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Abstract—Owing to increasing consumption of video streams
and demand for higher quality content and more advanced
displays, future telecommunication networks are expected to out-
perform current networks in terms of key performance indicators
(KPIs). Currently, content delivery networks (CDNs) are used
to enhance media availability and delivery performance across
the Internet in a cost-effective manner. The proliferation of
CDN vendors and business models allows the content provider
(CP) to use multiple CDN providers simultaneously. However,
extreme concurrency dynamics can affect CDN capacity, caus-
ing performance degradation and outages, while overestimated
demand affects costs. 5G standardization communities envision
advanced network functions executing video analytics to enhance
or boost media services. Network accelerators are required to
enforce CDN resilience and efficient utilization of CDN assets.
In this regard, this study investigates a cost-effective service to
dynamically select the CDN for each session and video segment at
the Media Server, without any modification to the video stream-
ing pipeline being required. This service performs time series
forecasts by employing a Long Short-Term Memory (LSTM)
network to process real time measurements coming from con-
nected video players. This service also ensures reliable and
cost-effective content delivery through proactive selection of the
CDN that fits with performance and business constraints. To
this end, the proposed service predicts the number of play-
ers that can be served by each CDN at each time; then,
it switches the required players between CDNs to keep the
(Quality of Service) QoS rates or to reduce the CP’s opera-
tional expenditure (OPEX). The proposed solution is evaluated
by a real server, CDNs, and players and delivering dynamic
adaptive streaming over HTTP (MPEG-DASH), where clients are
notified to switch to another CDN through a standard MPEG-
DASH media presentation description (MPD) update mechanism.
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I. INTRODUCTION

N THE last few years, the demand for video content across
Ithe Internet has constantly increased. Video streams from
professional applications, such as Industrial Internet of Things
(IToT), medical equipment, connected and autonomous cars,
and from domestic services, such as gaming, virtual real-
ity, augmented reality, video over IP (VoIP) sports services,
and over-the-top (OTT) platforms are flooding networks with
real-time data intensive sessions. This evolution of Internet
traffic makes evident the severity of the network’s capacity
to guarantee a certain quality of service (QoS) for the video
applications. To prevent network flooding and to make video
delivery more efficient, content delivery networks (CDNs)
employ geographically distributed and cost-effective infras-
tructures as a service (IaaS) to enhance media availability
and delivery performance across the Internet. This hierar-
chical system that caches and stores video streams fosters
efficiency while geographical locations track human daytime
life cycles, which have a close relation with local content
demands.

Furthermore, the current video traffic crosses networks
working on a best-effort basis where the delivery time of
network packets is not guaranteed. Thus, it may cause stalls
during playback on player devices, damaging the quality
of experience (QoE). The popularity of video streaming
services over the Internet pushed video industry-Moving
Picture Experts Group (MPEG)-and standardization bodies to
create new formats which enable adaptive streaming over the
already existing Hypertext Transfer Protocol (HTTP) infras-
tructures. Thus, they allow the player devices to adapt the
content representation to the specific device capabilities (reso-
lution, codecs, etc.) and the changeable network connectivity.

Dynamic Adaptive Streaming over HTTP (MPEG-
DASH) [1], which was designed to mitigate problems
due to fluctuations on best-effort networks, is the solution
adopted by the video industry [2]. In fact, MPEG-DASH
enables pull-based streaming [3] and allows for scalable
distribution as it has a CDN-ready design [4] that enables the
exploitation of existing HTTP caching infrastructures without
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modifications. To this end, the MPEG-DASH pipeline splits
the video content into segments of fixed duration, usually
between 2 and 10 seconds; then, it encodes them at different
representation levels with a nominal resolution and bitrate.
Thus, for each segment request, the player can switch from
one representation to another depending on the assessed
network status.

Nevertheless, the MPEG-DASH client-driven approach
presents some drawbacks. First, each player is not aware of the
existence of the others, leading to high network dynamics as
the content download is not coordinated. Second, each player
strives to achieve optimized individual quality, which may lead
to unfairness when a congested connection path is shared [5].
Thus, it is challenging for a content provider (CP) to ensure a
certain level of quality to end users, who are accessing large
volumes of content through the same access point and com-
peting for the available bandwidth independently. Here, some
issues, such as initial buffering delay, temporal interruptions,
unsteady video resolution, and bitrate changes, may damage
the QoE [6].

Currently, CDNs are used to enhance media availability
and delivery performance across the Internet. The prolif-
eration of CDN vendors and business models allows the
CP to use multiple CDN providers simultaneously [7], [8],
[9]. However, extreme concurrency dynamics can affect
CDN capacity, causing performance degradation and out-
ages, while overestimated demand affects costs, thereby
increasing the operational expenditure (OPEX) of the
CP [10].

Upcoming 5G networks will need advanced and intelligent
mechanisms to dynamically deliver each data flow according
to the required service level agreement (SLA) and consid-
ering performance costs trade-offs. This concept is where
the approach proposed by this article takes place, fusing
network characteristics and media service options to match
user satisfaction and business policies.

A. Contribution

This work proposes a novel solution called intelligent
network flow (INFLOW) for CDN selection in a multi-
CDN delivery environment. It exploits periodical MPEG-
DASH media presentation description (MPD) updates to apply
dynamic switching among the available CDNs at the video
players in a standard compliant manner. The MPD with
the appropriate CDN endpoint is served by the INFLOW
Media Server, which works jointly with the INFLOW Forecast
Service. The INFLOW Forecast Service provides network met-
rics predictions based on a Long Short-Term Memory (LSTM)
network, a kind of Recurrent Neural Network (RNN), when
fed with the historical values of network metrics. The inte-
gration of the Forecast Server into the delivery chain allows
the Media Server to serve an MPD containing the BaseURL
of the CDN, which fits target QoS and CP’s business require-
ments. Thus, INFLOW allows for proactive and cost-effective
video streaming delivery. The proposed solution comprises the
following relevant contributions:
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« Exploitation of network performance metrics and MPD
information to apply common decisions to ongo-
ing streaming sessions. Captured network metrics are
employed to forecast CDN server capacity, then select
a CDN only if it would guarantee the viability to serve
the content at a minimum representation bitrate from the
available ones in the MPD.

o Dynamic CDN server switching. We employ a dynamic
approach switching from a CDN server to another
depending on the performed predictions at any time.
Thus, in contrast to current solutions, a streaming session
is not served from a single CDN provider.

