In addition to such a memory hierarchy, a SM
contains a shared memory, that is a local scratchpad mem-
ory that can be used internally by the threads of a single
block to cooperate and synchronize without requiring lon-
ger delays.

Fig. 1. The typical topology of a CNN described in terms of a sequence
of layers for features learning and a final classification layer, integrating
a fully-connected Neural Network.

Fig. 2. NVIDIA GPU architecture hierarchically organized in a grid of
streaming multicores; each multicore is a SIMD unit, having centralized
scheduling and dispatching units and a set of processing elements such
as streaming cores, load/store units (LD/STs) and special functional
units (SFUs).
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2.3 The Fault Model

We consider the Single Event Upset (SEU) fault model,
whose effect is a bit-flip in a value stored in a register of the
computing platform. Faults are rare events, therefore the
classical assumption of a single fault per execution of the
application holds. The occurrence of faults may cause the
application: i) to crash or the operating system to raise an
exception blocking the execution, ii) to hang leading to a
non-termination, or iii) to terminate by producing an erro-
neous result, without any alert, a.k.a. Silent Data Corruption
(SDC) [31]. While the first two cases are usually managed at
operating system level, SDCs represent the most critical sit-
uation, and here we target this class of effects.

When considering the GPU platform, as discussed
in [15], an SEU occurring in the SM may corrupt the execu-
tion of a single thread causing an SDC, or a group of threads
within the same warp belonging to a single kernel; more-
over, when shared memory is used, erroneous data pro-
duced by a thread may propagate among several threads
within the same block of the kernel. On the other hand,
memories and caches are hardened by means of Error Cor-
rection Code (ECC); therefore, no fault in those locations
will be here considered.

Within ML design frameworks, each single operator is
accelerated onto GPU by means of one or multiple kernels.
As a consequence, the final effect of a single SEU affecting
the GPU running a CNN is the corruption of an intermedi-
ate tensor, that forwarded to the subsequent layers will
potentially produce an erroneous final result. Our frame-
work aims at providing insights on such fault effects on
CNN execution.

3 RELATED WORK

A large effort has been devoted to the reliability analysis of
CNNs as surveyed in [10]. To mention the most relevant
works, several papers (e.g., [19], [32]) analyzed the effects of
faults corrupting the weights of the convolutional layers on
the final output to measure the overall resiliency of different
CNN models. [18], [33] presented approaches tracing the
error propagation through the layers to analyze application-
level error masking and final effects on the final output, and
to identify the most critical parts of the CNN. In these
works, faults corrupting both the memory storing the
weights and the internal registers (causing effects on the
final computation) have been considered. The conclusions
are that different CNN models exhibit different vulnerabil-
ities depending on the adopted data types and number of
layers. In [34] several metrics are defined to measure the
vulnerability of the layers and kernels composing a CNN
model; then selective replication is applied to the most vul-
nerable parts to improve reliability while limiting overhead.
A similar approach is proposed in [9] where an Algorithm-
Based Fault Tolerance technique is used to reduce the hard-
ening costs. In [35], selective Triple Modular Redundancy is
used; an interesting aspect of this solution is the idea of con-
sidering as critical only those faults that cause the overall
application to perform a misclassification. Finally, in [36] an
application-aware classification is performed by consider-
ing precision and recall on the obtained object detection out-
puts; selective duplication is also used to harden the most

critical portions of the code. In conclusion, due to the variety
of possible internal structures and parameters of the CNNs
and devices to accelerate such applications, the challenge is
still open [35].

As far as FI facilities are concerned, radiation test offers
the most adherent solution to cause soft errors, however,
apart from the highly expensive equipment and the com-
plex setup, there is little to no controllability on the injection
process, and the observability is only on the primary out-
puts. As a result, it is suitable for final validation and black-
box campaigns, not for in-depth analysis and investiga-
tions [9], [36]. To allow for controllability/observability in
the campaigns, the most commonly adopted approach is
emulating fault effects in the hardware platform running
application, that is in the GPU executing the CNN in the
present application scenario. GPU-Qin [14] exploits the
CUDA-GDB debugger for NVIDIA devices to inject single
bit-flips in the registers exposed by the Instruction Set
Architecture (ISA); the solution is quite sophisticated and
presents a 100x slowdown w.r.t. nominal execution. A simi-
lar debugging-based approach is used by CAROL-FI [22],
which acts at the source code-level to inject both bit-flips
and random values. The introduced performance degrada-
tion is below 5x, having both fault injection and error propa-
gation analysis at source code-level. The limitation consists
in the limited fault location sites, the used variables, intro-
ducing a significant gap between the injected errors and the
reality of soft errors affecting the hardware platform. SAS-
SIFI [15] and LLFI-GPU [16] adopt a different strategy, by
instrumenting the source code to support error injection,
before executing it on the GPU. SASSIFI, proposed by NVI-
DIA, can corrupt all ISA registers through several injection
modes, with a reported 5x slowdown [22]. LLFI-GPU uses a
similar approach, acting at the source code abstraction level,
claiming a speedup of about 42x w.r.t. GPU-Qin, with simi-
lar benefits as CAROL-FI in terms of the analysis of the
propagation of the errors.

