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A Practical Monochrome Video Colorization
Framework for Broadcast Program Production

Rei Endo

Abstract—Techniques of using convolutional neural networks
(CNNs) to colorize monochrome still images have been widely
researched. However, the results of automatic colorization are
often different from the user’s intentions and historical fact. A
lot of color correction work still needs to be done in order to
produce a colorized video. This is a major problem in situa-
tions such as broadcasting production where footage must be
appropriately colorized in accordance with historical fact. In this
article, we propose a practical video colorization framework that
can easily reflect the user’s intentions. The proposed framework
uses a combination of two CNNs—a user-guided still-image-
colorization CNN and a color-propagation CNN—that allows
the correction work to be performed efficiently. The user-guided
still-image-colorization CNN produces key frames by colorizing
several monochrome frames from the target video on the basis of
user-specified colors and color-boundary information. The color-
propagation CNN automatically colorizes the entire video on the
basis of the key frames, while suppressing discontinuous changes
in color between frames. A quantitative evaluation showed that
it is possible to produce color video reflecting the user’s intention
with less effort than with earlier methods.

Index Terms—Colorization, convolutional neural network
(CNN), generative adversarial network (GAN).

I. INTRODUCTION

IDEO from old monochrome film not only has strong
Vartistic appeal in its own right, but also contains many
important historical facts and lessons. However, it tends to
look very old-fashioned to viewers. To convey the world of the
past to viewers in a more engaging way, TV programs often
colorize monochrome video [1], [2]. Outside of TV program
production, there are many other situations where colorization
of monochrome video is required. For example, it can be used
as a means of artistic expression, as a way of recreating old
memories [3], and for remastering old images for commercial
purposes.

In most cases, the colorization of monochrome video has
required experts to colorize each individual frame manually.
This is a very expensive and time-consuming process. As a
result, colorization has only been practical in projects with
very large budgets. In recent years, efforts have been made to
reduce costs by using computers to automate the colorization
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process. When using automatic colorization technology for TV
programs and movies, an important requirement is that users
should have some way of specifying their intentions regarding
the colors to be used. A function that allows specific objects to
be assigned specific colors is indispensable when the correct
color is based on historical fact, or when the color to be used
has already been decided upon during the production of a
program. Our aim is to devise colorization technology that
meets this requirement and produces broadcast-quality results.

There have been many reports on accurate still-image col-
orization techniques [4], [5], [6], [7], [8], [9]. However, the
colorization results obtained by these techniques are often dif-
ferent from the user’s intention and historical fact. In some of
the earlier technologies, this issue is addressed by introducing
a mechanism whereby the user can control the output of the
convolutional neural network (CNN) [10] by using user-guided
information (colorization hints) [11], [12]. However, for long
videos, it is very costly and time-consuming to prepare suit-
able hints for every frame. The amount of hint information
needed to colorize videos can be reduced by using a tech-
nique called video propagation [13], [14], [15]. Using this
technique, color information assigned to one frame can be
propagated to other frames. In the following, a frame to which
information has been added in advance is called a “key frame”,
and a frame to which this information is to be propagated
is called a “target frame”. However, even using this tech-
nique, it is difficult to colorize long videos because if there
are differences in the colorings of different key frames, color
discontinuities may occur in places where the key frames are
switched.

In this article, we propose a practical video colorization
framework that can easily reflect the user’s intentions. Our
aim is to realize a technique that can be used to colorize entire
video sequences with appropriate colors chosen on the basis of
historical fact and other sources, so they can be used in broad-
cast programs and other productions. The basic concept is that
a CNN is used to automatically colorize the video, and then
the user corrects only those video frames that were colored
differently from his/her intentions. By using a combination
of two CNNs—a user-guided still-image-colorization CNN
and a color-propagation CNN—the correction work can be
performed efficiently. The user-guided still-image-colorization
CNN produces key frames by colorizing several monochrome
frames from the target video in accordance with user-specified
colors and color-boundary information. The color-propagation
CNN automatically colorizes the entire video on the basis
of the key frames, while suppressing discontinuous changes
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in color between frames. The results of qualitative evalua-
tions show that our method reduces the workload of colorizing
videos while appropriately reflecting the user’s intentions. In
particular, when our framework was used in the production of
actual broadcast programs, we found that it could colorize
video in a substantially shorter time compared with man-
ual colorization. Figure 1 shows some examples of colorized
images produced with the framework for use in broadcast
programs.