« Practical application of a forecast model. The literature
proposing a forecast model for QoS network metrics is
usually limited to theoretical analysis and simulations,
and the predictions are not turned into video streaming
actions. On the contrary, we exploit the predictions to
switch the players among the available CDN servers, then
proactively act on the delivery.

« Business constraints are considered for the CDN selec-
tion. We include metrics for both the OPEX and the
QoS in the algorithm which selects the ideal CDN to be
employed. Thus, this sophisticated approach favours the
dynamic utilisation of a CDN marketplace to deal with
cost-effective trade-offs. OPEX reduction, while keeping
the QoS, is a major concern for practical deployments in
real-world streaming services.

To achieve the above contributions, we develop a Forecast
Service and a Media Server as complementary parts of the
proposed INFLOW solution. Forecast Service executes an
LSTM network performing real-time predictions of the QoS
metrics. Media Server updates the MPD according to the
network metrics predictions and CP’s business rules and serves
it to the clients. The solution was integrated and tested in
a real setup employing a multi-modal testbed including both
wired and wireless nodes. The wireless nodes were connected
through a real Long-Term Evolution (LTE) RAN infrastructure
of an operational Mobile Network stack including the radio
base station (eNodeB) and the Evolved Packet Core (EPC).
The traffic demand on video players was generated according
to a probability distribution widely employed in the literature.

This article is structured as follows. First, Section II reviews

related work in the field of video delivery based on CDN
performance and network traffic generation and forecast. Then,
Section III introduces the proposed INFLOW server, a novel
media server equipped with a forecast service that tunes the
delivery and applies a CDN selection mechanism based on
QoS metrics and business rules, as the main focus of this
article. Section IV describes the implemented setup using a
real testbed, while Section V presents the results of the val-
idation experiments. Finally, we assert our conclusions and
future work in Section VI.

II. RELATED WORK
A. CDN Resource Selection

A CDN is a network function widely employed to improve
content delivery by means of cloud service provisioning cache
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features. Fueled by the CDN vendor proliferation, media plat-
forms exploit multi-CDN strategies to obtain more reliable
content delivery that provides a steadier QoS and higher cus-
tomer satisfaction. Nevertheless, the CDN selection criteria
can be different for any CP.

A widely employed solution applies a static selection made
by the media server when a new streaming session starts. This
is used by Netflix [7] and Hulu [8], with big similarities [9].
They use three different CDN vendors mapping CDNs to the
location of client device or to a subscriber. Moreover, they
evidence that, the selected CDN is fixed during the streaming
session even when the QoS degrades. Thus, providers are more
prone to lower the representation bitrate instead of operat-
ing alternative CDNs. Hence, the authors conjecture that CDN
selection is most likely based on business policies.

However, Netflix has changed its strategy over the years,
and nowadays it uses its own CDN, which is called Open
Connect [11]. Open Connect can be run inside the ISP infras-
tructure so that a better QoS can be achieved as the content is
closer to the user. Netflix” solution is not that different from the
open CDN architecture proposed by [12]. The authors propose
collaborative participation of CPs and ISPs. On one hand, cost
reductions are realized as the ISP acts as a CDN. On the other
hand, the ISP provides better performance to the clients and
reduces traffic as the content is already present in its network
infrastructure.

The awareness of end-to-end QoS metrics measured by the
client can make the difference when the employed CDN is
dynamically chosen by the clients. The authors of [13] pro-
pose a client-side CDN selection. As a drawback, client-side
strategies do not produce a coordinated decision as each client
analyses the network performance of each CDN indepen-
dently, introducing bias and communication overheads. Hence,
a client-side CDN selection is not an optimal solution.

An intermediate solution consists of Domain Name System
(DNS) resolution. Here, the DNS server can resolve a fixed
hostname owned by the CP into different IP addresses of sev-
eral CDNs. Depending on the DNS resolution, the client is
directed to an appropriate CDN. The YouTube DNS-based
solution is shown in [14]. YouTube goes further as it allows for
the use of a hybrid DNS and application-level CDN selection.
First, the DNS redirects the client to a server. Then, the server
accepts or reject the client depending on the workload. If the
client is refused, the DNS redirects the client to another server.

In [15], the effects of DNS resolution for CDN selection
are further studied. The authors conclude that, depending on
the DNS service provider, Akamai and Google CDN servers
are chosen differently. Consequently, CDN performance highly
depends on the load balancing rules of the DNS server. Here,
a suboptimal CDN server selection leads to a higher round-trip
delay time (RTT). To solve this problem, the authors pro-
pose a DNS-proxy running on the client. This proxy forwards
the DNS requests to different DNS servers; then, it compares
the responses to identify the best performing CDN server.
However, these solutions are loosely coupled from media
player requests slots applying balancing policies independently
of media player timing. Instead, out approach is triggered by
the requests with the most recent available information.

147

CDN Brokering [16] is the ability to redirect clients dynam-
ically among two or more CDNs. CDN brokers collect
and analyze the performance metrics of the available CDNs
to select the one that performs best. Their work, in con-
trast to traditional multi-CDN strategies, is not limited to
the selection of the initial CDN for each client. This solu-
tion also moves clients between CDNs when performance
degradation is detected in real time. Thus, the CDN is dynam-
ically and seamlessly changed. As an example, the European
Broadcasting Union (EBU) proposed the EBU Flow Multi-
CDN [17], which consists of a CDN switching service that
selects the optimal CDN at any time. Similar approaches
are provided by Citrix [18] and LightFlow [19]. Thus, these
solutions are usually provided by intermediaries, federating
infrastructures from different vendors. However, our approach
keeps the control to the media service manager able to
dynamically change the business policy or tune the cost
function.

Edge computing systems promise a revolution on smart deliv-
ery of media traffic fueled by Multi-access Edge Computing
(MEC) [20] architectures from 5G. Thus, new solutions for
improving multi-CDN delivery involve investigating MEC
services. In [21] a MEC proxy is proposed. The proxy can
retrieve video streaming metrics of video players at the access
point transparently and CDNs performance metrics from the
wired link. Compared to a pure client-decision, a MEC proxy
can evaluate the performance of each CDN just once and apply
conclusions to other sessions (independently from the num-
ber of connected players). Moreover, it empowers the delivery
through a local edge cache. This feature guarantees traffic
reduction compared to server-side CDN selection as recurrent
content can be downloaded and cached once for every client.
In [22], a similar solution for a MEC-based cache is proposed.
However, till the moment the edge systems realize, current CDN
infrastructures makes the difference, and universal solutions
that dynamically manage balancing are required.