All these tools rely on complex modification and recom-
pilation mechanisms to enable error emulation thus leading
to a considerable performance degradation. Some of these
tools, such as GPU-Qin [14], require a long profiling activity;
moreover, as commented in [9], SASSIFI is the only tool
working with the NVIDIA proprietary libraries generally
employed when implementing CNNs. Indeed, library
requirements of the employed FI tool, on the one hand, and
of the considered application, on the other hand, may often
conflict. As an example, CNNs implemented with the Ten-
sorFlow framework cannot be compiled for SASSIFI
because they require different CUDA versions. Finally, the
code instrumentation mechanism prevents the execution of
complex applications; in our tests, a single run of YOLO V3
implemented in the Caffe framework and run in SASSIFI
required more than 15 minutes, due to the large amount of
data to be transmitted to the GPU. Based on these consider-
ations faster and more accurate tools are required, as it has
also been stated in [10]. The work in [23], contemporary to
our work, proposes a new tool for NVIDIA GPUs called
NVBitFI. The tool overcomes all limitations of previous sol-
utions by performing a dynamic and selective code instru-
mentation to enable fault injection. NVBitFI does not
require access to the source code, therefore improves both
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performance and usability. On the other hand, implementa-
tion issues still persist when working with external libraries.

Working at a higher abstraction level would be beneficial
for two reasons: to dominate the complexity of CNN appli-
cations, and to accelerate and facilitate experiments set-up
and execution. To this end, simulation approaches have
been proposed, injecting errors directly in the execution state
of the running CNN application. The most representative
example is TensorFI [17]; it is an error simulator specifically
tailored for CNNs integrated in the TensorFlow framework.
The tool acts at the abstraction level of the application data-
flow and injects errors by means of saboteurs that manipu-
late the output tensor. The tool so emulates the effects of
faults affecting the CNN operators execution. A similar
strategy developed for other frameworks is the one pre-
sented in [33], [37], [38], integrated in the Keras, Pytorch
and Caffe frameworks, respectively. [19], [32] introduce two
tools developed in Keras and Darknet, supporting only the
corruption of the operator weights in the CNN. Finally, the
work in [39] is implemented in PyTorch and is based on a
cross-layer approach executing the CNN model in software
and switching down to the Hardware Description Language
(HDL) description of the processing unit for the actual injec-
tion. This very last approach has not been applied to GPUs
due to the high complexity of the corresponding HDL
model, when available.

The considerable advantage of FES is that it can be easily
integrated within the ML frameworks used in the design
phase. Therefore, the CNN reliability analysis and hardening
can be performed from the early phases and in the same
environment of its design and training. Moreover, this high-
level approach decouples the reliability analysis from the
actual execution on the final device (CPU or GPU or custom
hardware accelerator), thus sensibly easing the activity. On
the other hand, the main criticality when working at such
high abstraction level, is the need of sound and complete
error models, able to reproduce all and only the effects of
physical faults occurring in the underlying hardware.
In [19], [32] only bit-flips in the weights are considered,
neglecting the effects of faults affecting the processing unit,
while in [33], [38] single or multiple bit-flips on the outputs
of the CNN operators are also considered. PyTorchFI [37]
allows to inject random values, single bit-flips or zero values
both in the weights and in the operator outputs; indeed, the
paper explicitly states the necessity of defining more
advanced error models describing the effects of faults affect-
ing the underlying hardware. Finally, TensorFI adopts more
advanced multiple-value corruptions, which sometimes
poses problems to correlate the corruption effect to a real
physical fault able to induce such an error, as we will discuss
later in the paper. Since the goal of the reliability analysis is
to explore how a well designed and trained CNN behaves
when an unexpected problem in the underlying hardware
occurs, it is fundamental to use error models that correspond
to the effects caused by faults. In particular two risks are
associatedwith error simulation: considering errors that can-
not be the result of a real fault or ignoring effects of statisti-
cally relevant faults. As a consequence, the overall analysis
might lead to inaccurate conclusions and tailoring hardening
solutions that do not fit real needs. Therefore, validated error
models are vital to enable the adoption of error simulation.

Fidelity [11] and BinFi [12] are the most recent works
similar to our proposal. The former defines suitable error
models adherent to what is observed through FI and analy-
ses the effects of the faults in terms of the Architectural Vul-
nerability Factor (AVF). The latter focuses on identifying
the safety-critical bits in ML applications, relying on Ten-
sorFI for the injection of bit-flips in the operators. The effects
of the faults on the outputs are analyzed with respect to the
application, to determine the actual impact in the case of
safety-critical contexts. Our framework integrates and
merges both strategies, extracting different but comparable
error models w.r.t. Fidelity, and performing a classification
of the effects similar to the one in BinFI, yet based on a dif-
ferent error injection solution with the limitations of the
existing FES based on TensorFI. In doing so, our proposal
fills the gap between FI, FES and an application-related
resiliency classification. As future work, we will investigate
how Fidelity’s error models can be used in CLASSES, and
how CLASSES’s final output can be re-formulated in terms
of the metric adopted by BinFI.

Fig. 3 shows a graphical summary of the reviewed litera-
ture and positions our cross-layer proposed approach. It
exploits FES, integrating the facility in the most popular ML
framework and adopting sound error models opportunely
extracted by means of accurate low-level FI campaigns on
the target hardware platform.

4 METHODOLOGICAL FRAMEWORK

A high level representation of the proposed cross-layer reli-
ability analysis framework, CLASSES, is depicted in Fig. 4.
The framework has been designed for CNNs, and more in
general for Deep Learning applications, accelerated onto a
target GPU-based platform. CNNs are generally exploited
for perception tasks; therefore, we here consider a larger
system where the CNN takes images from a source, such as
a camera, and its output, being an enhanced image or a set
of features, is transmitted to a downstream application
using them for some decision making task.