The main contributions of this article are as follows:
(1) identifying the practical issues with current video col-
orization technology and devising a practical framework to
solve these issues; (2) providing the still-image-colorization
CNN with the positions of color boundaries so that the user’s
intentions can be reflected more flexibly in the CNN output;
(3) providing a color-propagation CNN with the ability to use
multiple key frames so that the user is freed from the labori-
ous task of preparing key frames with strictly controlled color
shading; (4) reporting on an application of our framework to
the production of actual broadcast programs.

This article is organized as follows. In Section II, we present
an overview of the conventional techniques. In Section III, we
describe our framework. In Section IV, we describe the two
types of CNN used in our framework. In Section V, we discuss
the experimental results. Finally, in Section VI, we present our
conclusions.

II. RELATED WORK

Still-image-colorization techniques can be broadly divided
into three types: example-based colorization [16], [17], [18],
[19], data-driven automatic colorization [16], [20], [21], [22],
[23], and user-guided edit propagation [11], [12], [24], [25],
[26], [27], [28], [29].

Example-based methods colorize by selecting a color from
an example color image provided by the user. Welsh ef al. used
the similarity of image patches to select colors from an
example color image [16]. Pierre et al. realized colorization
with spatial consistency by selecting colors that minimize the
total variation of the colors of the entire image [17], [18].
Varga and Sziranyi proposed an example-based method

A colorized film made for an actual TV broadcast production using the proposed framework.

that uses a CNN [19]. Their CNN learns from a lot
of monochrome-image and example-color-image pairs in
advance. It can accurately colorize images that include objects
with complex shapes. The example-based methods require
users to provide an example color image that is very simi-
lar to the monochrome image to be colorized. Hence, they
cannot be used in situations where users cannot prepare an
example color image.

Data-driven methods use an image database to obtain a map-
ping from grayscale to color images. In particular, several
very precise techniques using CNNs and large-scale train-
ing data sets have recently been reported [4], [5], [6], [7],
[8]1, [9]. In data-driven methods, colors are determined on the
basis of a large number of color images used in the pre-
training. As a result, example images are not required for
colorization. lizuka et al. achieved vivid colorization through
parallel learning of global and local image features [6].
Larsson et al. proposed a framework for a posteriori hue con-
trol to match a specific histogram following data-driven col-
orization [7]. Isola et al. used a framework called a conditional
generalized adversarial network (GAN) that uses competition
between two adversarial CNNs to achieve precise transfor-
mations of images with regard to various attributes including
color [9]. The colors produced by these data-driven methods
are stored in the database used for learning. Consequently,
it is not always possible for the CNN to apply suitable col-
ors to objects such as cars and clothing that vary widely in
coloration. Also, although some methods allow the color of
the whole image to be changed, it is not possible to change
only the color of a specific object in the image. When col-
orized images are used in a broadcast program, objects whose
correct color is known as a matter of historical fact must be
colorized with that correct color. Therefore, a way that can
easily change the color of individual objects is required in
broadcast program production.

User-guided methods work by propagating manually pro-
vided colorization hints (some of the colors and strokes) to
the surrounding areas. In the past, color propagation was based
on low level similarities such as changes in luminance [18],
[24], [25], [30], [31]. Pierre et al. proposed a method to
combine example color images with colorization hints [18].
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Fig. 2.
performed by the still-image-colorization CNN, while step (4) is performed
by the color-propagation CNN. Step (2) is performed manually.

Colorization procedure of our framework. Steps (1) and (3) are

Casaca et al.’s method divides the object into small areas by
using Laplacian coordinates segmentation and colorizes each
area with a color specified by the user [31]. This method
does not require an example color image. However, since an
object with a complicated shape is divided into a number of
small areas, colorizing images containing many such objects
requires a lot of manual editing. The advent of CNNs has
made it possible to perform colorization with simpler opera-
tions for images containing objects with complicated shapes.
Chang et al. proposed a method that controls the colors out-
put by using a color palette [11]. Zhang et al. implemented
a localized control based on manual instructions by training
a CNN on emulated user instructions [12]. These methods
are extremely innovative in that they make it easy for people
to perform colorization according to their intentions with-
out having to acquire expert image-editing skills. However,
it is difficult for a CNN to distinguish color boundaries in
regions of monochrome images where the luminance differ-
ence is small. There is a possibility that this problem will be
solved in the future by using an affinity learning module, as in
the study of Wang et al. [32]. However, the current methods
require many coloring hints in order to achieve the intended
colorization in regions of the monochrome images where the
luminance difference is small.