In [23], a prototype of CDN and ISP collaboration is
proposed. The ISP provides the CDN provider with services
that allow the CDN provider to retrieve geographical user dis-
tribution and allocate server resources inside the ISP’s network
topology. The authors of [24] propose a similar solution with-
out the binding to allocate resources in the ISP’s infrastructure.
In this case, a redirection center inside the ISP’s network inter-
cepts the client’s requests and selects the appropriate CDN.
This process is transparent to the client as the redirection cen-
ter stores the content in a CDN surrogate and instructs an
OpenFlow controller to migrate the traffic to a CDN surrogate.

Contrary to those approaches provisioning or balancing
serving resources, other works focus on the selection of the
appropriate bitrate to avoid congestion for a static number of
servers [25] or network assets [26]. To this end, the MPD is
parsed and heavier options are cropped. As implemented in
these works, our approach employs a compliant MPD update
mechanism. But, in our case, it is exploited to dynamically
manage the CDN resources at any moment depending on
network performance forecasts and CP business rules. The CP
can tune the media server, thereby influencing CDN selection
when the video player requests an MPD update.



148

IEEE TRANSACTIONS ON BROADCASTING, VOL. 67, NO. 1, MARCH 2021

TABLE I
FORECAST MODELS COMPARISON

Model Approach Number of variables Internal parameters
ARIMA statistical univariate a-priori (regression, integration
and moving average parameters)
Exponential smoothing statistical univariate a-priori (smoothing factor)
SETARMA statistical univariate a-priori (regression, moving average
and threshold delay parameters)
GARCH statistical univariate a-priori (regression

and lag length parameters)

Feed-forward NN neural network

multivariate

trained (weight and bias)

RNN neural network multivariate trained (input, output
and forget factors)
LSTM neural network multivariate trained (input, output

and forget factors)

B. Time Series for Network Traffic Forecast

The goal of applying time series analysis to network traffic
data is to forecast future conditions to take actions proac-
tively when actuation performance or cost policies are sat-
isfied. These techniques allow network management systems
to prevent network under-performance and outages, thereby
addressing network congestion preemptively.

The auto-regressive integrated moving average (ARIMA) is
employed in [27] to predict the workload of cloud services.
It employs historical records of observed requests to predict
the volume of requests for the following time interval. The
results reveal that the model can obtain the general trend,
but it lacks the ability to accurately and timely track traffic
peaks. The authors of [28] apply both ARIMA and expo-
nential smoothing models to predict throughput in an LTE
network. The two models are complementary, with ARIMA
outperforming the exponential smoothing models on weekdays
and the exponential smoothing models outperforming ARIMA
on weekends.

The authors of [29] and [30] found limitations in ARIMA
while modelling QoS attributes. QoS attributes, such as band-
width or latency have nonlinear behaviors that do not fit
the linear assumption of the ARIMA model. They over-
came this by introducing hybrid linear and non-linear mod-
els. The linear model was represented by the ARIMA
model. For the non-linear model, [29] used the self-exciting
threshold autoregressive moving average (SETARMA) model,
while [30] employed a generalized autoregressive conditional
heteroscedastic (GARCH) model. In both cases, the proposed
solution outperforms a standalone ARIMA model in forecast-
ing the time between QoS violations.

In recent years, machine learning (ML)-based techniques
for time series prediction have exhibited satisfactory per-
formances. Specifically, neural networks (NNs) are gaining
adoption in the generation of time series models. The authors
of [31] propose a feed-forward NN for predicting the execu-
tion time of services while varying the number of requesters.
In [32], a recurrent NN (RNN) is employed to forecast the
end-to-end delay from RTT metrics.

In [33], an LSTM model, a particular type of RNN, was
proposed. The authors employed a multivariate time series
model where data input was probed from downlink con-
trol information (DCI) messages, such as resource blocks,
transport block size, and scheduling information.

Table I shows the main differences between the employed
techniques for time series forecasting. Clearly, NN-based
approaches have the advantage to employ several variables
as input and/or output of the models, while statistical ones are
limited to one. Moreover, statistical approaches need a-priori
evaluation of internal parameters, while NN-based ones are
trained through a dataset of previous collected metrics. Here,
the parameters for statistical approaches are intended for the
whole model, while for NN-based ones, parameters must be
trained for each internal cell.

From the available algorithms to analyze and predict time
series, we employ LSTM network model as it satisfies two
requirements. First, in terms of accuracy, statistical solutions
(ARIMA and its derivatives) are slow when tracking quick
fluctuations in time series as they tend to concentrate on
the average value of the past observed values, as revealed
in [34]. Second, in terms of multivariate time series, statis-
tical solutions only can predict one variable. Thus, ARIMA
would require separate models for forecasting both latency
and bandwidth. On the contrary, LSTM is ready to process
multivariate time series. The authors of [35] and [36] revealed
that, the higher the number of input variables, the better the
traffic predictions of LSTM when compared to ARIMA.

ITI. INFLOW SOLUTION
A. System Architecture

To achieve reliable and cost-effective video delivery, we
propose the inclusion of our INFLOW solution in the video
delivery chain. The overall scenario of the solution is depicted
in Figure 1. The INFLOW solution is composed of two
components:

o« INFLOW Forecast Service: it receives the QoS
performance metrics from the video players and processes
them to predict the QoS values in the future.

o INFLOW Media Server: it exploits the results provided
by the Forecast Service by combining them with the CP’s
business rules to select the appropriate CDN for each
client.

Owing to the utilization of MPEG-DASH, INFLOW

includes the following features:

o Scalability. New CDNs can be easily managed by adding
them to the initial MPD.

« Real-time migration of video players to CDN providers.
Supported by standard-compliant MPEG-DASH MPD
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Fig. 1. General scenario of the proposed solution.
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Fig. 2. Sequence diagram of the INFLOW solution for video delivery.

update mechanism manages the utilization of a CDN by
the video player according to the gathered metrics and
business policies.

« MPDs can be parsed and processed even when the content
is encrypted with the MPEG-DASH Common Encryption
Scheme (CENC) [37]. The CENC format encrypts the
media segments indexed in the MPD, but the MPD is not
encrypted.