The input of the framework is the CNN application
under analysis implemented as a graph of operators op1,
op1,..., opn in the adopted ML design framework, e.g., Ten-
sorFlow [21], and already properly trained, and the output
is a detailed report of the performed reliability analysis
highlighting the vulnerabilities and the weaknesses of the

Fig. 3. Comparison of the proposed approach w.r.t. the literature,
highlighting the various contributions in radiation testing, architectural
fault injection, functional error simulation, and error quantification/
classification.
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application under design. The framework has a cross-layer
structure since it mixes architecture-level FI and applica-
tion-level FES to take advantage of the benefits of both. In
particular, FI offers high accuracy in emulating faults in the
target GPU hardware while FES is flexible and fast in simu-
lating fault effects directly in the application without requir-
ing the specific target platform to be deployed and
instrumented. To this end the framework is divided into
two main parts as shown in Fig. 4, discussed in details in
the following subsections.

4.1 Fault Injection and Error Modeling

Fault injection is here used to analyze the output of the
CNN basic operators when their execution on the target
platform is corrupted by the occurrence of a fault in the
underlying hardware. The final goal of this activity is to
define a set of error models reproducing the effects of hard-
ware faults on the output tensor of the executed operator.

The list of all operators used in the considered CNN is
extracted and each operator is individually analyzed. The
stand-alone operator is wrapped within a test program
transmitting the input tensor and collecting the output one.
For the sake of accuracy of the analysis, the values in the
input tensor are defined according to the intermediate ten-
sors extracted from a run of the overall CNN application.
Moreover, several input tensors are considered to avoid any
data-dependent bias in the obtained results. The test pro-
gram is used for a large architecture-level fault injection
campaign aimed at collecting a large set of corrupted output
tensors.

The obtained corrupted tensors are then analyzed to
derive a set of accurate high-level functional error models rep-
resentative of all possible effects of hardware faults in the
specific operator. In details, since a tensor is a multidimen-
sional matrix of numeric values, each corrupted tensor is
compared against the golden counterpart according to three
different aspects:

� error cardinality, i.e., the number of erroneous values
in the tensor,

� error value domain, i.e., the domain the erroneous val-
ues belong to, and

� error spatial distribution, i.e., how erroneous values
are distributed in the multidimensional matrix.

It is worth mentioning that these three aspects, and par-
ticularly the last one, are highly related to the peculiar char-
acteristics of the GPU architecture based on the SIMD
paradigm. Based on these aspects, the corrupted tensors are
inspected to identify recurrent corruption patterns and their
occurrence frequency. The identified corruption patterns
are also studied to assess if they are independent of the spe-
cific input sample and if they can be “reproduced” by an
algorithm applied to the golden tensor. If all these condi-
tions hold, the corruption pattern leads to the definition of
an error model, that is implemented in the framework as a
saboteur executed on the output of the corresponding oper-
ator. This activity, performed on all the operators, allows to
build a database of error models to be then exploited to per-
form the reliability analysis of the overall CNN by means of
an application-level error simulation.

CLASSES presents several advantages. As mentioned,
the adoption of architecture level fault injection offers a
high accuracy in the obtained results. At the same time, we
are analyzing the stand-alone operators instead of the entire
application simplifying the overall task. We operate on the
single operators, that are the basic blocks of the CNN
design, analyzing the input/output relation due to the pres-
ence of the fault. Moreover, many operators, such as the
convolution, present hyper-parameters defining the size of
the input and output tensors. For each of them, the hyper-
parameters are tuned to execute fault injection and error
modeling on the smallest version of the operator that allows
for obtaining error models valid for any other version of the
same operator. As we will see later, these choices consider-
ably reduce the set up effort and the execution time of the
fault injection campaign without compromising its sound-
ness and completeness.

Finally, since CNNs are generally composed of a recur-
rent set of the same operators, when a new application is
used, only the operators not already analyzed in previous
campaigns need be taken into account, as their fault-error
relation is application independent.

4.2 Error Simulation and Output Classification

The overall CNN application is analyzed w.r.t. fault effects
by means of error simulation. According to the defined
error models, the granularity of the corruption is at CNN
dataflow graph level, by considering operators as elemen-
tary operations and corrupting the output tensors. The
adopted error simulation strategy is thus based on sabo-
teurs introduced between two nodes of the CNN dataflow

Fig. 4. The proposed cross-layer reliability analysis framework: the sys-
tem under analysis (top most part), the fault injection and error modeling
part applied at the granularity of the single CNN operator (green left
side) and the error simulation environment for the overall usability-based
reliability analysis (blue right side).
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graph corrupting the output tensor of the source operator.
Thanks to the flexibility of the ML framework, CNN data-
flow graph structural analysis and instrumentation can be
automatically performed. Similarly, probes can be inserted
to trace error propagation. Finally, error simulation follows
a pretty standard execution workflow: i) CNN structural
analysis and instrumentation; ii) error list generation; iii)
error simulation for each item in the list, collecting and clas-
sifying the produced outputs; and iv) final reliability report
generation.

The error simulation approach presents higher flexibility,
usability and performance than the classical fault injection
counterpart. From the implementation point of view the
structure of the software is less complex with less imple-
mentation and compilation issues, thus also obtaining better
performance. Moreover, error simulation can be carried out
on any host machine, non-necessarily featuring the target
GPU; in fact, the adopted error models already represent
the effects of the faults on such a platform. Thus, large
workstations can be adopted to reduce the execution times
of the error injection campaigns. From a methodological
point of view, the approach allows for a greater controlla-
bility and observability of the fault effects also because error
simulation does not suffer from fault activation issues, fur-
ther reducing execution times.