Video propagation techniques operate on pairs of frames in
a video sequence, whereby information assigned to one frame
is propagated to other frames [13], [14], [15]. These tech-
niques are based on the fact that consecutive frames are often
very similar, allowing propagation to be performed with high
precision when the correlation between frames has been rec-
ognized. There is a clearly a strong relationship between the
color information and monochrome images. Therefore, these
techniques can be used to propagate colors from colorized
key frames to other non-colorized frames. Liu ef al. achieved
high-precision propagation at a low computational cost by esti-
mating the transformation parameters for propagation instead
of directly propagating the color information [15]. Although
these techniques are able to uniformly colorize whole video

clips in a short time, they all assume that multiple color key
frames are available.

Problems arise when attempting to precisely colorize long
video sequences. To properly colorize videos of a certain
length, it is necessary to prepare multiple key frames for two
reasons. One is that the color propagation accuracy decreases
as the distance between the key frame and the target frame
increases. The other is that it is not possible to specify the col-
ors of transient objects that do not appear in the key frames.
In Liu er al’s method, the color to be applied to the tar-
get frame is determined from only one key frame. Therefore,
unless color consistency is maintained between key frames,
color discontinuities will occur at places where the key frames
are switched. Even if the set of key frames used for coloriza-
tion is prepared using a still-image colorization technique in a
user-guided system, it is still very difficult to create accurate
enough colorization hints for a large number of frames so that
the color tones do not change between key frames.

III. PROPOSED FRAMEWORK

Here, we propose a practical video colorization framework
that can easily reflect the user’s intentions. The basic concept
is that a CNN is used to automatically colorize the video, and
then the user corrects only those video frames colored differ-
ently from his/her intentions. This semi-automatic colorization
can reduce the amount of work users have to do without
degrading the colorization quality. In particular, the color cor-
rection work can be done efficiently by using the user-guided
still-image-colorization CNN and color-propagation CNN. All
the user has to do is to correct the colors of a few key frames
by using the user-guided still-image-colorization CNN. After
that, the color-propagation CNN automatically corrects the
colors of other frames by referring to the key frames.

Figure 2 shows the colorization procedure of our system.
The colorization process consists of four steps: (1) In the fully
automatic colorization step, the still-image-colorization CNN
colorizes each frame extracted from the monochrome video to
obtain a set of intermediate output frames. In this case, the
CNN is not provided with any user hints about how the col-
orization should be performed. (2) In the key frame selection
step, the user selects key frames from the set of intermediate
output frames. (3) In the color correction step, if color correc-
tions based on historical fact or other information are required,
the user creates instructions corresponding to these corrections.
The colors to be included in the user instructions are deter-
mined by experts, such as historians, who are familiar with the
objects (e.g., buildings and automobiles) and cultural aspects
(e.g., colors of clothes that were in fashion in the past) shown
in the monochrome video. The experts decide the color to be
corrected by referring to historical records and knowledge of
the dyes and paints available at that time. It is common practice
to have such experts supervise the colorization of TV pro-
grams and movies. They check the intermediate output frames
and make sure the color of each object matches the historical
facts. Then, they create a color correction table that describes
the objects and the colors they should have. The user cre-
ates instructions by referring to the color correction table. The
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Fig. 3. Network structure of the still-image-colorization CNN and color-propagation CNN. The CNNs consist of a generator G that generates color information
¥, and encoders Ehint and Ejey that control the output of G. The difference between these two CNNs is that one only uses Epin, While the other only uses
Eyey. (G is exactly the same in both CNNs.) G is a color estimation network that outputs color information Y from an input grayscale image X. Epjn and
Eyey are networks that extract context information for use in correcting the output of G based on hints provided by the user. The color propagation CNN
shown in the figure corresponds to the case where only one key frame is provided as input. When there are multiple input key frames, the operation is slightly

different (See Fig. 4).

expert could also create the user instructions directly. Using
these instructions, the still-image-colorization CNN colorizes
the key-frames selected on the key frame selection step. As
well, a CNN cannot fully understand user intentions. If the
CNN cannot properly colorize in accordance with the user’s
intentions, the user makes manual color corrections. (4) In the
color propagation step, the colors of the key frames specified
by the user are propagated to the other uncolorized frames
by the color-propagation CNN. The final result is a colorized
video with consistent color tones between consecutive frames
that appropriately reflects the user’s intentions.