The sequence diagram of the exchanged messages is
depicted in Figure 2. Media segments are stored at differ-
ent CDNs, while the MPD is served by the INFLOW Media
Server. It is important that the media server uses a dynamic
MPD as it forces the player to periodically update, overwriting
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the Minimum Update Period attribute from the MPEG-DASH
standard [38]. On the other side, each video player downloads
the initial MPD and starts requesting for segments from the
initial CDN. A client-side adaptation mechanism constantly
monitors the statistics of the downloaded segments to select
a representation level among those available that fits with the
experienced network performance. Thus, the video player aims
to prevent stalls during playback. Typical monitored metrics
are the network bandwidth and latency, which provide a direct
measure of the QoS experienced by the client. Moreover, these
measurements are sent to the INFLOW forecast service. Thus,
video player should support a mechanism for sending feedback
to the forecast service, such as Server and Network-assisted
DASH (SAND) standard [39]. Finally, INFLOW forecast ser-
vice stores the measurements and uses them to predict the
future values.

The MPD served by the media server is fully conditioned
by the prediction of the forecast service. Every time a player
requests an updated version of the MPD, the media server
retrieves a prediction from the forecast service and decides
to serve the current MPD or to change the CDN included.
Therefore, the forecast service does not apply any QoS or
business rules—it simply processes the information provided
by the players. The QoS and business-based decisions are
made by the media server, and this decision process is exe-
cuted in real-time as the predictions are rendered out of
date after the predicted interval, leading to a new decision.
Therefore, the shorter is the segment duration, the more imme-
diate is the forecast validity and the prompter is the MPD
update.

The QoS forecasts serve two roles. First, the INFLOW
Media Server can select an appropriate CDN to shield from
CDN service degradation and outages based on the most recent
detected performance. To this end, the server receives alterna-
tive CDNs from the initial MPD and replaces the BaseURL
tag in the MPD with another CDN endpoint to migrate a
client. Second, the media server can count the video ses-
sions served by each CDN. On top of this information, the
media server can apply cost-effective policies, allocating extra
CDN resources to enforce QoS or retiring CDN assets to
reduce the number of employed CDN servers. Thus, the media
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Algorithm 1 INFLOW Forecast Service

Algorithm 2 INFLOW Media Server

function PREDICTMETRICS(bwX |, lf \» CDN¥)
> for each CDN infrastructure
> bandwidth mean for the
most recent period @ CDN*
> latency mean for the
most recent period @ CDN*
> bandwidth prediction
> latency prediction

> N bandwidth samples

Input: bw’t‘f 1
Input: E

Output: E\w\f

Output: lk _
{bwk} = {bwt 1, SbwE )
{1 = (i)
bwk ,zk « LSTM({bwF},{IF})

> N latency samples

> update forecast
model CDN*

service can manipulate the OPEX ranges to meet the business
model.

In the following section, we describe separately the two
components of the INFLOW solution.

B. INFLOW Forecast Service

The INFLOW forecast service is in charge of collecting
network metrics probed and sent by the video players and
processing them to predict the values in future slots. The most
recent metrics are processed while older ones are discarded
using a sliding window mechanism. The decision program of
the forecast service is shown in Algorithm 1.

The input are the last N historical values of network band-
width and latency measured and reported by the players for
a specific CDN (CDN¥). The samples comprised in the most
recent period are captured during last segment download. The
video player requests segments in a regular pace to fill its
buffer, according to the media duration of the segment. In
total, the algorithm processes two variables taken in N time
instants. Every new sample should be taken at a fixed temporal
distance from the previous one. Nevertheless, this assump-
tion of equal distance among the samples is not guaranteed
as players usually run asynchronously, and then the reports
are sent in a random time inside a segment slot. To overcome
this problem, the INFLOW forecast server employs a mean
value of samples within a second as the input of the algo-
rithm ({bw* |, ..., bw* \} and {zf 1> 5 D). The input
is processed through the LSTM network to predict the values
in the next second (bwf and ). The predicted values are the
output of the algorithm.

It is important to underline that the benefits of an LSTM
network over statistical approaches are two-fold. First, the
LSTM network performs better when time series includes
quick fluctuations [34]. Second, it is valid for multivari-
ate time series, such as bandwidth and latency, where
statistical methods fail to simultaneously process several
components [35], [36].

C. INFLOW Media Server

The media server must serve the MPD of the video play-
ers to provide awareness on available representations, content

function UPDATEMPD(urIMPD, SLA)

> for each MPD request
> requested MPD
> applicable SLA
> updated MPD
> requested MPD file
> minimum bandwidth

per player
dy < MPD > segment duration
{CDNjjss} < MPD > set of alternative CDNs
for all CDN* € {CDNj;;;} do > for each CDN

Input: uriMPD

Input: SLA

Output: MPD
MPD <« initial(uriMPD)
bwpin < targetQoS(SLA)

bW]f,] <« mean({bw][‘[_1 t)}) > average for most
recent period @

_ CDN*

lf_l <~ mean({l’[‘tfl,t)}) > average for most
recent period @
CDN"

bwt,l <~ predlctMetrlcs(bwt e 1,CDNk)

nk <~ sessmngg Nk) > total CDN¥ sessions
<« pohcy(bw,, N/ bwmm,dY,CDNk)
. > CDN* capacity
if ("t > n*) then > CDN* admits more sessions
BaseURL < URL(CDN¥)
> write CDN* URL
MPD <« update(MPD,BaseURL)
> update MPD

formats and metadata, and CDN endpoints. In our case, as we
were interested in CDN localization, the served MPD could
include one or more BaseURL tags containing the URLs of
the CDN servers. In cases with only one BaseURL, the client
is forced to use it.

The INFLOW media server stores an initial MPD con-
taining different BaseURL tags and modifies it while
excluding CDN alternatives to force a CDN to perform
according to the algorithm outcomes, which exploits the
predictions provided by the INFLOW forecast service.
The decision program of the media server is shown in
Algorithm 2.

The algorithm takes an initial configuration of minimum
bandwidth to be provided to the clients (bwy,) accord-
ing to the SLA, and the initial MPD. From the MPD,
it retrieves the segment duration (ds;) and a list of the
CDNs ({CDNjis}). When an MPD request reaches the
media server, it selects an appropriate CDN (CDN¥) from
the CDN list. This list ({CDNyy}) is ordered in ascend-
ing order according to expenses. Thus, the media server
first employs the affordable providers, migrating users to
cheaper services when possible. The media server retrieves
the prediction for each CDN from the forecast service (bwk

and lk) and stops if the expected capacity (n") is higher than
the current ones (#%). In other words, it selects the most
affordable CDN that has the capacity to serve more play-
ers. The number of expected players is evaluated through
the predictions and the initial configuration by means of
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Equation (1).