Another relevant aspect of the proposed framework is
related to how error simulation results are analyzed. As dis-
cussed in [13], the classical strategy based on a bit-wise
comparison of the results against the golden counterpart to
classify the experiment as correct versus error is here not
effective due to the approximate and inexact nature of CNN
applications. Therefore, we adopted a usability-based classifi-
cation; by considering the fact that the CNN is part of a
larger system (refer to Fig. 4). The output classification mod-
ule is in charge of determining whether the corrupted out-
put produced by the CNN still allows the downstream
control application to perform its elaborations in an accept-
able way or not. This is possible because the output classifi-
cation module integrates the logic of the downstream
control application itself and an application-specific policy
that is actually meant to asses the usability of the produced
output. As an example, we may consider a CNN perform-
ing an object detection task that supports an autonomous
object grabbing robot: a slightly shifted bounding box in the
produced output may be considered admissible since the
robot may still be able to grab the object; therefore, in this
case the corrupted output would be classified as usable. Con-
versely, a missing bounding box would cause the robot not
to grab the object, and thus this second corrupted output
would be classified as unusable. The advantage of this
approach is therefore to focus on faults having a disruptive
effect, identifying the main vulnerabilities of the CNN and
its critical components, ignoring the ones that have a limited
impact, inherently tolerated by the nature of the CNN
computation.

5 FRAMEWORK IMPLEMENTATION

CLASSES has been implemented as a semi-automated tool
in Python and integrated within the TensorFlow frame-
work, accessing the SASSIFI fault injector as an external

module. The tool is semi-automated in the sense that almost
all steps are automatically executed; the role of the designer
is to supervise the overall workflow and critically check the
correctness and the quality of the outputs of each step. The
resulting structure is shown in Fig. 5, where the profiler ana-
lyzes the considered CNN and identifies the fault injection
sites for each operator. The tensor analyzer isolates the erro-
neous output tensors coming from the fault injection experi-
ments and, supervised by the designer, it extracts recurrent
corruption patterns within the analyzed tensors. The error
simulator performs the functional error simulation of the
whole CNN and, finally, the output classifier determines
whether the outputs of the considered CNN after error sim-
ulation would be usable by the downstream application or
not. Internals are discussed in the following subsections.

5.1 Fault Injection and Error Modeling

A first step (carried out by the profiler module in the soft-
ware structure shown in Fig. 5) is a pre-processing automat-
ically performed by a set of Python functions using the
TensorFlow Application Programming Interface (API). This
step instantiates an instrumented copy of the graph used to
perform a preliminary run of the CNN. This activity allows
for extracting the list of the employed operators, their
hyper-parameters and some input/output tensors tuples
from the CNN graph. The identified list of operators used
in the CNN under analysis is filtered to keep only those
operators for which error models are not available yet. If an
operator is used in various versions, the one with smallest
hyper-parameter values is considered.

The fault injection activity uses SASSIFI. The choice of
keeping this part separate from the rest of the framework is
that FI is the only activity that has to be executed on the spe-
cific platform targeted by the application scenario. At the
opposite, the main part of the framework is platform-inde-
pendent, and it can be executed on any machine.

Test programs for the identified operators are imple-
mented in C++ by using Caffe [27] since TensorFlow cannot
be integrated in SASSIFI due to library conflicts. However,
there is a 1:1 correspondence between SASSIFI and Caffe
operators thus not leading to any methodological issue in
our approach. Nonetheless, this implementation choice con-
siderably simplifies the development and integration in
SASSIFI; Caffe is a stand-alone library accelerated onto

Fig. 5. CLASSES internal organization.
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GPU. The test program of each operator is automatically
generated by the tool by using a source code template. Basi-
cally, the test program loads the input tensor, executes the
operator onto the GPU, and saves the output tensor. For
each operator, the tool specializes the template with the
hyper-parameters, weights and input tensor extracted by
the profiler. Finally, SASSIFI is configured to inject single
bit-flips (to represent SEUs) in all available sites and the exe-
cution is completely automated.

The output of the fault injection campaign executed on
each operator is processed within the Python framework to
perform the analysis based to the three aspects discussed in
Section 4.1, thus classifying results in clusters (this activity
is carried out by the tensors analyzer module in the structure
shown in Fig. 5). The most challenging aspect is the analysis
of the error spatial distribution that would require the
designer to manually inspect the produced output. How-
ever, based on the peculiarities of the GPU architecture and
of the operators code, errors are mainly distributed in regu-
lar patterns (e.g., lines in the same feature map or lines
crossing feature maps). Therefore, a manual inspection is
here only required to classify corrupted tensors not handled
by the automated script. It is worth noting that this manual
inspection is the only step which requires the designer inter-
action (as shown in the figure); future work will be devoted
in its automation by means of data mining techniques.

The output of this step is a tabular report describing all
the identified clusters together with the corresponding
occurrence frequencies. This information is saved in a JSON
file constituting the error model database.

5.2 Error Simulation and Output Classification

CLASSES exploits the TensorFlow public API to load and
execute the CNN model and to perform injection activities.
It uses the information extracted during the pre-profiling
activity to define the list of all injection sites; in particular,
each output tensor is considered as a candidate.