IV. STILL-IMAGE-COLORIZATION CNN AND
COLOR-PROPAGATION CNN

This section describes the network structures and learning
methods of the two CNNs used in the proposed framework.
Figure 3 shows the structure of the CNNs. The CNNs are
extensions of Zhang et al.’s method [12], but the variety
of user instructions that can be given to them are different.
Zhang et al.’s method only takes instructions that specify
colors, whereas our method also takes instructions describ-
ing the boundaries between regions of different colors and
specifications of key frames.

The still-image-colorization CNN colorizes video by treat-
ing each constituent frame as an individual still image. The
input consists of a grayscale image X € R>#>*W and two sets
of user hints Ucglor € RV and Uporger € R *W . The
output consists of color information¥y € R2*#*W Here, H
and W represent the height and width of the input images,
respectively. Ucolor are hints about the colors of areas of the
image, and Upgrder are hints about the positions of the color
boundaries. For Uglor, We used the approach proposed by

Zhang et al. [12]. Each pixel of the first channel correspond-
ing to the first dimension of U,clor takes a value of 1 if a color
is specified at this location, or —1 otherwise. The pixel values
of the second and third channels provide the color information
(i.e., a and b channels of the Lab color space). Uporder 18
additional information that we propose to use, consisting of a
matrix indicating whether or not each pixel is a color bound-
ary. A pixel value is 1 if the user wants a color boundary at
this location, or —1 otherwise. With Ucgglor alone, it is diffi-
cult to colorize a region of constant luminance with multiple
colors, because there are no clues in the monochrome image
to determine the color boundaries. By using Uporder, the user
can teach the positions of the color boundaries to the CNN so
that such regions can be colorized properly. The fully auto-
matic colorization step (Step (1) in Figure 2) does not use user
hints, so all pixels of Ugolor and Uporder take —1.

The color-propagation CNN propagates the colors from the
colorized key frames to the entire video. The input consists of a
grayscale image X and a set of key frames Uyey € RE*3XHXW,
The output consists of color information ?prop € RZXHxW g
represents the number of input key frames. Unlike the con-
ventional method [15] that only uses a single key frame, the
color-propagation CNN can take any number of key frames
as input. This makes it possible for it to process colorization
discontinuities that may occur between key frames. Note that
the operation is slightly different when there are multiple input
key frames (See Fig. 4).

A. Network Architecture

As shown in Fig. 3, the two CNNs of the proposed frame-
work consist of a generator G that generates color information
and encoders Epint and Egey for controlling the output of G.
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The structure of each CNN is outlined below. Details of the
structures and hyperparameters can be found in Appendix A.

The generator G takes a grayscale image X as input and out-
puts color information ¥. The generater has the same structure
as Zhang et al.’s method [12], consisting of 3 downsampling
blocks, 4 convolution blocks, and 3 upsampling blocks. Each
downsampling block consists of two or three convolution lay-
ers followed by a normalization layer and a nearest-neighbor
downsampling layer. Each convolution block consists of three
convolution layers followed by a normalization layer. Each
upsampling block consists of a transposed convolution layer
followed by one or two convolution layers and a normaliza-
tion layer. The downsampling blocks and upsampling blocks
are connected by three shortcut connections (See [12] or
Appendix A for the shortcut connections that are omitted in
Fig. 3). Finally, a convolution layer is used as a projection
layer for outputting color information. When using the con-
text matrix Context € R312X§ %% produced by Epine and Ejey,

the output OG, coms € RS12XEX¥ of the fourth convolution
block is input to the first upsampling layers after calculating
the element-wise product.

