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A Combined Field-of-View Prediction-Assisted
Viewport Adaptive Delivery Scheme for

360◦ Videos
Abid Yaqoob , Student Member, IEEE, and Gabriel-Miro Muntean , Senior Member, IEEE

Abstract—Recently, 360◦ or omnidirectional videos have
become increasingly popular for both personal and enterprize
use-cases. However, 360◦ video streaming has very high
bandwidth and processing requirements. State-of-the-art
viewport-based streaming solutions lower these requirements
by performing selective streaming based on long-term Field-of-
View (FoV) prediction mechanisms. However, sometimes user
movement is extremely unpredictable during some parts of
the video, and applying these solutions adversely affects the
overall quality of experience (QoE). This paper proposes a novel
Combined Field-of-View tile-based adaptive streaming solution
(CFOV) that improves end-user QoE for 360◦ video streaming.
CFOV performs interactive tile selection based on more
accurate dynamical viewing area identification by combining
the results of two FoV prediction mechanisms. It also employs
an innovative priority-based bitrate adaptation approach that
ensures improved bitrate budget distribution between different
tiles. We evaluate the proposed solution with a comprehensive
set of experiments involving four immersive videos, diverse
tiling patterns (i.e., 4x3, 6x4, and 8x6), different segment lengths
(i.e., 1s, 2s, and 3s), and 48 empirical head movement traces
under different bandwidth settings. The evaluation employs a
newly defined QoE metric specifically introduced to assess the
streaming performance of 360◦ videos objectively. The experi-
mental findings show that, compared to alternative approaches,
our proposed solution can achieve a higher viewport match and
can significantly improve the user QoE for different watching
behaviors and content characteristics.

Index Terms—360◦ video streaming, tile-based adaptation,
HTTP adaptive streaming, FoV prediction, QoE.

I. INTRODUCTION

OMNIDIRECTIONAL 360◦ video is rapidly moving
towards the mainstream mainly due to the recent devel-

opments in computing, display, and networking technologies.
Major commercial video streaming vendors (e.g., YouTube,
Facebook, and Vimeo) promote panoramic nature content.

Manuscript received December 16, 2020; revised April 27, 2021 and July
6, 2021; accepted July 11, 2021. Date of publication August 24, 2021.
date of current version September 3, 2021. This work was supported by
the European Regional Development Fund through the Science Foundation
Ireland (SFI) Research Centres Programme under Grant SFI/12/RC/2289_P2
(Insight SFI Research Centre for Data Analytics) and Grant 16/SP/3804
(ENABLE). (Corresponding author: Gabriel-Miro Muntean.)

Abid Yaqoob is with the Performance Engineering Lab and Insight SFI
Centre for Data Analytics, School of Electronic Engineering, Dublin City
University, Dublin 9, D09 Y5N0, Ireland (e-mail: abid.yaqoob2@mail.dcu.ie).

Gabriel-Miro Muntean is with the Performance Engineering Lab, School of
Electronic Engineering, Dublin City University, Dublin 9, D09 Y5N0, Ireland
(e-mail: gabriel.muntean@dcu.ie).

Digital Object Identifier 10.1109/TBC.2021.3105022

Fig. 1. Viewport-based 360◦ viewing arrangements for a spherical image
retrieved from a sports video.

With the increasing adoption of new and interactive 360◦
videos in virtual reality, gaming, and sports industry [1],
mobile video traffic is projected to account for about 82% of
global cellular traffic by 2022 [2]. 360◦ cameras are available
for producing high-resolution video content. The stitching or
post-processing software ensures the best content preparation.
Modern head-mounted display (HMD) devices are equipped
with powerful sensors and processing components for efficient
display of 360◦ videos. However, this type of video transmis-
sion over existing IP networks is still very challenging, which
stems from their larger size [3]. Moreover, the real-time han-
dling of 360◦ content is highly time-sensitive because all the
requested content has to be displayed in less than 20ms [4], [5]
in response to the viewer head movements.

360◦ videos are similar to interactive applications, enabling
its audience a look around the environment [6]. Fig. 11

illustrates the viewport-based visualization for virtual 360◦
environment. The usefulness of interactive video services is
strictly dependent on managing bandwidth resources during
playback time. Adaptive video transmission help support the
user’s appetite for improved streaming experience by dealing
with both the content and network objectives, e.g., visual qual-
ity [7], [8], navigation [9], Region-of-Interest (RoI) [10], [11],
energy consumption [12], [13], load balancing [14], etc. on
mobile and fixed networks [15]. Compared to traditional adap-
tive streaming, 360◦ client needs to switch among different
viewing regions according to the consumer’s head movements
and playback rate adaptation.

1The spherical image is retrieved from the LOSC Football video available
at https://www.youtube.com/watch?v=lvH89OkkKQ8.
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360◦ video streaming has progressed from
viewport-independent streaming to viewport-dependent
or tile-based streaming. Viewport-independent streaming is
similar to traditional video streaming, where the playback
adaptation for the whole segment is performed based on
the estimated network capacity. However, a user is able
to watch only a little part of the transmitted stream (e.g.,
20%-30%) [16], known as the viewport, due to the visual
limitations of both the human and display devices. Such
streaming solutions are simple to implement; however, they
result in substantial wastage of bandwidth resources [17].
Instead of transmitting the whole frames in higher quality,
viewport-dependent streaming solutions allow certain frame
areas’ selective transmissions in accordance with the user’s
viewing orientation. Such solutions have lower bandwidth
requirements; however, they are associated with very high
storage and processing overheads [18]. Tile-based streaming
is an extension of viewport-dependent streaming, where 360◦
frames are spatially cut into several rectangular grids, known
as tiles [19]–[21]. The video tiles are then temporally split
into several equal-duration segments to facilitate adaptive
streaming. Both spatial and temporal adaptation is performed
by leveraging human viewing behavior information. The
client selects the visible and non-visible tiles and their quality
levels based on the predicted viewport and the next segment’s
available connection speed. The tiles requests are performed
in advance to ensure synchronous and timely playback of the
content. Some straightforward tile-based solutions [22]–[24]
adjust the quality based on the available viewport data.
However, this is impractical in a real-time streaming scenario,
as user actual and predicted viewing positions could be
different [25]. Some solutions [26]–[29] have been proposed
to stream non-visible tiles to avoid the black dots in the
viewport, including some solutions [24], [30], [31] that assign
the lowest resolution to the invisible tiles to save network
bandwidth.