The error injection strategy, carried out by the error injec-
tion module in the software structure shown in Fig. 5, is
implemented by virtually splitting the graph into two parts
based on the injection site. As shown in Fig. 6, the first part
of the graph is executed to compute the tensor where the
error has to be injected, the saboteur is executed and the cor-
rupted tensor is re-introduced in the second part of the
graph to compute the final CNN output. In other words, the
insertion of a saboteur that modifies a tensor at the output
of an operator allows to emulate the effect of the occurrence

of a fault in the hardware platform when executing that
operator while computing the modified tensor.

The saboteur is a Python function executed between two
CNN operators, featuring the error models. As discussed in
Section 6, many operators share a similar algorithmic imple-
mentation; therefore, several corruption patters are com-
mon among different operators, while their occurrence
frequencies may vary. Therefore, the saboteur has been
designed to implement all the identified corruption patters
and the JSON file provides the fundamental information
mapping patterns to operators and occurrence frequency.

The final step of the proposed error simulation environ-
ment is carried out by the output classifiermodule in the soft-
ware structure shown in Fig. 5. As introduced in Section 4.2,
this activity consists in determining whether the produced
corrupted output will be usable of not by the end-user
application according to the working scenario.

The error simulator implements a standard workflow: i)
error list generation according to the injection sites identified
by the CNN pre-processing and designer parameters (e.g.,
the number of experiments); ii) experiment execution, i.e., run
a number of error injection experiments, each one injecting in
a randomly selected operator a randomly selected error while
executing the application; iii) output classification by means
of a user-defined classifier (a Python script) that assesses the
usability of the output, according to the working scenario.
Typically the number of injection sites is quite limited, there-
fore a caching strategy has been actuated to optimize the exe-
cution times of the tool; in particular, the tensor to be
corrupted is cached so that for all experiments on the same
injection site, the first part of the graph is not re-executed.

As a final note, the overall prototype consists of approxi-
mately 2,000 lines of codes.

6 ERROR MODELING RESULTS

This section presents the results of the application of the
methodological framework in the definition of the error
models.

6.1 Experimental Setup

As a real-world case study for our error modeling activity
we considered the YOLO V3 CNN, the state-of-the-art solu-
tion for object detection, also employed in commercial
autonomous driving systems such as Apollo [40] and Auto-
ware [41]. The considered implementation was trained
upon the COCO dataset [42]. YOLO V3 internal structure
counts about 6,000 operators instances belonging to 45 dif-
ferent operator types. The target GPU was the NVIDIA
GeForce GT 750M implementing the Kepler architecture.

Table 1 summarizes the operator instances considered in
the FI experiments and reports the operator name together
with the size of the input and output tensors. For some
operators additional parameters are reported, namely the
adopted kernel size and stride for the convolutions and the
negative slope value for the Leaky ReLu.

6.2 Results From Fault Injection Experiments

We selected the single bit-flip fault among the models sup-
ported by SASSIFI. Due to the complexity of modern GPUs
and to the size of the their memory, an exhaustive FI

Fig. 6. Error injection strategy. The sequence of operators in the CNN is
accelerated onto the GPU until the operator to be corrupted is reached.
The output tensor of this operator is fed into a saboteur (executed on a
host CPU) that corrupts it by applying an error model. The corrupted ten-
sor is then used as input of the remaining part of the operators (again,
accelerated onto the GPU) to complete the execution of the CNN.
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campaign is unfeasible. Nevertheless, it is possible to exploit
the extreme regularity of the SIMD architecture to reduce the
number of required experiments. Indeed, several threads
simultaneously executing the same code, elaborate on differ-
ent bunch of data of the same type and are run on different
instances of the same hardware resources. Thus, the output
corruption patterns observed when injecting faults during
the execution of one of the threads will be representative of
the effects of faults in all threads. The size of the fault list for
each operator has been determined to inject in all memory
and register bits accessed by a single thread for each instruc-
tion of the execution trace of the operator when executed on
the GPU. When considering the high regularity of the SIMD
architecture of a GPU, the setup allows one to obtain the
same statistical results of an almost exhaustive injection cam-
paign in the entire architecture. To make our FI experiments
as general as possible, in each experiment we changed the
input of the operator and we randomly selected the fault-
injected thread. The outputs of the FI campaign are collected
and compared against the expected output. Uncorrupted
outputs are discarded while erroneous ones are further
inspected to identify the recurrent error patterns. Overall we
ran 360,000 FI experiments and collected 137,004 corrupted
tensors; the number of injected faults and collected cor-
rupted tensors for each operator are reported in the second
and third columns of Table 2, respectively.

6.3 Error Modeling

We systematically analyzed the 137,004 collected corrupted
tensors to identify the recurrent corruption patterns. In the

following we report the results of such analysis based on
the previously discussed aspects of interest (error cardinal-
ity, error value domain and error spatial distribution), fol-
lowed by the definition of the error models.

6.3.1 Erroneous Values Cardinality

We first analyzed the number of erroneous values found in
a corrupted output tensor; such a number is strongly depen-
dent on the operator under analysis. For most considered
operators the corrupted output tensor contains only one
erroneous value in 85% to 92% of the experiments (depend-
ing on the operator) and two erroneous values in the
remaining cases, while a higher cardinality is observed in
less than 1% of the cases. However, when considering the
Convolution (1, 2, or 3) and Batch normalization

operators, the frequency of having multiple corrupted ten-
sors is much higher, ranging from 22% to 57%, as shown in
Fig. 7.

This can be explained by considering that most operators
are implemented as “linear kernels” where each thread
computes one value of the output tensor without exploiting
GPU shared memory and with no cooperation among
threads in the same block. The Convolution and Batch

normalization operators are composed of several ker-
nels based on General Matrix Multiplications (GEMM) algo-
rithm; thus, their implementations heavily exploit GPU
shared memory for threads cooperation. The corruption of
one of those threads can propagate to other threads and
result in many errors in the output.