The user hint encoder Epine takes the intermediate layer
outputs of G, the color specification information Ugglor, and
the color boundary information Upgrder as input and outputs
a context matrix Contextpint. Epint consists of 3 downsam-
pling blocks, 4 convolution blocks, and one projection layer
for Contexthine. The intermediate outputs of G (the outputs
of the layers before the downsampling layers and the out-
put of the final convolution block) are concatenated with the
inputs of Epip (the inputs of the all downsampling blocks
and the input of the first convolution block). The output of
the projection layer Og,;., proj € R312X¥ ¥ s processed by a
softmax function in the channel direction (first dimension) to
give Contextyiy.

The key frame encoder Exey takes the intermediate layer out-
puts of G and the key frame Uyey as input and outputs a context
matrix Contextyey. Exey consists of 3 downsampling blocks, 4
convolution blocks, and two projection layers for Contextyey
and Confidence,,. The output of the projection layer is pro-
cessed by a softmax function in the channel direction (first
dimension) to give Contextyey. The color-propagation CNN
supports multiple key frame inputs. Figure 4 shows the proce-
dure when there are multiple key frames. Here, Eyey outputs
Conﬁdencef(ey e RX§XF g Fhe same time as Contextf(ey for
each key frame i. Conﬁdencei(ey indicates the extent to which
each pixel of the Contextf(ey plays a useful role in the coloriza-
tion of grayscale image X. In order to use all of the Contexti(ey,
the quantity of data must be compressed to the same size as
a single context matrix. In our framework, the data is com-
pressed by combining Context}(ey with weightings provided
by Conﬁdence}(ey. A softmax function is applied to the first
dimension of the concatenated Conﬁdencei(eys to obtain the

weight matrix Weight € RRX¥X¥ . Each matrix obtained by
splitting Weight in the first dimension is the weight map for
each Context}(ey. Then, using the resulting weight matrix, all
of the Context{(e s are summed to obtain the final Contextyey
value for multiple input key frames.

B. Optimization

In our framework, G is pretrained by using the cross-entropy
as a loss function, as in Zhang et al.’s method [12], to learn
the color distribution of the training data correctly. In the next
step, the shared generator G and the encoders Ehiy, Exey are
trained simultaneously. During the training, the CNN outputs
f/stin and f’pmp are always generated at the same time. The
losses for optimization are calculated on the basis of the same
function £ for Yy and f/pmp. L is defined by

L = A Lmsg + A2LcaN + A3LeM, 1

where Lysg is the mean square error (MSE) loss, Lgan and
Lpm are the adversarial losses proposed in [33], and A; is
the weighting of each loss function. We used A1 = 1, A =
0, and A3 = O for Y, and used A, = 1, A, = 0.0004,
and A3 = 0.004 for f/prop. The learning rate scheduler was
ADADELTA [34].

C. Automatic Generation of User Hints

The training of the CNNs requires a dataset that includes
monochrome images, ground-truth color information, user
hints, and key frames. The datasets used in this study were
automatically generated from color videos. First, a sequence
of frames is extracted from a color video and converted to
grayscale to produce a large number of color/grayscale image
pairs. Next, Ucolor and Uporder are automatically generated
from the resulting color frame images, and Ugey is auto-
matically generated from the color frame sequence. Ugolor
is generated by randomly sampling patches from the color
images, as in Zhang et al.’s method [12]. Uporder 1S also ran-
domly generated by sampling random patches from the edge
images of the color images. The edge image is created using
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the Canny edge detection method [35]. First, the color image
is projected to the Lab color space and the a and b channels
are extracted. Then, edges are detected from each channel by
using the Canny method. The edge image is the logical sum
of the detection results. In the experiments reported below, the
parameters of the Canny method are m x 0.66 for minVal and
m x 1.33 for maxVal, where m is the median pixel value. Uyey
is produced by extracting sets of frames at random from each
cut of a video.

V. EXPERIMENTAL RESULTS

We used the ILSVRC2012 [36] and ACT datasets [37]
for our evaluation. Since ILSVRC2012 is an image data
set, it could not be used directly for training the color-
propagation CNN. We therefore generated key frames by
geometrically transforming the color images in the same way
as in Liu et al. [15], by scaling, rotation, and translation.
The ACT dataset consists of short video clips for the recog-
nition of actions, and it was used directly for training the
color-propagation CNN.

The evaluation criterion is the average value of the peak
signal-to-noise ratio (PSNR) between the correct color image
and output color image. Care must be taken when using pixel-
level criteria to evaluate the accuracy of colorization [12]. For
objects that have the same shape but often have different col-
ors, the error between the outputting color and the ground truth
may become excessively large, even if the CNN estimates
a realistic color. For example, when red clothes are colored
blue, this is not necessarily a mistake. However, our aim here
is to facilitate colorization according to the user’s intentions.