R (dx—it;>*bwf*nk
nk = (D)
dg * bWpin

To be timely delivered, the theoretical maximum download
time of a segment should be lower than the segment duration.
Furthermore, a padding time must be considered to take into
account the delay introduced by the network during the trans-
mission. Consequently, the predicted latency (lf) is used as
a penalization factor to estimate the effective download time
(ds-lf). Then, this value is multiplied by the predicted aver-
age bandwidth per video player (bwf) to assess the average
volume of data that each player can download. The total data
capacity is obtained by multiplying the number of sessions in
the CDN (n*) by the average volume of data that each player
can download. Finally, the overall traffic demand is divided
by the amount of data that a player should download dur-
ing a segment duration (d;) according to the SLA using the
minimum bandwidth provided (bwy,;,). The final value is the
CDN capacity according to an SLA, which is indicative of
the number of video streaming sessions that the CDN can
serve (nk).

Once a CDN is assigned to a session, the media server
selects the BaseURL corresponding to the CDN and generates
a new MPD by modifying the initial one. The order of the
CDNes in the list is important as they are ranked depending on
the cost. Thus, the media server chooses the first CDN that fits
with the necessary resources; then, the most affordable ones
are quickly booked to reduce CP’s OPEX.

IV. TESTBED SETUP

To demonstrate the cost-effective advantages of the
INFLOW approach in terms of QoS enforcement and CP’s
OPEX reduction, we deployed a heterogeneous and distributed
setup employing both FED4FIRE+ facilities [40] and our
facilities at Vicomtech (San Sebastian, Spain). Fed4FIRE+
is a Horizon 2020 project that provides open and accessi-
ble testbeds to support research and innovation initiatives in
Europe. Among the available facilities, we employed NITOS’s
network infrastructure [41] at University of Thessaly’s cam-
pus (Volos, Greece). NITOS provides heterogeneous testbeds
to execute experiments on real wired and wireless networks.

We use D-DASH dataset and infrastructure [42], with
Dynamic Adaptive Streaming over HTTP (DASH) standard
content mirrored over different sites at different locations
to perform CDN-based scientific evaluations. The dataset
includes the Red Bull Playstreet video sequence, which is
owned by Red Bull Media House and licensed for scientific
purposes. This sequence is encoded for 17 video representa-
tions through advanced video coding (H.264/AVC) and 4 dual
channel audio representations through advanced audio coding
(AAC). Both audio and video are segmented with different
segment lengths of 2, 4, 6, 10, and 15 seconds, and multiplexed
in ISO MPEG4 files (ISO/IEC 14496-12 - MPEG-4 Part 12).
For our experiments, we employed 2 seconds segments to
focus on live video content where dense client cells and con-
gestion of CDNs were likely. We did not modify the video

151

representations; instead, we used the available representations
in the dataset. The representations range from a resolution of
320 x 240 and 30 fps at 100 kbps to a resolution of 1920 x
1080 and 30 fps at 6000 kbps. As the client-side bitrate adap-
tation mechanism works on a best-effort basis and do not take
care of the presence of other connected players, each player
struggles to achieve the highest representation bitrate.

The final experimental setup comprises the following:

« 4 UE nodes: client nodes located at NITOS and running
100 DASH video players based on GStreamer multimedia
framework [43]. They feature both Ethernet and LTE
interfaces and are placed in the isolated environment
of the NITOS indoor testbed where they form a grid
topology.

e 1 eNodeB: USRP provided node performing eNodeB
stack located at NITOS. It forwards the packets from the
clients to the Access and Core Network.

e« 1 EPC node: wired node close to the eNodeB that
executes the EPC stack.

« 1 INFLOW Media Server: node at Vicomtech based on a
virtual machine with 2 GB RAM and single-core CPU. It
is provided with a public IP address to serve the MPD to
the video players. It runs a Node.js [44] server application
which applies QoS and CP’s business rules when sending
the MPD to the client.

« 1 INFLOW Forecast Service: node at Vicomtech based on
a physical machine having 12 GB RAM and quad-core
Intel i5 6500 CPU. To perform predictions, it features
NVIDIA GTX 1050 TI executing the LSTM model based
on TensorFlow [45].

« 3 servers: they belong to the D-DASH dataset [42] provid-
ing alternative CDNs storing the media segments to per-
form CDN-based scientific evaluations. They are located
at different sites with different nominal performances in
terms of bandwidth and latency.

To distribute the video streaming sessions between the wired
and LTE network interfaces, we considered the last Cisco
report concluding that mobile traffic covers 9% of the total
IP video traffic [46]. Hence, the experiment setup includes
nine video players connected through the LTE interface and
91 players employing Ethernet interface. The use of different
access networks is helpful for demonstrating its applicability in
representative and multi-modal scenarios. Moreover, we mod-
eled player inter-arrival rate and session duration according
to [47], which provides an extensive analysis on user behav-
ior while accessing streaming services. Thus, the inter-arrival
time distribution is a modified version of the Poisson distribu-
tion, while the session duration follows the declared sections
of 5 (37.44%), 10 (52.55%), or 25 min (75.25%).

During the experiment, a preliminary step was performed
to generate a QoS performance metric dataset for training our
LSTM model at the Forecast Service. The setup for dataset
creation is depicted in Figure 3(a). Here, the Media Server
serves a static MPD. It does not allow for player migration
among the different CDNs so that full characterization of a
specific CDN can be achieved, resulting in a time series for
a CDN. Then, during streaming sessions, network bandwidth
and latency measurements provided by the video players are



IEEE TRANSACTIONS ON BROADCASTING, VOL. 67, NO. 1, MARCH 2021

Multimedia data

Vicomtech office

= elasticsearch

I =

& T "7

Metrics data
MPD download/update

—
—
—
—
&

NITOS LTE indoor testbed

~—— Metrics forecast

Database Data processing for media

delivery

DASH
__ Players
~gstreamer

= R)= (¥

UEs
Zstreamer LTE dongle

Ttlé_l_t'—“- uEs

Ethernet

(b)

152
Distributed Vicomtech office —) ia data
DAISSI:"D:::”‘ = = elasticsearch Em) Metrics data pistributed
m @@= /K vibana EEEE) MPD download/update | DASH Dataset
P — 2 ‘il e 0 T f =rammp Data processing for media ' At
= Y O Database  Metrics f delivery g S
MediaServer _ Forecast Service visualization ] Media Server
e l / NITOS LTE indoor testbed F?:i’:s
=m el teaamer
— — l:l N2
/R —
e v - eNodeB l
=i UEs |
:_ DASH LTE dongle i/
CDN 3 Players [E e ]
CDN 3
Media UEs Media
__segments _ Ethernet segments
(2)
Fig. 3. Testbed setup: configurations for dataset creation (a) and for INFLOW enabled delivery (b).

stored in an Elasticsearch [48] database and employed to train
the forecast service predictor. Optionally, Kibana [49] dash-
boards are available to visualize the collected metrics and
guide LSTM training and tuning.