6.3.2 Erroneous Values Domains

As a second analysis, we studied how each erroneous value
in the corrupted tensor deviates from the golden counter-
part. In particular, we defined the domains the erroneous
values fall into as follows:

� Not a number: the corrupted value is NaN,
� Zero: the corrupted value is zero,
� Bitflip: the corrupted value differs from the expected

one by a single bit,
� [-1,1]: the difference between the expected value and

the actual one is between -1 and 1, and
� Random: the value is corrupted in a completely ran-

dom way, thus not falling into any of the above
cases.

For most operators the great majority of faults cause an
error in the [-1,1] class (70% up to 97% of the experiments,
depending on the considered operator) with the remaining
cases falling in the Random class. When dealing with the
Add and Exp operators, we observe a great majority of
cases falling in the Zero class. Finally, for the Div opera-
tor the Random and Bitflip classes are predominant, while
for the Sigmoid operator most of the erroneous values
belong to Random and [-1,1]. Fig. 8 reports the observed
distributions of the erroneous values for each considered
operator.

6.3.3 Spatial Distribution

Finally, we analyzed the spatial distribution of the errone-
ous values within the corrupted output tensor. A first

TABLE 1
YOLOV3 Operators Considered for FI

Operator Input size Output size Additional parameters

Conv. 1 512� 13� 13 256� 13� 13 K = 1, Str = 1
Conv. 2 128� 52� 52 256� 52� 52 K = 3, Str = 1
Conv. 3 256� 52� 52 512� 26� 26 K = 3, Str = 2
Add 1024� 13� 13 1024� 13� 13
Batch Norm. 256� 13� 13 256� 13� 13
Bias add 256� 13� 13 256� 13� 13
Div 1� 10647 1� 10647
Exp 1� 8112� 2 1� 8112� 2
Leaky ReLU 256� 26� 26 256� 26� 26 Slope = 0.1
Mul 1� 8112� 2 1� 8112� 2
Sigmoid 1� 2028� 80 1� 2028� 80

TABLE 2
Results From the Fault Injection Experiments

Operator Number of
injected faults

Number of
corrupted tensors

Conv. 1 56,000 24,273
Conv. 2 38,000 15,488
Conv. 3 66,000 31,245
Add 16,000 5,900
Batch Norm. 88,000 26,182
Bias add 16,000 7,400
Div 16,000 4,400
Exp 16,000 6,400
Leaky ReLU 16,000 5,100
Mul 16,000 5,700
Sigmoid 16,000 4,500
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classification is between faults that produce one or more
errors in a unique feature map and those whose effect
spreads over multiple feature maps.

Single Feature Map. Most of the faults that cause less than
16 erroneous values in the output tensor affect only a single
feature map. This is due to the fact that the GPU kernel is
implemented to group threads working on the same feature
map in a single block; thus such multiple errors may be due
to the corruption of predicated instructions. In this subfam-
ily of spatial distributions we identify:

� Single point: a single value is corrupted (Fig. 9a),
� Same row: multiple corrupted values lie in the same

row, as in Fig. 9b, and
� Random: no regular pattern.
Multiple Feature Maps. Most of the faults that cause more

than 16 erroneous values in the output tensor spread the

corrupted values among several feature maps; this is due to

the fact that, as mentioned, such operators heavily exploit

shared memories. In this subfamily of spatial distributions

we identify:

� Bullet wake: the same location is corrupted in all (or in
multiple) feature maps, as in Fig. 9c,

� Shattered glass: like one or more Bullet wake errors, but
in one or multiple feature maps the corruption
spreads over a row (or part of the row), as in Fig. 9d,
and

� Random: no regular pattern.

Table 3 reports the frequency of each spatial distribution
pattern for each operator. It can be observed that, consis-
tently with the considerations drawn in Section 6.3.1, spatial
distributions involving multiple feature maps only appear
for the Convolution (1, 2, or 3) and the Batch normali-

zation operators (the only operators exposing a cardinal-
ity of erroneous values greater than 2). It is also worth
mentioning that, on average, random errors have an inci-
dence of 1.15% and 5.2% in single feature map and multiple
features maps, respectively. To summarize, the great major-
ity of the fault effects (93.65% on average) actually cause a
well-identifiable effect, that can be modeled and reproduced
through an algorithmic description.

6.4 Error Model Definition

The detailed analysis carried out on the outcomes of the
extensive FI campaign is the solid basis on which we build
the definition of functional error models for CNN operators.
More precisely, two are the key elements we identified to
generalize from a corruption pattern to an error model: i) a
statistical relevance of the effects, and ii) the possibility to
specify an algorithm that produces the desired pattern.
Based on these premises, the only spatial pattern that cannot
be systematically and accurately reproduced through an
algorithm is the Random one, for which no error model has
been defined. Since its statistical relevance is also modest
(less than 6.35%), the set of defined error models can be con-
sidered sound and complete.

Fig. 7. Frequency of the number of erroneous values per output tensor for different operators, highlighting the overall % of cases where multiple val-
ues are corrupted (e.g., 57.31% for Convolution 1).