IEEE TRANSACTIONS ON BROADCASTING, VOL. 67, NO. 1, MARCH 2021

Results from still-image-colorization methods [12], [30]. N, is the number of user-specified points. p is the proportion of points that indicate color

Therefore, PSNR is a valid criterion when the user hints used
in the evaluation are generated from the ground truth.

A. Still-Image Colorization

Table I shows how the PSNR changes when varying the
number of user-specified points. The number of user-specified
points corresponds to the number of mouse clicks performed
by the user in manual operation. The number of points was
calculated by assuming each color specification requires one
point to specify one location, and each color boundary speci-
fication requires two points to designate one location (i.e., one
line). We used graph-based image segmentation [38] and the
DouglasPeucker algorithm [39] to approximate boundary lines
with points. p is the proportion of points that indicate color
boundaries. There is a difference between the color boundary
hints generated by this graph-based emulation method and the
color boundary hints that humans actually give. However, we
chose this method as a means to emulate user-created color
boundary hints in our implemented system. In our implementa-
tion, the user-created color boundary hints are a set of straight
lines. The color boundary hints do not have to be straight
lines, but it is difficult for users to draw free-form curves as
intended. Therefore, we chose to use line-based color bound-
ary hints. The user only needs to specify the start and end
points to create a hint with the line connecting the points as
the color boundary. We believe that our graph-based emulation
method can generate boundary hints that are relatively close
to those of our implementation.

As shown in table I, our method obtains a high PSNR when
p = 0.2. However, the PSNR decreases when p = 0.4. This
is because the color boundary designations do not include the
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TABLE I
ACCURACY OF THE STILL-IMAGE COLORIZATION (PSNR). p IS THE
PROPORTION OF POINTS THAT INDICATE COLOR BOUNDARIES. Ny,
Is THE NUMBER OF USER-SPECIFIED POINTS

Method [ N, =25 N, =50 N, =100
Our(p = 0.2) 29.68 30.72 31.57
Our(p = 0.4) 29.13 30.05 30.93

Zhang et al. [12] 29.60 30.42 31.13
Barron and Poole[31] 25.89 26.92 28.96

(@) (b) ()

Fig. 6. Effects of using Upgrder to specify color boundaries. In each image,
the positions of user hints Ugglor and Uporder are shown on the left, and
the CNN output is shown on the right. (a) Results obtained from a CNN
provided with a uniformly gray input image and two points, one blue and
one red. (b)(c) Results obtained when a single straight line color boundary is
added by specifying two points in addition to the ones specified in (a).

color information itself, so the CNN is unable to select the
correct color without sufficient color designations. Therefore,
we believe that the user’s intentions can be more accurately
reflected with the same amount of effort by using a small
number of color-boundary hints in combination with color
hints.

Figure 5 shows the colorization results of our still-image-
colorization CNN, Zhang et al.’s method [12], and Barron
and Poole’s method [30]. Compared with the other methods,
our method tends to reduce color blur near the boundaries.
In particular, in the images on the right side of column (c),
there is a clear color boundary between the green fabric and
the gray background. Also, in the images on the right side
of column (a), our method colorizes the entire vehicle more
uniformly than the other methods do. This suggests that the
color-boundary hints help to set the color boundaries at the
proper position. In the image on the left side of column (a),
the color of the bus is mixed with the pink color of the car
in our method when p = 0.4. This is probably because p
is too high and the number of color hints is reduced. The
color-boundary hints do not include the correct color values.

Figure 6 shows the behavior resulting from different color-
boundary hints. Specifically, this figure shows the results of
specifying the colors at two points in a single gray image,
with a single color boundary between them. As the figure
shows, when a color boundary is specified, the CNN only
creates a clear color boundary along this line segment. This
sort of behavior is difficult to achieve with color hints alone.
Therefore, it can be said that the proposed method provides
the user with greater flexibility to indicate the appearance of
the intended colorization.