Although beneficial, tile-based adaptive solutions struggle
to perform good viewport identification, synchronization with
user head movements, bitrate adjustments, etc. Long-term
accurate Field-of-View (FoV) prediction for the upcoming seg-
ments can support high-quality future media services [32].
However, it is highly error-prone and adds tremendous pres-
sure on the prediction mechanisms. Delivering viewport tiles
following inaccurate viewport prediction may significantly
deteriorate user-perceived quality and reduce their satisfac-
tion with the 360◦ video streaming service. Unfortunately,
conventional bitrate adaptation heuristics [33]–[38] are not
able to perform accurate content adjustment during tile-based
streaming in the presence of highly variable and diverse fac-
tors (e.g., available bandwidth, user movement, segment sizes,
etc.) or to make the best selection as the video segments
are prepared in numerous tiles and encoding bitrates. Several
existing tile-based adaptive streaming solutions either increase
the viewport quality aggressively [27], [29], [39] or use a
conservative approach [26], [30], [40] to maintain continu-
ous video playback. However, this is not acceptable because
the former approach will result in playback interruptions and
wastage of the bandwidth, while the later policy will result

in a poor streaming experience. Therefore, it is indispensable
to maintain an important balance between bandwidth utiliza-
tion and user-perceived quality. Moreover, considering visual
quality only as a key assessment metric cannot ensure high-
performance streaming. The multiple objective metrics such
as maximizing viewport quality and minimizing background
quality while also maintaining the inter- and intra-viewport
smoothness play a significant role in optimizing the adaptive
360◦ video distribution.

In order to overcome the limitations of existing solutions,
this paper introduces a combined FoV prediction-assisted
360◦ video streaming approach (CFOV). In contrast to exist-
ing schemes, CFOV employs two FoV prediction mechanisms
to reduce the impact of unpredictable user movements noted
on different videos. The proposed solution is capable to
dynamically perform tile selection and bitrate adjustment for
each adaptation interval during 360◦ video streaming. To be
more specific, the CFOV client systematically decides best-fit
tiles for each segment, considering the fact that the viewer
can change the view at any time during the playback. Then,
CFOV renders the selected tiles at the best possible qual-
ity to reach the optimization goal. Unlike previous solutions,
CFOV implements an aggressive priority-related weighted
quality adjustment for the tiles belonging to different regions
based on exploration and exploitation of environmental vari-
ables such as viewing areas, tiles distribution, and connection
speed.

The main contributions of this paper are as follows.
1) It introduces a practical-oriented tile selection method

for 360◦ videos, which lowers the impact of fast head
movement. This method defines the user viewport in
terms of a 110◦ viewing space in both horizontal and
vertical directions and employs a combination of two
viewport prediction mechanisms.

2) It proposes a new adaptation algorithm, which actively
allocates the video bitrate budget to different video
frame areas to maximize the VR perception levels. The
benefit of the proposed method is assessed using videos
with different levels of motion content and with different
segment durations.

3) It presents extensive trace-driven simulations using
real head motion traces of 48 VR users, with differ-
ent content types, tiling patterns, segment durations,
and dynamic bandwidth variations. Experimental results
reveal that the proposed CFOV solution significantly
improves the streaming performance compared to exist-
ing tile-based streaming approaches. For instance, CFOV
provides an improvement between 12.74%-21.5% in
terms of average QoE under different testing settings.

Paper Organization: The paper is organized as fol-
lows: several existing field-of-view prediction solutions are
described next, along with 360◦ tile-based streaming solu-
tions. An illustration of the CFOV architecture follows the
presentation of the proposed system design. The experimental
testing setup and comparative evaluation with different other
approaches are presented next. The last section includes con-
clusive remarks and indicates possibilities for some potential
future avenues.
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II. RELATED WORKS

The latest unprecedented demand for 360◦ video content is
mostly due to the associated immersive user experience. An
integral part of current multimedia applications, 360◦ video
distribution has drawn many researchers’ attention. This sec-
tion discusses the latest related works in terms of streaming
technologies, proposed frameworks, their main innovations,
and possible limitations.

A. FoV Prediction

FoV prediction is considered a key player in the optimized
streaming of 360◦ video. The latest wearable headsets allow
the clients to refresh their scenes matching to their viewing
positions. The FoV prediction approaches can be categorized
as content-dependent solutions that make predictions based on
the video content data, and content-independent solutions that
require only the historical positions to anticipate the future
viewing positions. Several existing prediction approaches
predict future viewing positions using average [30], linear
regression (LR) [25], [27], [30], motion-based [41]–[43],
user-clustering [44]–[47], or straightforward machine learning
(ML) [48]–[50] methods.

A short-term (0.5s-3s) viewpoint generator model has been
proposed by Qian et al. [30] based on average, linear regres-
sion, and weighted linear regression methods. The authors
entirely streamed the viewport tiles in higher resolution based
on the derived future coordinates. Bao et al. [48] employed
an LR-based neural network model to best fit the variations in
the head tracking dataset. Azuma and Bishop [43] proposed
a frequency-driven prediction model based on the viewing
position, velocity, and acceleration. Likewise, Mavlankar and
Girod [41] characterized the user’s viewing movements as
motion vectors, i.e., speed and acceleration, for a zoomable
panoramic framework. La Fuente et al. [42] tracked the future
head position based on the angular velocity and angular accel-
eration of the user head movements. Petrangeli et al. [51]
extrapolated the 100ms orientation data of the user to drive
the viewing behaviors for the upcoming segment.

Linear regression and motion-based prediction approaches
result in relatively lower prediction accuracy, especially for
outdoor fast motion content [52]. Jiang et al. [53] established a
Long-Short Term Memory (LSTM) model to analyze the user
viewing behavior using an open-source dataset recorded with
five videos watched by 59 users [54]. The authors found that
most users have swift yaw movements than the movements in
the pitch direction. They compared the proposed model with
the LR and average approaches and showed that the LSTM-
based viewport predictor outperforms the others for both yaw
and pitch angle predictions. Qian et al. [25] proposed a prac-
tical view-based streaming system for commodity devices
named Flare. They compared the performance of naive, LR,
ridge regression (RR), and support vector regression (SVR)
methods on 1300 head motion datasets collected from 130
users. They suggested using the LR (for <1s prediction win-
dow) and RR (≥1s prediction window) methods for the Flare
to make it more robust and lightweight.

The cross-user learning-based systems can reduce
the mismatch between predicted and ground truth data.

Liu et al. [45] employed a data fusion approach that considers
several exciting features, such as the behavior of the current
and previous users, their engagement levels for a single
or multiple videos, streaming device, and mobility-level
among others, to predict the future viewing coordinates.
Xie et al. [47] proposed a cooperative client-server view
prediction model that can improve the prediction precision
by up to 15% compared with LR. At the server-side, the
users are grouped based on their watching interest for each
video using the DBSCAN [55] clustering. On the client-side,
the viewport prediction module decides the viewing group
of the current user. Ban et al. [44] took advantage of users’
attention distribution in 360◦ video to improve the view
prediction performance. They analyzed the current user’s
watching behavior using the LR method and then combined it
with other users’ similar ROI using the K-Nearest-Neighbors
(KNN) algorithm to fetch the viewport tiles for the next
segment. Experimental evaluation on real datasets reveals that
20% improved prediction accuracy can result in up to 30%
more quality gain than the LR-based streaming approach.