Fig. 8. Distribution of erroneous values per each considered operator. For each operator, erroneous values in the corrupted output tensors have been
classified as NaN, Zero, BitFlip, ½�1; 1�, or Random.
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Furthermore, we identified a list of parameters for each
model (reported in Table 4), to make it general and
exploitable in an automatic simulation engine. In addition
to the listed parameters, when generating a Same row error a
number of points in the row is randomly left unaltered. Sim-
ilarly for the Bullet wake and Shattered glass errors, a number

of feature maps is randomly left unaltered.
The resulting set of error models well covers the effects

caused by the faults and can be conveniently exploited in an
error simulation campaign, for an early and accurate analy-
sis of the reliability against SEU faults of a CNN-based
application executed on a GPU.

The outcome of the adopted process is general with
respect to the CNN operators and the target platform. How-
ever, the process is designed to fine tune the fault injection
campaign and the error modeling activity, for an accurate
outcome in relation to the case study under consideration.
Therefore, when a new CNN is taken into account, it might
require a re-execution of these activities, to guarantee an
accurate and updated error model repository.

7 ERROR SIMULATION RESULTS

The defined error models have been integrated in CLASSES
error simulation engine. A final campaign has been prepared
to analyze the ability of the proposed error simulator inman-
aging a complete CNN. Moreover, we compared our pro-
posal against the state-of-the-art fault injection and error
simulation tools, namely SASSIFI and TensorFI, respectively.

All the experiments and comparisons have been per-
formed on a machine equipped with an Intel Core

�
i7-

4870HQ as CPU and a NVIDIA GeForce GT 750M as GPU,
running on Ubuntu 18.04 LTS.

7.1 CLASSES versus State-of-the-Art FI

SASSIFI offers fault injection facilities, therefore the compar-
ison between this state-of-the-art solution and our proposal
considers both accuracy and performance measured in the
execution time. For this experimental comparison we con-
sidered YOLO V3 CNN. We re-used the same fault list of
the previous section, consisting of 360,000 random fault
injections.

Fig. 9. Spatial distribution patterns (erroneous values are colored in red). (a) Single point: the fault causes the corruption of a single value of a single
feature map. (b) Same row: the fault causes the total or partial corruption of a row in a single feature map. (c) Bullet wake: the fault corrupts the
same location in all or multiple feature maps. (d) Shatter glass: the fault causes the combination of the effects of same row and bullet wake patterns.

TABLE 3
Spatial Patterns Frequencies

Operator Same Feature Map Multiple Feature Maps

Single
Point

Same
Row

Random Bullet
Wake

Shatter
Glass

Random

Conv. 1 42.7% 18.7% 0.0% 20.6% 16.2% 1.8%
Conv. 2 40.9% 13.1% 0.1% 32.9% 11.5% 1.3%
Conv. 3 50.5% 12.4% 0.1% 25.4% 11.5% 0.1%
Add 90.3% 1.8% 0.8% 0.0% 0.0% 7.1%
Batch

Norm.

77.8% 2.5% 1.1% 12.7% 1.1% 3.0%

Bias add 90.1% 1.2% 1.0% 0.2% 0.0% 7.5%
Div 84.9% 6.7% 8.4% 0.0% 0.0% 0.0%
Exp 91.9% 0.5% 0.0% 0.0% 0.0% 7.5%
ReLU 84.5% 1.5% 1.1% 0.0% 0.0% 10.3%
Mul 88.4% 0.3% 0.0% 0.0% 0.0% 11.3%
Sigmoid 89.7% 1.4% 0.0% 0.0% 0.0% 9.0%

TABLE 4
Error Model Parameters

Error model Parameters

Single point x and y coords. of the point
Same row x and y coords. of start and end point of the

row
Bullet wake x and y coords. of the enter point, first feat.

map, last feat. map
Shattered glass x and y coords. of the enter point, first feat.

map, last feat. map, shattered feat. map

994 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 4, APRIL 2023



First of all we have to mention that we could not compare
against a pure SASSIFI experiment where the entire YOLO
CNN, implemented in Caffe, is loaded onto the FI environ-
ment due to scalability issues. Indeed, a single YOLO run
on SASSIFI took about 15 minutes, which would have led to
about 10 years for running 360,000 experiments. Therefore
we considered a hybrid SASSIFI configuration, coupled with
TensorFlow; we limited the execution through SASSIFI only
for the operator being corrupted by the fault, while the rest
of the CNN is executed with TensorFlow at full speed. This
workaround allows the extensive FI campaign to be exe-
cuted using state-of-the-art tools. More in details, the
360,000 injected faults allowed to collect 137,004 corrupted
faulty outputs, in about 92 hours. To perform the same
137,004 relevant error simulation experiments CLASSES
took about 15 hours, corresponding to a 6x speedup with
respect to the hybrid SASSIFI configuration. However, the
speed up is beneficial but not paramount, considering the
rapid evolution of new tools (in the future we will investi-
gate the integration of NVBitFI), and it has been analyzed/
compared to evaluate the efficiency of our solution.

The injection of the same error in the same operator for
both environments allows the accuracy comparison. In par-
ticular, we considered the output of SASSIFI as ground
truth (being it an accurate architecture-level fault injection
tool) and we compared the effect of the fault (in SASSIFI)
and of the error (in CLASSES) on the final classification pro-
duced by YOLO, to evaluate if both engines produce the
same type of output or not (usable/unusable). YOLO per-
forms an object detection task by computing bounding
boxes around each identified object in the analyzed picture.
In the discussed experiment, we were interested in studying
whether the CNN was able to correctly detect the objects
despite their actual position. For this reason, we defined an
output classifier that tags the output of CNN as usable only
if it contains the same list of detected objects as the golden
counterpart. Collected data show an average 98.72% accu-
racy w.r.t. SASSIFI for the proposed CLASSES.