Our CNN learns only the narrow areas with strong color
differences as color boundaries. Therefore, there is always a
strong color difference at the position of the boundary indi-
cated by the user. On the other hand, in actual color images,
there is a region where the color changes gradually, like a
gradation. In our method, users cannot explicitly give a hint

40 T T
39 - Our(R=4) —+— _|
— Our(R=2) —>—
< 38 -
il Our(R=1)
% 37 — Liu et al. [15]
£ 36 — -
35 =
34 : :
10 20 30 40
Interval of key frames K
Fig. 7. Accuracy of the color propagation (PSNR). K is the interval of key

frame extraction. R is the number of key frames input to our CNN.

specifying a gradual change. In such cases, it is necessary to
give many color hints. This problem will be tackled in future
work.

B. Color Propagation

We evaluated the accuracy of the color-propagation CNN
by using the ACT datasets [37]. For comparison, we used
Liu et al.’s method [15]. In each video of the evaluation data,
we extracted a color frame every K frames for use as the key
frames, as in [15]. When multiple key frames were input to
our CNN, they were used in order of closeness to the target
frame. The evaluation index was the average PSNR between
the correct color frame and the output color frame.

Figure 7 shows the PSNR values obtained with key frame
extraction intervals of K = 10, 20, 30 and 40. Our method
achieved higher PSNRs, except for K = 10 when the number
of key frames input to the CNN was R > 2. In particular,
for K = 40, the improvement was approximately 3.3% rela-
tive to Liu ef al.’s method when the number of key frames
input to the CNN was R = 4. In both methods, the PSNR
tends to decrease as K increases, but this decrease is smaller
in the proposed method than in Liu ef al.’s method. Liu et al.’s
method does not directly estimate color images; instead, it cal-
culates a conversion formula between two frames. However,
it is thought that the precision is smaller when K is fairly
large because of the difficulty of estimating a correct conver-
sion formula due to complex deformations and movements of
objects between the key frame and the target frame. On the
other hand, the proposed method performs color propagation
by modifying G, which is a fully automatic colorization CNN.
That is, even if the color propagation of Ey.y does not function
well, it is still possible that G may produce a colorization close
to the ground truth. This is why the proposed method achieves
a higher PSNR than Liu ef al.’s method even when K = 40,
R =1 (i.e., when it is given the same amount of information).
As a result, the proposed method appears to be robust against
complex deformations and movements of objects.

On the other hand, Liu et al.’s method is more accurate
when K = 10. When K is small, the gaps between the key
frames and target frames are very small. In most cases, this
means the conversion formula between two frames is also
simple, so Liu et al.’s method can produce more accurate
estimates. If key frames can be prepared every ten frames,
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Frame 14 Frame 20

Frame 17

Fig. 8. Effects of key frame color on the colorization of videos. The first and second rows show the results obtained after colorizing the first and last frames
with the proposed still-image-colorization CNN and then using these as key frames for color propagation to the other frames. In the second row, the color
of the watermelon was intentionally changed between the key frames. The third and fourth rows show Canﬁdencef(ey, which is the output of the key frame

encoder Egey. The white area is the area where the value of C()nﬁdencef(e is high, which means that the CNN is focused on that area. Most of the colors of
frame 4 are propagated from key frame (a) while those of frame 17 are propagated from key frame (b).

Liu et al.’s method works very well. In practice, however, it
takes a lot of time to prepare so many key frames. Also, in
Liu ef al.’s method where it is only possible to refer to a sin-
gle key frame, color discontinuities are liable to occur when
switching from one key frame to another. To prevent color
discontinuities, the key frames have to be prepared in order to
ensure they are consistently colorized; this is a very difficult
task.

In Figure 7, the difference in accuracy between R = 2 and
R = 4 is smaller than that between R = 1 and R = 2.
This indicates that the CNN may not be able to utilize the
information of the third and subsequent key frames so well.
Table II shows the average Conﬁdencef{ ey values of key frames
sorted by distance when R = 4. The distance means the num-
ber of other frames between the target frame and each key
frame in the video. The average Conﬁdencefcey values indi-
cate which key frame the network prioritized for colorization.
Our CNN attaches importance to closer key frames. This may
be because the closer the key frame is to the target frame,
the more similar the image is to the target frame. Our CNN
depends on the closest pair of key frames for about 75% of
the information used for colorization. This means that the
information of two neighboring frames is very important for
estimating the motion of an object. As well, the CNN does
not use distant key frames so well. Therefore, we can con-
clude that simply increasing the number of key frames does
not significantly increase the accuracy.