B. Tile-Based Adaptive Streaming

Recently, tile-based adaptive streaming is a hot research
direction that enables the client to optimize the spatial ran-
dom bitrate allocation based on the user’s interest and network
constraints. Rossi and Toni [22] undeviatingly designed a
tile-based streaming algorithm to maximize user expectations
for the known set of tiles. Similarly, based on the given
viewport data, Ghosh et al. [23] encoded the visible tiles
in higher resolution while the rest tiles in lower resolution
according to the time-varying network constraints. The authors
showed that streaming variable quality levels for the visible
and non-visible regions can boost the performance in terms
of formulated Quality of Experience (QoE) metric by up to
20%. Graf et al. [24] analyzed the performance of five tiling
patterns, such as 1x1, 3x2, 5x3, 6x4, and 8x5, in compari-
son to the straightforward monolithic streaming. The authors
showed that a 6x4 tiling pattern could provide a worthwhile
trade-off between coding performance and bandwidth con-
sumption for different content types. Besides, they showed
that a bandwidth saving of more than 60% could be achieved
by employing a full delivery basic streaming strategy for a
given viewport data. Chao et al. [56] proposed a clustering-
based tiles selection mechanism, named ClusTile, to lower
the bandwidth and computation overheads. ClusTile dynam-
ically performs the tiles selection and bitrate adjustments for
each segment. It could achieve a bandwidth saving of around
52% in comparison to the best-performing tiling method, as
demonstrated by the experiments.

To minimize the impact of spatial quality variance and
viewport quality distortion, Xie et al. [57] proposed a
tile-based streaming framework that employs a QoE-driven
target-buffer based rate optimization. Trace-driven experi-
ments reveal that the proposed probability-based tiles-selection
mechanism can enhance the visible quality levels by up to
39% and alleviate the spatial quality variance by 45% in com-
parison to other approaches. Hosseini and Swaminathan [29]
proposed a priority-based adaptation algorithm for the central,
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Fig. 2. The proposed end-to-end 360◦ video streaming framework.

surrounding, and outside tiles. The proposed algorithm firstly
assigns the lowest quality to all the tiles. Then, it adjusts
the central tile’s quality to the maximum level and repeats
the same procedure for the surrounding and outer tiles while
respecting the available bandwidth budget. Hooft et al. [39]
proposed two variants of bitrate adaptation for 360◦ videos,
named as uniform viewport quality (UVP) and center tile first
(CTF). As the name suggests, UVP allocates a uniform qual-
ity to all the viewport tiles, while the CTF mainly focuses on
the viewport center similar to the [29]. The tiles are selected
based on a spherical walk approach that extrapolates the 3D
trajectory of the user movements on the spherical surface to
predict the next viewing points. Petrangeli et al. [51] proposed
a priority-aware HTTP/2 based segment transmission scheme
to facilitate 360◦ video streaming. The urgent transmission of
high-priority tiles based on the user’s interest can improve the
throughput performance compared to HTTP/1.1 under variable
network delay conditions. Instead of solely relying on viewport
and bandwidth data for quality adjustments, Nguyen et al. [58]
proposed to select the viewport bitrate by also taking into
account the viewport prediction errors during each segment
duration. He et al. [59] performed a network delay-based joint
selection of the viewport coverage and bitrate. The simula-
tion outcomes confirm that adaptable viewport coverage offers
improved quality streaming under different delay settings.

The algorithms discussed have set a stable background by
considering user-specific viewing preferences for 360◦ videos.
However, the space and time separation of such videos makes
it challenging to develop a successful VR streaming frame-
work. Most proposed schemes including [20], [23], [60], [61]
use different quality levels for the viewport and background
tiles. This approach can assist in bandwidth-efficient stream-
ing. However, following inaccurate FoV predictions, the dif-
ferent quality tiles can dramatically lower user-perceived video
quality. Moreover, all existing schemes transmit the tiles based
on a single prediction mechanism and then expand the view-
port either in all directions [24], [29], [51] or towards some
specific sides [58]. Compared to previous works, this paper’s
novelty lies in dynamically deciding the coverage of differ-
ent viewing regions based on the combined output of two
FoV prediction mechanisms to achieve higher viewport match-
ing performance. In contrast to [29], [39], [51], the proposed
CFOV streams either the viewport only tiles or all the tiles at

certain quality levels by learning tile distribution and real-time
network transmission capacity.

III. PROPOSED SOLUTION

A. System Architecture

The proposed end-to-end 360◦ video streaming solution
aims to improve the viewport overlap by requesting extra
tiles in higher resolution while reducing the bandwidth uti-
lization for background tiles. Fig. 2 illustrates the end-to-end
360◦ video streaming framework. The server is responsible
for storing and pre-processing video content. The 360◦ sphere
representation is transformed into an equirectangular projec-
tion format [62] following capturing and stitching steps. The
equirectangular projected video is temporally split into S equal
duration segments, and each segment is prepared in M spatial
tiles, and each tile encoded into N bitrate levels. Let Lk

j (i)
represents the quality level j ∈ [1, N] of tile k ∈ [1, M] in
segment i ∈ [1, S]. Let xk(i) be a decision variable represent-
ing that the kth tile for (i)th segment is selected for streaming
(i.e., xk(i) = 1) or not (i.e., xk(i) = 0).

At the client-side, the FoVs Prediction module predicts the
future FoVs coordinates based on the user’s watching history.
Accordingly, the Tiles Selection module selects the viewport,
external, and background tiles sets for the (i)th segment, i.e.,
T v(i), T e(i), T b(i), from the tiles set, T (i). Based on the out-
put of the Tiles Selection module, the Bitrate Adaptation unit
selects suitable bitrates for each tile according to the associated
region and the estimated network throughput. Once the seg-
ments are received, the client performs decoding and stitching
of the requested tiles to reconstruct the 360◦ video. It then per-
forms the rendering and starts playing the requested content.
Table I includes the mathematical symbols and their meanings
used in the following discussion.

B. Problem Definition

The high-quality expectations of the user mainly depend
on the quality of the visible area. The lower rate of visible
tiles may not satisfy the user even if the background tiles are
played in good quality. Some key challenges to help support
the high QoE levels include real-time scene update, accurate
FoV prediction, tiles selection, adaptive quality adjustments,
and employing efficient delivery protocols, among others [52].
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TABLE I
NOTATIONS USED IN THE PAPER

The client seeks optimal bitrates for each segment, intending
to optimize the user’s long-term QoE reward, subject to the
constraints (2)-(7). Mathematically, the optimization problem
can be formulated as the following problem:

Problem:

arg max
i∈[1,S]

QoE(i) (1)

Constraints:
∑

k∈T (i)

Lk
j (i) ∗ xk(i) ≤ T̂h(i),∀j ∈ [1, N] (2)

Lk
j (i) ∗ xk(i) = Lk′

j (i) ∗ xk′(i),∀k, k′ ∈ T v(i),∀j ∈ [1, N] (3)

Lk
j (i) = Lk

1(i) ∗ xk(i),∀k ∈ T b(i),∀j ∈ [1, N] (4)
∑

k∈T v(i)