After the training phase is completed, a new setup for test-
ing the proposed INFLOW solution is applied (3(b)). Now,
the collected metrics sent with a SAND-alike mechanism are
consumed by the forecast service to execute bandwidth and
latency predictions for the next period. The predictions are
employed by the media server to apply its decision rules for
CDN selection. In this case, the media server serves an MPD
dynamically updated to force video players to periodically
request it. The update period is equal to the segment duration
(2 seconds) and it is set through the minimumUpdatePeriod
tag inside the MPD.

In this setup, we aimed to compare INFLOW with other
CDN selection strategies. Then, we compared the results for
the following common CDN selection strategies:

e Single CDN (SC): this experiment does not involve
multiple CDNSs. It uses just the most affordable CDN for
all the clients.

o Equal selection (ES): this experiment consists of balanc-
ing the occupancy rate of each CDN assigned when the
session starts. Therefore, every CDN has the same num-
ber of connected clients, and the video players do not
migrate between CDNs.

o Progressive selection (PS): this experiment consists of
progressive allocation of new CDNs when the used one(s)
gets exhausted, i.e., when the theoretical maximum num-
ber of connected clients is reached and the bandwidth
from the SLA is consumed. The maximum number of
clients is set to 33 (100 players/3 CDNs). The clients do
not migrate between CDNS.

o INFLOW selection (INFLOW): this experiment exploits
the capabilities of the proposed INFLOW solution
to dynamically migrate the clients depending on the
predictions and the applicable cost ranges. It aims to
minimize the use of CDN providers at any moment.

It is important to note that INFLOW needs to be set with
the SLA for the clients to avoid any violation on QoS. Setting
a bandwidth threshold lower than the minimum representation
bitrate (100 kbps) is useless as the players should always expe-
rience at least the minimum representation bitrate to play the
content. In the same way, a value higher than the maximum

representation bitrate is not valid. Then, we decided to set the
minimum bandwidth to 4 Mbps; this was enough to play a
smooth 1080p video, which corresponds to two-thirds of the
maximum available representation bitrate (6 Mbps).

V. VALIDATION AND RESULTS
A. Predictor Validation

The generation of the LSTM model consisted of three steps:
training, validation, and testing. Both the training and vali-
dation steps employed a training dataset, where 80% of the
samples were used for training and the remaining 20% were
used for the validation step. The training dataset consisted of
a multivariate time series, and bandwidth and latency mea-
surements were taken for three hours. The collection was
performed in three different sessions lasting one hour each.
Each session was executed on a different day and employed
a different CDN to download the content. The testing process
employed a testing dataset. The testing dataset consisted of
the training dataset with an extra hour of data collected on a
different day that was independent of the training dataset.

To guarantee that the LSTM model used equal spaced input
measurements, the simple moving average (SMA) was applied
to both datasets so that an average bandwidth and latency value
could be computed each second. This resulted in 10800 sam-
ples for the training dataset and 3600 samples for the testing
dataset. A total of 8640 samples of the training dataset (80%)
constituted the training set, while the remaining 2160 samples
(20%) were used as the validation set.

The training set was employed in the first phase to gen-
erate the LSTM model. The autocorrelation plot, depicted
in Figure 4, shows a clear correlation of the tuple (band-
width, latency) in the time series. Here, the autocorrelation is
lower for samples that are more distant. Consequently, sam-
ples which are closer to the one we want to predict are the
most valuable. The LSTM model provides next values based
on the last N bandwidth and latency measurements. N has
been empirically set to 7. A shorter window had a big impact
on LSTM accuracy, while a longer one did not result in a
significant increase in LSTM forecast fidelity. The accuracy
results when N = 6 dropped by 0.2% for the bandwidth and
by 2.7% for the latency. The accuracy increased when N = §
was under 1% for both time series.

A comparison of the values measured and predicted during
the validation is shown in Figure 5. The graphs show that the
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predictor can follow the trend of the time series, but it cannot
predict sudden and drastic changes (high or low outliers). We
calculated the mean absolute error (MAE) and the root mean
square error (RMSE) for both bandwidth and latency. The
MAE values were 0.76 Mbps and 11 ms for bandwidth and
latency, respectively, while the RMSE values were 0.99 Mbps
and 27 ms, respectively.

Once the model was validated, we generated the final model
by training it with all the training dataset (10800 samples).
Then, the final model was employed to predict values of the
testing dataset. We limited the test to 2160 samples to fos-
ter a fair comparison with the validation results with a similar
number of samples. For this subset, we compared the obtained
values of MAE and RMSE with the ones coming from the
previous validation. Figure 6 shows the results of the test-
ing process. The bandwidth MAE and RMSE were equal to
0.94 Mbps and 0.51 Mbps, respectively, which are definitely
close (and even better) to the values obtained during the valida-
tion. On the contrary, the latency MAE and RMSE were 31 ms
and 97 ms, respectively, making evident that the latency is
harder to accurately predict. From the Figure 6, it is clear that
latency produces higher outliers than the bandwidth, which are
difficult to predict.
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B. QoS Performance Comparison

INFLOW aims to manage the QoS performance and busi-
ness cost trade-off. To this end, we identified different
performance metrics for both the parameters to evaluate and
balance them. We carried out the QoS evaluation by collecting
the representation bitrate selected by the adaptation algorithm
of the video players. Moreover, we compared the repre-
sentation bitrate with the measured network bandwidth and
latency to evaluate the efficiency of the utilization of the CDN
resources as the efficiency increases as the overall throughput
of a CDN approaches the available CDN bandwidth.

We tested our solution by comparing it with other CDN
selection strategies. The final set of experiments utilized the
single CDN (SC), equal selection (ES), progressive selection
(PS), and INFLOW selection (INFLOW) strategies. As men-
tioned in the previous section, the minimum bandwidth for
INFLOW selection algorithm was set to 4 Mbps, and the max
amount of running players for each experiment was 100.