7.2 CLASSES versus State-of-the-Art FES

TensorFI offers FES facilities, based on a limited fault model
with respect to the one we defined and use in the proposed
FES activity. We did not perform any qualitative compari-
son between our results and the ones obtained by TensorFI
because the error models implemented by TensorFI, basi-
cally bit-flips or single value corruptions, are a reduced sub-
set of the ones we identified and implemented. The
comparison against the state-of-the-art solution is therefore
carried out considering only the performance of the
approaches, given the previous discussion on the cardinal-
ity and adherence of the fault models.

Indeed, we were not able to execute YOLO with Ten-
sorFI, for two reasons mainly; TensorFI does not support all
the operators, e.g., Leaky ReLu and Batch normalization,
and the tensor data format (Batch, Height, Width, Channel
– BHWC versus Batch, Channel, Height, Width – BCHW)
employed by YOLO and it would have required too long
execution times, according to [17]. For this reason, we here
introduce two simpler CNNs to carry out the performance
comparison: LeNet-5 [25] and CIFAR10 [26] and gather a

trend in the achievable speedup. LeNet-5 is used for hand-
written digits classification for the MNIST dataset [43], able
to achieve a 99.05% accuracy. It is a simple network com-
posed of two convolutional layers and three dense layers.
CIFAR10 performs object classification for the CIFAR10
dataset [26]. In particular, we employed the Keras imple-
mentation,1 that achieves an accuracy equal to the 78%.

For this test, we defined a campaign of 10,000 random
error simulations. The execution times (in minutes) of Ten-
sorFI and CLASSES for the various campaigns are reported
in Table 5. We also report the time for the nominal execution
of the CNN to allow the reader to get an idea of the minimal
overhead introduced by our error injection mechanism.

As it can be noticed, CLASSES is able to execute the experi-
ment on YOLO in a reasonable time, i.e., with a 2.5x slow
down. Moreover, CLASSES considerably outperforms the
state-of-the-art solution on these small CNNs, with a speedup
of about 44x and 63x. The motivation is that, as commented
in [17], TensorFI re-defines CNN operators in Python to per-
form the injection and such implementation is not accelerated
onto GPU as the original TensorFlow counterpart. At the
opposite, CLASSES is exclusively based on TensorFlow pub-
lic API, thus benefiting from the GPU acceleration of the oper-
ators.Moreover, the defined input caching strategy allows for
an additional performance improvement. As a final remark,
the time required for the instrumentation of the CNN to run
the error simulations is about 80 s, which is negligible for both
approaches.

8 ADVANTAGES OF THE PROPOSED APPROACH

We here recap the several advantages offered by the pro-
posed cross-layer framework with respect to the state-of-
the-art FI and FES environments.

Accuracy. The exploitation of error models directly
extracted from FI experiments provide an overall accuracy
comparable with the one achieved by an FI tool.

Speed. The adoption of the FES paradigm not affected by
fault activation issues allows for the framework to be much
faster than the classical FI tools in achieving the desired
amount of corrupted application outputs.

Increased Productivity. The integration of the reliability
analysis tool within the standard ML development frame-
work used to design and train CNNs avoids the extra time
and effort needed for porting the CNN to different tools,
each one performing a portion of the overall analysis. The
same unified environment is now used to analyze and
design CNNs from all points of view.

TABLE 5
Execution Times for FES (10,000 Error Simulation Experiments)

CNN

YOLO LeNet-5 CIFAR10

TensorFI - 18 min 40 min
CLASSES 25 min 0.41 min 0.63 min
Plain execution (10,000 runs) 10 min 0.27 min 0.41 min

1. Keras: Deep Learning for humans, https://github.com/awslabs/
keras-apache-mxnet, (Accessed on 12/01/2021)
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Ease of Use. The framework is almost fully automated,
thus easing the designer’s activity. Indeed, being the num-
ber of CNN operators limited, SASSIFI may be dismissed
after analyzing a few CNN applications.

Flexibility and Customizability. The implementation in a
scripting language gives a high flexibility, extensibility and
customizability of the source code to meet the needs of each
CNN being analyzed at a very low designer’s effort, as, for
instance, to specify the output classification function.

Portability and Minimal Intrusiveness. The instrumentation
performed by CLASSES on the CNN graph to include the
saboteurs is minimal and automated. No change has been
introduced either into the TensorFlow library or in the oper-
ators used in the CNN graph. This allows the framework to
be portable among different machines and to obtain a quite
limited performance degradation w.r.t. nominal execution,
as shown in the experimental results.

Finally, it is worth commenting that, even if the tool has
been implemented in TensorFlow, it can be potentially
ported to any other ML framework having a similar data-
flow graph model and API (e.g., PyTorch or Keras).

9 CONCLUSION

We presented CLASSES, a cross-layer framework for the
reliability analysis of CNNs that combines the accuracy of
architecture-level fault injection with the ease of use, control-
lability, flexibility and speed of error simulation. We com-
pared our methodology against the state-of-the-art SASSIFI
fault injection environment and TensorFI functional error
simulator, highlighting how our methodology achieves
about 99% accuracy in terms of the ability of reproducing the
effects of faults on the final CNN output with about 6x
speedup w.r.t. SASSIFI, and a speedup ranging from 44x up
to 63xw.r.t. TensorFI.

Future work is devoted to extend the framework to han-
dle other platforms and ML algorithms, always keeping
flexibility and extensibility in mind.
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