Lk
j (i) ∗ xk(i) ≤ Thv(i),∀j ∈ [1, N] (5)

∑

k∈T e(i)

Lk
j (i) ∗ xk(i) ≤ The(i),∀j ∈ [1, N] (6)

∑

k∈T v(i)

Lk
j (i) ∗ xk(i) ≥

∑

k∈T e(i)

Lk
j (i) ∗ xk(i),∀j ∈ [1, N] (7)

The constraints in Eq. (2) limit the selected bitrate of all
the tiles in (i)th segment. Constraints in Eq. (3) state that all
the viewport tiles should have the same selected video bitrate.
Eq. (4) restricts the bitrate of all the background tiles to the
lowest quality level (i.e., Lk

1(i)). The constraints in Eq. (5) and
Eq. (6) make sure that the bitrate of the viewport and external
tiles is not higher than the throughput of the viewport and
external tiles, respectively. Particularly, the viewport tiles are
downloaded in higher bitrates compared to the external tiles.
The throughput calculation based on the importance of each
region is described in Section IV-D. Finally, the constraints in
Eq. (7) ensure that the bitrates of external tiles would not be
higher than the viewport tiles. The following three steps solve
the above problem:

1) defines a user QoE metric that assesses the perceived
quality not solely based on the visual quality.

2) employs a content-agnostic FoVs prediction-based tiles
selection approach that dynamically performs the
viewing area selection to improve the overlap between
real and predicted viewport tiles.

3) selects optimal quality levels by assigning priority-
related weights to each tile of different regions.

The following subsection elaborates on these aspects.

IV. PROPOSED ARCHITECTURE AND ALGORITHMS

A. CFOV QoE

With the adaptive transmission of omnidirectional video, it
is imperative to recognize the unique quality aspects of the
consumer due to its highly prevalent nature. How long a user
feels immersion in a VR video dictates the level of experience
perceived by users. Accurate QoE assessment is a key fac-
tor in optimizing the adaptive video streaming [63]. However,
calculating visual quality alone is not adequate for a com-
plete VR QoE framework. In evaluating the user’s QoE, it is
also essential to define the effect of other parameters, e.g.,
bandwidth savings, spatial fluctuations, and temporal quality
variations, etc.
• Viewport Quality: By averaging the quality of the view-

port tiles based on the real viewport traces, we get the
viewport quality in segment (i) as follow [64], [65]:

f1(i) =
∑

k∈T v̂(i)

∑
j∈[1,N] Q

(
Lk

j (i)
)

∣∣T v̂(i)
∣∣ (8)

where T v̂(i) represents the actual viewport tiles set and
|T v̂(i)| indicates the number of tiles in viewport tiles set.
Q(Lk

j (i)) maps the video bitrate to the relevant quality
level for the (i)th segment.

• Background Quality: Ideally, the 360◦ client should only
stream the viewport tiles at best possible quality with no
background tiles. But several solutions stream the back-
ground tiles to lower the impact of viewport anomalies
due to the limited precision of prediction mechanisms.
This metric explicitly indicates the average quality of the
background tile in (i)th segment and is given as follow:

f2(i) =
∑

k∈T b̂(i)

∑
j∈[1,N] Q

(
Lk

j (i)
)

∣∣∣T b̂(i)
∣∣∣

(9)

where T b̂(i) represents the background tiles set which
contains tiles not visible to the user based on the ground
truth viewport traces during the (i)th segment. The term
in the denominator |T b̂(i)| represents the number of tiles
in background tiles set.

• Temporal Quality Oscillations: The efficiency of tile-
based streaming schemes can be impaired by the disparity
in quality levels between two viewports of consecutive
segments. Therefore, the temporal quality fluctuations
need not be drastic and can be calculated by [64]:

f3(i) =
∣∣ f1(i)− f1(i− 1)

∣∣. (10)

• Spatial Quality Oscillations: Cybersickness, viewing
irritation, and other physiological effects, such as nau-
sea, fatigue, and aversion [66], can be driven by variable
quality levels within the viewport. That leads, therefore,
to lower QoE levels. Following [53], we measure this
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Fig. 3. Tiles selection cases for two consecutive segments in CFOV framework.

value according to the coefficient of variation (CV) of
the viewport quality levels.

f4(i) =
σ
(
Q

(
Lk

j (i)
))

μ
(
Q

(
Lk

j (i)
)) , ∀k ∈ T v̂(i),∀j ∈ [1, N] (11)

The term in the numerator represents the standard devi-
ation of the viewport quality samples, while the denom-
inator represents the mean of the samples.

Following the principle behind the QoE metric for tradi-
tional video [35], we define a QoE metric for 360◦ video.
The proposed metric considers the weighted summation of the
above mentioned components and is given as follows:

QoE(i) = α ∗ f1(i)− β ∗ f2(i)− γ ∗ f3(i)− δ ∗ f4(i) (12)

where α, β, γ , and δ are the non-negative weight coefficients
corresponding to the background quality and temporal and spa-
tial quality oscillations, respectively. We want to minimize the
f2(i), f3(i), and f4(i), therefore, these functions are negative.

B. CFOV Tiles Selection

360◦ video has become an integral part of popular
multimedia applications, as the consumer is interested in an
increasingly interactive and immersive streaming experience.
One of the key features of VR devices is to update the
scene according to the viewer’s head movement. When a user
changes his viewpoint, the end terminal processes the feed-
back signals and can render the relevant FoV so that a view is
accessible from a regular visual angle. Typically, a user will
access only a small portion of the stream being transmitted.
The high-quality transmission of the entire frames results in
the waste of a large amount of bandwidth used for the unseen
portion of the content. In addition, the viewing experience of
a user depends on how efficiently the client can select the vis-
ible tiles for the next segment. For instance, if video tiles are
requested based on an incorrect prediction, the user’s actual
viewport may be covered by black tiles for which no content
was requested.

Viewport prediction is analogous to a sequence prediction
problem, which focuses on forecasting future viewing posi-
tions based on past head movement trajectories. It has become

an essential part of 360◦ video streaming. However, the latest
FoV prediction models result in a low long-term prediction
accuracy [67]. Rondon et al. [68] reported that existing neural
network models used for both content-based and content-
independent viewport prediction perform worse than a basic
(last known) approach that simply uses the last viewing posi-
tion for the next segment. Due to the extremely unpredictable
viewing nature of the user, the basic idea is to stream more
tiles than necessary to cover the actual viewing area. This work
considers two viewpoint/viewport prediction mechanisms to
perform the interactive tiles selection during each adapta-
tion interval. The current viewing point is used as the first
predicted viewpoint for the next segment. A spherical walk
approach proposed in [39] is adopted for the second view-
point prediction that considers the user’s motion as a walk on
a sphere and predicts the future position based on the spheri-
cal movement from one point to another point. Based on the
two predicted viewpoints and the FoV of the headset (usu-
ally in the range of 90◦-110◦), the tiles for both viewports
are selected by calculating the spherical distance between the
predicted viewpoints and the center of each of the tiles. The
tiles whose centers are less than half of the FoV size apart
from the viewpoint will belong to the viewport region. In this
way, both the first (last known) and second (spherical walk)
viewport sets represented by et T v1(i), T v2(i), respectively,
are computed for (i)th segment.