Table II shows the network latency for the video players.
The results for each CDN while employing SC, ES, and PS
strategies are close to each other. Each CDN presents sim-
ilar latency independently of the strategy. On the contrary,
INFLOW strategy presents a higher latency of up to +124%
(CDN3) as switching the connection from a CDN to another
inevitably implies the addition of delay. Furthermore, if the
experienced latency is still in the order of hundreds of mil-
liseconds, then it does not affect the video players, which have
a playback buffer equal to one segment duration (2 seconds).

Table III shows the available network bandwidth for the
video players while video content is being downloaded from
the CDNs. Table IV presents the selected bitrate from the
client-side algorithm.

SC strategy provides only information for CDNI1 as the
other two are never used. This strategy provides the worst
results when compared to the others because the players
are experiencing a highly congested CDN communication.
The average measured bandwidth is 2.54 Mbps, and average
representation bitrate is 1.67 Mbps.

As expected, SC results improve when the multi-CDN strat-
egy comes into place, therefore allowing for load balancing.
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TABLE 11
AVERAGE VALUE AND STANDARD DEVIATION OF THE MEASURED LATENCY BY THE PLAYERS
CDNI1 CDN2 CDN3
Strategy
lavg(ms) | 1geyy (M) | laug(ms) | Igey (MS) | lawg(ms) | 1ge,, (ms)
Single CDN 89 39 - -
Equal selection 89 42 132 35 42 25
Progressive selection 85 35 127 23 51 157
INFLOW selection 114 68 125 54 94 75
TABLE III
AVERAGE VALUE AND STANDARD DEVIATION OF THE MEASURED BANDWIDTH BY THE PLAYERS
CDNI1 CDN2 CDN3
Strategy
bWavg(Mbps) deeu (Mbps) bWavg(Mbps) bwdev (Mbps) bWavg(MbpS> deev(MbPS)
Single CDN 2.54 0.44 - - - -
Equal selection 2.66 0.41 15.50 7.16 11.42 2.76
Progressive selection 2.90 0.34 21.84 4.79 10.65 2.17
INFLOW selection 3.52 243 5.23 3.85 5.88 2.82
TABLE IV

AVERAGE VALUE AND STANDARD DEVIATION OF THE SELECTED BITRATE BY THE PLAYERS

Strategy CDNI1 CDN2 CDN3
Ravg(Mbps) | Rgey, (Mbps) | Rgug (Mbps) | Rgeq, (Mbps) | Rgoug(Mbps) | Rgeq, (Mbps)
Single CDN 1.67 0.62 - - - -
Equal selection 1.78 0.67 4.46 2.10 4.77 1.71
Progressive selection 1.96 0.61 5.10 1.78 4.48 1.98
INFLOW selection 1.96 1.23 2.44 1.57 2.82 1.43

ES and PS strategies limit to 33 (100 players /3 CDNs) the
number of players connected to CDNI1. Both strategies pro-
duce similar results for the different CDNs. For CDNI1, the
average measured bandwidth of ES and PS, when compared
to single CDN strategy, improves +4.7% and +14.1%, respec-
tively. These results mean a higher bitrate selection, +6.6%
and +17.4%, respectively. Moreover, the selected bitrates are
considerably higher for CDN2 and CDN3 as they provide
a higher performance. These CDNs provide more network
resources serving higher bandwidths for video players. The
measured results range between 15.50 Mbps (ES) and 21.84
(PS) for CDN2 and 10.65Mbps (PS) and 11.42 (ES) for CDN3.
Thus, distributing video players across the available CDNs by
just considering the number of players per CDN (33 players)
is not fair as video players connected to CDN2 and CDN3
can select higher representation bitrates. Video players select
a representation bitrate up to +160% higher if connected to
CDN2 and +168% higher if connected to CDN3.

INLFOW uses a different approach. Here, the maximum
number of players for each CDN is constantly updated through
Equation (1). Then, video players are dynamically switched at
any time. CDNTI still underperforms compared to CDN2 and
CDN3, but the fairness is lower. The residual performance bias
is due to the fact that CDNI1 is still the preferred CDN, i.e., the
other two are not used until CDNI1 is congested. Accordingly,
CDN3 is not used until CDN2 is congested too. Here, the
higher average measured bandwidth is 5.88 Mbps at CDN3,
which is +67% higher than the result at CDN1 (3.52 Mbps).
For ES and PS, the variations are +483% (CDN2 compared
to CDN1) and 653% (CDN2 compared to CDN1), respec-
tively. In terms of the selected representation bitrate, INFLOW
keeps the results obtained by the other multi-CDN strategies at

CDNI1 but underperforms at CDN2 and CDN3. This is because
INFLOW aims to reduce the number of employed CDNs and
the OPEX at any time, while guaranteeing at least 4 Mbps
for the measured network bandwidth. Thus, video sessions to
CDN2 or CDN3 can be retired, therefore saving the CDN
OPEX. The other multi-CDN strategies do not reduce CDN
usage, i.e., when the player is connected to a CDN, the con-
nection is maintained until the session expires. In terms of
fairness, INFLOW outperforms the other multi-CDN strategies
as the average representation bitrates of each CDN are close
to each other. Video players connected to CDN2 present the
best representation bitrate (2.44 Mbps), which is +24% higher
than those of video players connected to CDN1. Moreover,
standard deviation for measured bandwidth and representation
bitrate achieved with INFLOW also demonstrates that it is the
fairest solution since the players experience almost the same
variation independently of the CDN. Standard deviation for
CDN2 is +58% higher than CDN1 if we consider measured
bandwidth and +27% if we consider representation bitrate.

Concerning communications overheads to proactively
enforce QoS, the traffic overhead is 893 MB from the total traf-
fic (53592 MB). Thus, overhead causes an increase of +1.6%
in the transmitted data. INFLOW exploits MPD update mech-
anism with an update period is equal to the segment duration.
In our case this means 9040 Bytes requested every 2 seconds
by each player. In the other strategies, MPD update mechanism
is not used, then there is not an additional overhead.

The predictions performed by the INFLOW Forecast service
during the MPD requests causes also higher MPD delivery
delay compared to the other strategies. As a result, INFLOW
strategy adds 53 ms of delay while delivering the MPD.
Nevertheless, this delay does not affect the playback since the
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player employs the previous MPD until a new one is received
and parsed. Thus, if it is necessary to perform a segment
request during an MPD update, it is performed in any case,
as the two operations are executed in different threads and
do not interfere with each other. In terms of resource utiliza-
tion, the node running the INFLOW Forecast service shown
3.2 GB RAM, 33% CPU and 27% GPU peak utilization rates.
Thus, its hardware configuration could absorb a larger number
of users.