For each video segment, the client classifies a 360◦ video
frame into the viewport, external, and background regions. We
consider Extended FoV and Fixed FoV cases for the innova-
tive tiles selections in CFOV. Fig. 3(a) illustrates the Extended
FoV case in an equirectangular space where both the predicted
FoVs partially overlap during the (i)th segment. The goal here
is to extend the FoV coverage by adding non-overlapping tiles
of the second FoV tiles set to the first FoV tiles set to deal
with possible head movement prediction errors. With no exter-
nal tiles in Extended FoV case, the rest of the tiles belong to
the background region. Due to the abrupt user movements,
different mechanism’s predicted viewpoints can be far from
each other. In this case, we can stream both FoVs by executing
priority-based bitrate budget distribution to facilitate differen-
tiated quality streaming. Fig. 3(b) represents the Fixed FoV
case, where the two FoVs do not have common tiles for the
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Algorithm 1: CFOV Tiles Selection Algorithm
Input :
T (i)← Tiles set in the streaming session
T v1(i)← Tiles set for the first predicted FoV
T v2(i)← Tiles set for the second predicted FoV
Result :
T v(i), T e(i), T b(i)← Estimated viewport, external,
and background tiles sets for the (i)th segment

1 if (T v1(i) ∩ T v2(i) �= ∅) then
2 T v(i) = T v1(i) ∪ (T v2(i)− T v1(i))
3 T e(i) = ∅
4 T b(i) = T (i)− T v(i)

5 else
6 T v(i) = T v1(i)
7 T e(i) = T v2(i)
8 T b(i) = T (i)− (T v(i) ∪ T e(i))

(i + 1)th segment. The first FoV tiles are classified as view-
port tiles, while the second FoV tiles set includes external tiles
for the (i+ 1) segment. The external tiles can be streamed in
higher resolution than the background tiles, which are always
streamed with the lowest resolution.

Algorithm 1 describes the Tiles Selection mechanism in
CFOV. For each segment, the tiles belonging to the different
regions are chosen dynamically based on the performance of
the prediction mechanisms. Algorithm 1 begins by finding the
intersection of two predicted FoVs and then selects the tiles
for each of the three regions. The viewport tiles set (T v(i)) is
determined by adding all the unique tiles of two predicted tiles
sets if the intersection of two predicted sets is not empty for
the (i)th segment (lines 1-2). In Extended FoV case, the set of
external tiles (T e(i)) does not contain any tiles (line 3). All
the remaining tiles are classified as background tiles (line 4).
If the tiles in both FoVs are identical, then similar tiles of both
FoVs, referred to as viewport tiles, along with the background
tiles, are inputted to the bitrate allocation unit. For the Fixed
FoV case, where the two predicted FoVs do not overlap, the
tiles belonging to the first and second FoVs are labeled as
viewport and external tiles, respectively (lines 6-7). The range
of background tiles set is then computed for the (i)th segment
(line 8).

C. CFOV Bitrate Allocation

In adaptive streaming, a key challenging aspect is to predict
the network throughput correctly [69]. An under-estimation of
the actual throughput may lead to requests for lower quality
segments, while an over-estimation may result in signifi-
cant rebuffering events. The HTTP clients infer the network
throughput from prior measurements [70]. The calculation of
the throughput for the (i)th segment is defined in Eq. (13).

T̂h(i) =
∑

k∈T (i) Lk
j (i− 1) ∗ τ

F(i− 1)
(13)

where Lk
j (i− 1) represents the bitrate of all the tiles, τ is the

playback duration of the segment, and F(i− 1) represents the
total fetching time of the (i− 1)th segment.

Algorithm 2 allocates the bitrate to the outputted tiles of
the Tiles Selection module to achieve the optimization aims
described in Eq. (1) and Eq. (12). The adaptation for the (i)th
segment is performed after completely fetching the (i − 1)th
segment. Algorithm 2 ensures that the segment size does
not exceed the available bandwidth budget in fulfilling the
constraints from Eq. (2). Suppose the lowest available video
bitrate for the entire 360◦ segment is (1 + �) times greater
than the estimated network throughput. In that case, only the
viewport tiles with the highest permitted video bitrate are
streamed to ensure a seamless video playback corresponding
to Eq. (3) for the actual spatial smoothness defined in Eq. (11)
(lines 1-2). Otherwise, the bitrate allocation is carried out for
the entire frame by firstly assigning the lowest bitrate to all
the tiles (Eq. (4)) to achieve a lower background penalty for
the actual background tiles, defined in Eq. (9) (line 4). The
bandwidth budget is revised then (line 5). Next, the view-
port throughput is determined to select the best possible video
bitrate for the viewport tiles if there are no external tiles
(lines 6-7). All the viewport tiles are streamed with the same
selected rate to improve the perceived visual quality levels
mentioned in Eq. (8) (line 8). Next, if the external tiles set is
non-empty, the proposed algorithm ensures that similar to the
constraints in Eq. (5) and Eq. (6), the bitrate of the viewport
and external tiles is not higher than the throughput of the view-
port and external tiles, respectively. The bitrate allocation is
performed for viewport and external tiles after calculating their
priority-related weights. The weights are determined depend-
ing on the number of tiles in the viewport and external regions
(lines 10-11). As the viewer is more interested in watching the
viewport content at higher quality levels; therefore, viewport
tiles are assigned with double weights compared to the exter-
nal tiles to fulfill the constraints in Eq. (7). After that, the
throughput for the viewport and external tiles are computed
based on computed weights (lines 12-13). Finally, the video
bitrate levels for the viewport and the external tiles are cal-
culated. The maximum available video bitrates not exceeding
each region’s corresponding throughput budget are allocated
to each viewport and external tiles (lines 14-15). Noteworthy
is to state that Algorithm 2 provides a solution to achieve an
important balance between different quality objectives defined
in Eq. (8)-Eq. (11) under constraints in Eq. (2)-Eq. (7) and
maximize the optimization goal defined in Eq. (12).

V. EXPERIMENTAL EVALUATION

This section introduces the trace-driven evaluation of the
proposed solution compared to the existing tile-based solutions
under a wide variety of content and network characteristics.
Next, we present the experimental setup and the comparison
schemes. Then, for each of the streaming solutions, we show
the experimental results and their analysis.

A. Experimental Setup

1) 360◦ Video Player: The modeling and evaluation
of the proposed system were conducted by employing
an enhanced version of a VR player2 running on an

2https://github.com/jvdrhoof/VRClient
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Algorithm 2: CFOV Bitrate Allocation Algorithm
Input :
{L1(i), . . . ,Lj(i), . . . ,LN(i)}← Video bitrate-levels set for each tile in (i)th segment
T (i)← Tiles set containing M tiles for the (i)th segment
T v(i), T e(i)← Tiles sets for the viewport and external regions computed from Algorithm 1
|T v(i)|, |T e(i)|← Number of tiles in viewport and external regions
T̂h(i)← Estimated throughput for (i)th segment
Result :
wT v

(i), wT e
(i)← Priority related weights for viewport and external tiles

Thv(i), The(i)← Estimated throughput for the viewport and external tiles
LT (i),LT v

(i),LT e
(i)← Video bitrates selected for the tiles of (i)th segment

1 if (1+� ∗ T̂h(i) ≤∑
k∈T (i) Lk

1) then
2 LT v

(i) = max
j∈[1,N]

{Lk
j (i)|

∑
k∈T v(i) Lk

j (i) ≤ T̂h(i)}
3 else
4 LT (i) = Lk

1(i), ∀k ∈ T (i)
5 Th(i) = T̂h(i)−∑

k∈T (i) Lk
1(i)

6 if (T e(i) = ∅) then
7 Thv(i) = Th(i)
8 LT v

(i) = max
j∈[2,N]

{Lk
j (i)|

∑
k∈T v(i) Lk

j (i) ≤ Thv(i)}
9 else

10 wT e
(i) = (|T e(i)|/(2 ∗ |T v(i)| + |T e(i)|))

11 wT v
(i) = 1− wT e

(i)
12 Thv(i) = Th(i) ∗ wT v

(i)
13 The(i) = Th(i) ∗ wT e

(i)
14 LT v

(i) = max
j∈[2,N]

{Lk
j (i)|

∑
k∈T v(i) Lk

j (i) ≤ Thv(i)}
15 LT e

(i) = max
j∈[2,N]

{Lk
j (i)|

∑
k∈T e(i) Lk

j (i) ≤ The(i)}

TABLE II
AVERAGE VIDEO BITRATES FOR THE Boxing, Conan, Football, AND Spotlight VIDEOS [MBPS]

Ubuntu 16.04 machine with a 64-bit Intel Core i7-7500U
CPU 2.7 GHz quad-core and 16 GB memory. The 360◦
player requested video segments from the HTTP server
based on the available bandwidth and estimated viewpoint
coordinates.

2) 360◦ Videos and Head Movement Traces: The experi-
mental evaluation was performed using a trace-driven simu-
lation involving real viewport traces of 48 VR users from an
open-source dataset [71]. This dataset is widely used, includ-
ing in [44], [47], [65], [72]. From this dataset, we chose
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TABLE III
EXPERIMENTAL SETTINGS

four videos which include a wide range of motion content:
SHOWTIME Boxing,3 Conan360-Sandwich,4 LOSC Football,5

and Google Spotlight-HELP.6 The content category also dif-
fered across the selected clips; the first and third streams
belong to the sports category, while the second and fourth clips
belong to artistic performance and action film, respectively.
These videos are referred to as Boxing, Conan, Football, and
Spotlight throughout this paper. All the videos were rescaled
to the 4K resolution using FFmpeg7 software. The videos were
spatially split into 4x3, 6x4, and 8x6 tiling patterns. The tiles
were encoded using an open-source Kvazaar encoder [73] con-
sidering five different quantization parameters (QPs) (i.e., 22,
27, 32, 37, and 42). Subsequently, DASH video segments were
generated using GPAC MP4Box8 with a duration of 1s, 2s,
and 3s, respectively. The average segment sizes for each video
and encoding rate are illustrated in Table II. The value of �

was set to 0.5, and the viewport coverage was set to 110◦,
as used in the head movement collection by Wu et al. [71].
The length of each simulation was equal to the duration of the
video employed. Table III presents the content characteristics
and experimental settings.

3) Bandwidth Scenarios: The experiments were performed
using the following dynamic bandwidth scenarios, also shown
in Fig. 4.

1) Scenario B1: The bandwidth of the link between the
HTTP client and server was varied for each video as
follows: 4 Mbps for the first 30% of the segments,
8 Mbps for the following 40% segments, and then back
to 4 Mbps until the end of the video playback. Scenario
B1 was used for the experiments performed for 1s
segment duration.

2) Scenario B2: A stepwise switch-up connection was con-
sidered for the 2s video segment durations where the
bandwidth was set to 6 Mbps for the first 20% of the

3https://www.youtube.com/watch?v=raKh0OIERew
4https://www.youtube.com/watch?v=FiClYLgxJ5s
5https://www.youtube.com/watch?v=lvH89OkkKQ8
6https://www.youtube.com/watch?v=G-XZhKqQAHU
7https://ffmpeg.org/
8https://gpac.wp.imt.fr/mp4box/

Fig. 4. Bandwidth scenarios used in experiments.

segments, and then increased with 2 Mbps after every
20% of the playback.

3) Scenario B3: The bandwidth of the link between the
client and HTTP server varied in an on-off between
10 Mbps and 20 Mbps after each 20% of the playback
for all the videos. Scenario B3 was employed for the 3s
video segment duration.

4) QoE Weight Coefficients: To verify the effectiveness of
the proposed solution, the following sets of QoE coefficients
are chosen:

1) Coefficients C1: (α = 1, β = 0.3, γ = 0.1, δ = 0.1)
2) Coefficients C2: (α = 1, β = 0.4, γ = 0.2, δ = 0.2)
3) Coefficients C3: (α = 1, β = 0.5, γ = 0.3, δ = 0.3)
In practice, the QoE weight coefficients can be selected

in order to emphasize different QoE objectives such as to
maximize the viewport quality, minimize the background con-
tent quality, and reduce the spatial and temporal quality
variations or their combination.

5) Baseline Algorithms: We compare the performance of
CFOV with four tile-based streaming solutions. All of the ref-
erence tile-based delivery solutions incorporate viewer head
movements for adaptive bitrate selection. The first approach,
denoted as UVP [39], classifies the tiles into the viewport and
non-viewport regions; no external region is considered here.
It initially selects the lowest resolution for all the tiles; then,
it uniformly increases the quality of viewport and outer tiles
while respecting the available bandwidth budget. The second
method, referred to as CTF [39], increases the quality, starting
from the viewport center to the last tile. The third approach
denoted as Hos [29], performs priority-based bitrate adapta-
tion for tiles belonging to three zones, Z1 (viewpoint tile), Z2
(viewpoint surrounding tiles), and Z3 (background tiles). The
fourth approach, denoted as Pet [51], divides the 360◦ frames
into the viewport, adjacent, and outside regions. Different from
the previous works, the external area in our method is a spe-
cial case. It could be adjacent to the viewport or can reside
at a distance from the viewport depending on the difference
of the prediction mechanisms. Table IV illustrates the signif-
icant differences between the proposed and the comparative
schemes in terms of prediction mechanism, FoV selection, and
streaming strategy.
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TABLE IV
VIEWPORT STREAMING APPROACHES FOR TILE-BASED ADAPTIVE 360◦ VIDEO

Fig. 5. Average tiles overlap achieved by CFOV and Spherical Walk methods for 1s, 2s, and 3s prediction horizons; results from four videos watched by
48 users.