C. Business Cost Comparison

Regarding business cost, OPEX consists of ongoing
expenses that a business incurs inherent to the operation of
the assets. In our case, we were interested in OPEX, as we
wanted to evaluate the cost of the CDN resources due to their
ongoing utilization, i.e., it depends on the utilization of the
CDN resources at any time [50].

There is no common formula for evaluating the OPEX,
as in many cases, the provider does not publish publicly its
pricing plans, but it offers personalized plans to each cus-
tomer. Nevertheless, [51], [52] and [53] reveal that the OPEX
for CDN resources depends on a set of factors, such as the
employed network, storage, and time resources. Then, we
express monthly OPEX through Equation (2).

K
OPEXyonth = Z Aloc; * Tri + Bioc; * Kreg;
i=1
+ Yioc; * Ti + 5[00[ * Sti + €loc; (2)

In the equation, Tr; is the traffic volume in a month, K,
is the number of HTTP requests producing such demand, T;
is the utilization time for a CDN that has active sessions
from video players of a service, and St; is the employed stor-
age at the CDN. Therefore, ajoc;, Bioc;» Vioci» Sioc;» and €y
are multiplicative coefficients established by a particular CDN
provider and that depend on the location of the resources (cost
of the servers depends on the country where they are located).
The addition indicates that we are in multi-CDN environment.
Then, we need to sum over the K available CDNs.

The values for the coefficients are closely related to the
business model and the pricing plan of each CDN provider.
Accordingly, the monthly OPEX is tailored to the employed
CDNs. In any case, we evaluate the variables independent
of the CDN vendor, which depend on the resources we are
employing during the tests (77, Kyey;, T; and St;) and directly
impact the OPEX.

To simplify the evaluation of OPEX, we have made some
assumptions. First, St; is fixed for each experiment as the
amount of employed storage depends on the content size,
and it is permanently stored, even if it is never requested.
Second, Kjeq; is almost constant as, in any case, the experi-
ments run 100 players, which request a media segment and
an MPD every 2 seconds (segment duration). Third, Tr; is
directly proportional to the selected representation bitrate. It
can be roughly calculated by multiplying the mean bitrate of
the sessions from video players and the duration of the exper-
iment. As the selected bitrate is already being captured for
the QoS evaluation, we can assess the traffic volume. Finally,
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TABLE V
UTILIZATION TIME OF THE CDNS
CDNI1 CDN2 CDN3
Strategy - - -
T;(minutes) | T; (minutes) | T; (minutes)
Single CDN 60
Equal selection 59 59 58
Progressive selection 58 58 57
INFLOW selection 52 48 31

T; is the variable that really changes across every experiment
depending on the cost-effective strategy, leading to different
utilization rates for each available CDN. Then, we employ T;
as the main metric for comparing the OPEX achieved by the
different strategies.

Table V shows the usage time of each CDN while applying
the different strategies. ES strategy is the most expensive solu-
tion as all the CDN are utilized almost all the time. In this case,
the overall usage time is close to 3 h (1 h per each CDN). The
actual result is 176 min. On the contrary, SC results in lower
business costs as CDN2 and CDN3 are never employed. In this
case, the usage time is just 60 min. PS is quite like ES. Figure 7
shows the number of players connected to each CDN for one
hour and it is clear that ES and PS differ only in the first min-
utes. In ES, the three curves increase almost together, while
in PS, the curves separately increase because CDN2 is not
employed until CDN1 reaches 33 players and CDN3 is only
employed after both CDN1 and CDN2 reach 33 players. The
overall usage time is 173 min, which corresponds to a reduc-
tion of —2% compared to ES. From Table V, the usage time
of each CDN while employing PS strategy is similar to ES
one. Finally, INFLOW graph presents a completely different
behavior. Here, the number of players connected at each CDN
is much more variable owing to the switching mechanism. The
number of players of each CDN ranges between 0 (the CDN
is not being used) to 100 (CDN serving all the players). The
number of players for the other multi-CDN strategies is always
around 33 players. Nevertheless, INFLOW can retire the ses-
sions from a CDN, which is not necessary after migrating the
clients. This results in 131 min of overall usage time; then
the reductions for ES and PS are —26% and —24%, respec-
tively. Compared to SC strategy, INFLOW employs +118%
more CDN usage time, while the value increases to +193%
and +183% for ES and PS, respectively. If we focus on the
usage time of each CDN, Table V clearly shows that INFLOW
reduces the usage of CDN2 and CDN3.

In summary, the proposed INFLOW solution improves the
CDN resource management by dynamically selecting the CDN
for each video player at any time. It allows for business cost
saving by decreasing the usage time of the available CDNs,
while maintaining a minimum bandwidth level. Moreover, the
resources are more efficiently exploited because the players
are distributed depending on the real capabilities of each CDN,
such as the experienced network resources. Consequently, the
selected bitrate is fairer among the players.

VI. CONCLUSION AND FUTURE WORK

The trend for the following years is an increasing consump-
tion of media content, where the content is mostly delivered
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through CDN infrastructure. Here, the CP strives to guarantee
the necessary QoS for its media service while reducing the
business costs associated with the CDN.

Toward this goal, we introduce a novel solution called
INFLOW for CDN selection in a multi-CDN delivery envi-
ronment. INFLOW enables the media server with a forecast
service so that metrics collected by the player are processed
as MPEG-DASH streams are served. The forecast service
executes time series analysis through an LSTM model for
prediction of the future values of network bandwidth and
latency. The predictions are exploited by the media server to
act while the player requests an MPD update. The media server
can decide to keep the same MPD or change it to switch the
player to another available CDN from which content can be
downloaded.

The proposed solution has been implemented and validated
in a distributed and heterogeneous testbed employing real
network nodes. The evaluation includes a comparison with
other CDN selection strategies in terms of QoS and busi-
ness cost. The results highlight the advantages of INFLOW
for reducing the overall usage time of the available CDNs,
while guaranteeing a minimum level of network bandwidth to
every player.
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Future work includes the exploitation of new metrics
to improve the predictions made by the forecast service.
Moreover, the collected metrics can be further exploited
to obtain an estimation of a user’s QoE, and actions that
also take into consideration the user’s expectations can be
taken.
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