B. Experimental Results

1) Tiles Overlap: This metric directly calculates the frac-
tion of the actual viewport tiles T v̂(i) covered by the predicted
viewport tiles T v(i). For the (i)th segment, the tile overlap is
given as follows [74]:

TO(i) =
∣∣∣T v̂(i) ∩ T v(i)

∣∣∣
∣∣T v̂(i)

∣∣ (14)

We compare CFOV with a spherical walk approach
proposed in [39]. Fig. 5 illustrates the average tiles overlap
for four videos prepared with three segment durations and
three tiling patterns across the 48 head movement traces. The
spherical walk method is adopted in UVP, CTF, Hos, and Pet
streaming algorithms. A relatively low tile overlap is observed
for the 4x3 tiling pattern since both methods arrange the tiles
considering arc distance between the viewpoint and each tile’s
center. The viewers have relatively fast head movements when
watching the Football video since it is an outdoor sports video
and contains several fast-moving objects. A high average tile
overlap is observed for the Boxing video since the users have
more regular and stable head movements for this video, which
are easy to forecast. It is notable that proactive tile selection in
CFOV mainly yields high matching performance and outper-
forms the spherical walk approach for different user behaviors.
In particular, for all four videos, CFOV experiences an aver-
age tile overlap of more than 80% [Fig. 5(a)]. The spherical
walk approach observes a low average tile overlap because the
actual and predicted viewport positions are far from each other
even when the head movements are stable. As seen, for the
Boxing video, CFOV outperforms the spherical walk method
by 10.46% for 1s [Fig. 5(a)], by 13.09% for 2s [Fig. 5(b)], and

by 14.05% for the 3s prediction horizon [Fig. 5(c)]. Similarly,
CFOV shows its superior capability in increasing viewport
match for the Spotlight video and outperforms the spheri-
cal walk method for the 4x3 tiling pattern by 6.22% for 1s
[Fig. 5(a)], by 10.6% for 2s [Fig. 5(b)], and by 12.62% for the
3s prediction horizon [Fig. 5(c)]. Fig. 5(a) shows that for the
1s prediction window, CFOV gets very close to a perfect view-
port match (e.g., 94.99% for the Boxing video, 87.35% for the
Conan video, 84% for the Football video, and 86.82% for the
Spotlight video) across all tiling patterns. At the same time, a
very small percentage of viewport mismatch is observed when
the prediction horizon is set to 2s (e.g., 7.78% for the Boxing
video, 20.69% for the Conan video, 24.9% for the Football
video, and 20.52% for the Spotlight video) [Fig. 5(b)]. The
evaluation results show that our dynamic tiles selection method
ensures stable visual angles to provide users with a favorable
QoE. It is also notable from Fig. 5(c) that CFOV outperforms
the spherical walk approach by up to 14.89% for the Boxing
video, up to 11.84% for the Conan video, up to 11.46% for the
Football video, and up to 13.31% for the Spotlight video. This
is because the tiles selection cases in CFOV adapt better to the
varying user behaviors for different video characteristics. As a
result, it can be concluded that CFOV exploits user-watching
information better than the spherical walk method and reduces
the mismatch between the actual and predicted FoV tiles.

2) Average QoE With Coefficient Set C1: We computed
the average quality score based on the QoE metric defined in
Section IV-A. Fig. 6 presents the average QoE scores achieved
by each streaming algorithm under the three dynamic band-
width scenarios for the Boxing, Conan, Football, and Spotlight
videos, which are spatially and temporally split into three
tiling patterns and three segment durations, respectively. The
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Fig. 6. Average QoE results achieved by five streaming clients for 48 VR users with QoE weight coefficients set to C1; results from four videos prepared
in three tiling patterns and three segment duration.

performance results are depicted for the QoE weight coef-
ficient set C1. The experimental findings reveal that CFOV
attains an optimal trade-off when selecting the streaming tiles
quality and the highest QoE among the approaches compared.
The algorithms’ performance decreases accordingly with the
increase of segment length. The Boxing video requires higher
bitrates for achieving a particular quality score compared to
those of the other videos (as can be seen in Table II). Hence,
it is more challenging to achieve higher QoE with limited
dynamic bandwidth. The Conan video has higher visual qual-
ity levels than the Football and Spotlight videos since it has
higher average tiles overlap. This indicates that content fea-
tures and user interaction strongly influence the streaming
performance of 360◦ videos. It can be noticed that all of the
streaming methods achieve slightly higher performance for the
6x4 tiling pattern followed by the 8x6 tiling pattern for all
four videos. This is because the higher viewport overlap and
feasible segment sizes yield higher QoE levels.

The streaming results for 1s segment duration in dynamic
bandwidth Scenario B1 illustrated in Fig. 6(a) show that
CFOV achieves about 8.71%, 21.05%, 24.55%, and 27.74%
higher quality scores than UVP, CTF, Hos, and Pet algorithms,
respectively, for the Boxing video. For Conan, the average gain
over all the tiling patterns of UVP, CTF, Hos, and Pet is about
8.53%, 1.68%, 13.75%, and 19.60%, respectively. For differ-
ent motion contents, viewport mismatch leads to high-quality
degradation for tile-based methods. In CFOV, both the Fixed
FoV and Extended FoV cases favor high-quality perception of
the viewing area. Accordingly, CFOV achieves up to 7.86%,

5.51%, 18.51%, and 27.22% higher QoE for the Spotlight
video compared to UVP 8x6, CTF 8x6, Hos 4x3, and Pet 8x6,
respectively. The reason is that, instead of sending all the tiles
at the lowest quality, CFOV implements an aggressive strategy
by streaming only the viewport tiles at the maximum possible
quality when the available bandwidth budget is limited.

Fig. 6(b) displays the average QoE values of the proposed
solution and four reference methods for the 2s segment dura-
tion and stepwise switch-up bandwidth scenario B2. It is
interesting to note that CFOV always has better performance
than the reference methods. This is because our approach
favors high viewport quality. Compared to UVP and CTF
methods, CFOV can improve the average QoE by up to
12.57% and 30.83%, respectively, for the Boxing video. The
average improvements in QoE over the Hos and Pet meth-
ods are 18.50% and 23.46% for the Spotlight video. For
the Conan video with a 6x4 tiling pattern, CFOV achieves
3.64 on average QoE compared to the scores of 3.38, 3.55,
2.84, and 2.86 achieved by UVP, CTF, Hos, and Pet algo-
rithms, respectively [Fig. 6(b)]. Similar to the 1s and 2s cases,
CFOV mostly achieves the highest average QoE value for all
three tiling patterns when the segment duration is set to 3s
[Fig. 6(c)]. The Football video has the smallest average seg-
ment sizes; however, the head movement traces for this video
contain significant variations in viewing directions. Therefore,
the viewport-based methods achieve slightly lower QoE values
than the Conan video for the bandwidth fluctuation scenario
B3. The proposed method achieves up to 25.97% and 27% on
average higher QoE values for the Boxing than Hos and Pet
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Fig. 7. Average QoE results achieved by five streaming clients for 48 VR users with QoE weight coefficients set to C2; results from four videos prepared
in three tiling patterns and three segment duration.

algorithms, respectively [Fig. 6(c)]. The under-performance of
the Hos and Pet methods, even under stable head movements,
is mainly because they needlessly increase the quality of the
adjacent tiles.

3) Average QoE With Coefficient Set C2: To better under-
stand streaming approaches’ performance, we increase the
weights of the background quality and spatial and tempo-
ral quality oscillations penalties. Fig. 7 compares the average
gains on QoE for different content types with the QoE weight
coefficient set C2. Fig. 7(a) indicates that CFOV outperforms
UVP, CTF, Hos, and Pet methods by 11.87%, 9.59%, 19.78%,
and 24.45%, respectively, for all four videos across all three
tiling patterns for 1s segment duration. CFOV is highly vul-
nerable to imperfect viewport prediction because only the
viewport tiles can be streamed to the client when the network
bandwidth is low. However, streaming a lower amount of data
provides significant benefits for CFOV. Fig. 7(b) shows that
for the 6x4 Football video, the average QoE values of CFOV,
UVP, Hos, and Pet methods are 3.21, 2.94, 3.07, 2.88, and 2.7,
respectively. CFOV improves QoE over UVP and CTF due to
its higher prediction performance. CFOV provides improved
performance over Hos and Pet methods because it reduces
the amount of data to send and contributes to lower back-
ground quality. The average gain on QoE achieved by CFOV
for all four videos with 4x3, 6x4, and 8x6 tiling patterns is
about 28.88% (Boxing), 14.55% (Conan), 8.44% (Football),
and 17.95% (Spotlight) higher than the others when the seg-
ment duration is set to 2s [Fig. 7(b)]. It can be noticed that

with the more considerable difference between the actual and
predicted viewports, the average QoE in Fig. 7(c) is lower than
what is depicted in Fig. 7(a) and Fig. 7(b). Interestingly, all
the comparative methods tend to download the highest qual-
ity levels when bandwidth is higher than the available quality
levels. This leads to favor the QoE metric by lowering spa-
tial and temporal quality variations. CFOV’s average QoE is
the highest for Boxing and Spotlight videos, followed by the
UVP and CTF methods. This is due to the fact that CFOV pre-
serves the highest visual quality by dealing effectively with the
abrupt view switching during each adaptation interval. CTF
leads to better results than UVP for the Conan and Football
videos since it directly assigns the highest quality to the view-
point tile based on the available bandwidth budget. Instead
of completely relying on bandwidth, CFOV adjusts the view-
port quality by dynamically deciding the coverage of the FoV.
Moreover, CFOV incurs a lower bandwidth consumption with-
out noticeable quality degradation by streaming background
tiles at the lowest quality.

4) Average QoE With Coefficient Set C3: Next, the
performance of CFOV and those of the other approaches are
tested by setting the QoE weight coefficients to set C3. Fig. 8
illustrates the video quality experienced, averaged across the
48 users for the different videos and tile patterns. It can
be noted that with the increase of background quality and
spatial and temporal quality penalties, the average quality
score in Fig. 8 is lower than what is depicted in Fig. 6 and
Fig. 7. Fig. 8(a) shows that CFOV outperforms the existing
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Fig. 8. Average QoE results achieved by five streaming clients for 48 VR users with QoE weight coefficients set to C3; results from four videos prepared
in three tiling patterns and three segment duration.

streaming approaches by achieving 26.41%, 18.78%, 17.48%,
and 19.64% on average QoE improvements for the Boxing,
Conan, Football, and Spotlightl videos, respectively. In par-
ticular, CFOV improves the average QoE by up to 16.30%
compared to the UVP, up to 12.51% compared to the CTF, up
to 24.22% compared to the Hos, and up to 29.29% compared
to the Pet method for the entire test dataset. Fig. 8(b) shows
the average QoE comparison under Scenario B2 when the seg-
ment duration is set to 2s. CFOV experiences only 6.25% and
19.10% viewport deviation for the Boxing and Conan videos
with a 6x4 tiling pattern [Fig. 5(b)]; therefore, it efficiently uti-
lizes the available bandwidth budget and achieves average QoE
improvements of up to 16.25%, 41%, 44.95%, and 40.28%
for the Boxing video, and up to 15.67%, 5.56%, 30.68%, and
30.64% for the Conan video, in comparison to the other four
methods. Similarly, Fig. 8(c) shows that for the Football video
with a segment duration of 3s, CFOV achieves with 10.29%,
7.01%, 13.11%, and 17.35% higher QoE in comparison to
the UVP, CTF, Hos, and Pet methods, respectively. Similarly,
for the Spotlight video, CFOV has an effective QoE improve-
ment between 14% and 32% in comparison with the other
approaches.

C. Discussion

Most existing algorithms strive to balance different QoE
objectives, i.e., viewport quality, background quality, spatial
and temporal quality variations. For CTF and Hos algorithms,
the primary factor leading to performance degradation is the
per tile quality allocation starting from the center tile while

sacrificing the quality of the remaining tiles. As a result, these
algorithms struggle with the user-perceived quality and visual
smoothness objectives. UVP allocates bitrate for tiles belong-
ing to the same classification based on the estimated bandwidth
to reduce the spatial and temporal quality objectives. However,
for segment duration >2s, the visible tiles’ rate is reduced sub-
stantially due to the limited prediction accuracy (58∼78%),
leading to inefficient bandwidth utilization. The Pet method
has significantly lower QoE values than the other solutions
under stable and drastic head rotations. This is because the
invisible tiles consume an essential share of the bandwidth.
Contrary, our proposed solution always results in a higher
QoE than the alternative methods for all VR users. CFOV
sends much less data for the background tiles than the other
algorithms; therefore, it results in a lower background qual-
ity penalty for different viewport prediction results. Under
variable head movement traces, the Extended FoV or exter-
nal tiles of the proposed method provide improved QoE for
different videos across all tiling patterns. In conclusion, the
CFOV delivery of 360◦ videos is better than when the other
benchmark methods are employed.

VI. CONCLUSION

This paper presents CFOV, an innovative adaptive 360◦
video streaming solution which improves end-user QoE. In
the context of quality-efficient 360◦ remote video services,
CFOV reduces the complexity of tile selection by adopting two
FoV prediction mechanisms to better accommodate the user’s
viewing region in response to the different head movements.
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In addition, CFOV performs active and improved region-wise
bitrate allocations for selected tiles without incurring unnec-
essary bandwidth consumption. An extensive experimental
assessment was performed using four video streams prepared
in three tiling patterns and three segment durations under three
dynamic bandwidth scenarios. The experimental results show
that CFOV achieves with 9.28% higher average viewport over-
lap and between 12.74% and 21.5% higher average QoE than
the other solutions under different testing scenarios.
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