On the other hand, the proposed method can smooth out
the changes in colorization by absorbing the changes in color
between key frames. Fig. 8 shows example outputs of our
method. The second row shows an example when a key frame
having a very unusual color is used. The first frame, where the
watermelon is colored green, is used as key frame (a), and the
final frame, where the watermelon is colored blue, is used as

) TABLE 11
AVERAGE C()nﬁdence;(ev VALUES OF KEY FRAMES WHEN R = 4. FIRST,
THE KEY FRAMES WERE SORTED IN ORDER OF DECREASING DISTANCE
FROM THE TARGET FRAME IN THE VIDEO; THEN, THE AVERAGE
VALUES WERE CALCULATED

Closest | Second closest | Third closest | Farthest
054 | 022 | 014 | Ol

key frame (b). The information supplied to the CNN consists
entirely of images; it includes no information on the distance
between the colorization target frame and the key frames in the
video. Nonetheless, the watermelon becomes increasingly blue
in the frames that are closer to key frame (b). This evidence
supports the conclusion that Eyey can output suitable values for
Confidence on the basis of the correlation between the target
frame and key frame. From the above, it can be said that—
unlike Liu ef al.’’s method—it is not necessary to maintain
strict color consistency between key frames when using our
method. Therefore, we believe that our method makes it easier
to colorize videos in a short time.

C. Video Colorization Framework

We evaluated the time required for users to colorize video
in our framework. We asked a technical engineer employed
by a broadcasting station to colorize monochrome videos (30
frames each). We compared our method with Zhang er al.’s
method [12], lizuka et al.’s method [6] and a completely man-
ual method. Two color videos were selected from the ACT
dataset [37] as colorization targets. For the color of each
object included in the videos, a color-correspondence table
was created on the basis of the ground truth in advance.
The two color videos were converted to monochrome videos;
then, the engineer colorized each of the monochrome videos.
First, the engineer colorized the video by using the completely
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Original color images
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Manually colorize images

Fig. 9. Frames of video used to evaluate the time spent on colorization work. The left side shows the original images, and the right side shows the manually
colorized images. The original videos are included in the ACT dataset [37]. The evaluation used only the first 30 frames of the original videos.

TABLE III
TIME REQUIRED TO COLORIZE THE ENTIRE 30-FRAME IMAGE AND THE
FIRST FRAME. THE TIME IS THE TOTAL TIME OF CNN-BASED
COLORIZATION AND MANUAL CORRECTION

() (b)
Method 1st frame 30 frames | Ist frame 30 frames
Ours 12mls 17m 10mOs 1h9m
Zhang et al. [12] 13m54s 6h25m 10m13s 5h20m
Tizuka et al. [6] 15m50s 8h28m 16mls 9h18m
Manual 18m42s 9h22m 22m0s 12h23m

manual method while referring to the color-correspondence
table. Figure 9 shows parts of the manually colorized videos.
In the figure, (a) is a video in which the subject and the camera
remain mostly still, while (b) is a video in which the subject
and the camera move quickly. The compared methods are not
video colorization frameworks. Therefore, colorization proce-
dures when using our method and compared methods were
based on their properties, as follows:

o In our method, the first frame was colorized by the
still-image-colorization CNN in accordance with the engi-
neer’s instructions. Fine areas that could not be com-
pletely colored by the CNN were manually corrected.
Next, the subsequent frames were colorized by the color-
propagation CNN using the first frame as the key frame.
When the color-propagation CNN could not colorize a
frame correctly, the engineer manually corrected it and
added it as a new key frame.

o In Zhang et al.’s method, all frames were colorized by
the CNN in accordance with the engineer’s instructions.
After that, fine areas that could not be completely colored
by the CNN were manually corrected.

o In lizuka et al.’s method, all frames were fully automat-
ically colorized and then manually corrected.

Table III shows the work time for each colorization frame-
work. The work time for first frame colorization in our
framework was less than or equal to that of Zhang et al.’s
method. In the colorization of the first frame, our framework
required an average of 4ml14s for the CNN colorization with
user instructions and 6m47s for the subsequent manual cor-
rection. On the other hand, Zhang et al.’s method required
3m33s for the CNN colorization with user instructions and
8m31s for the subsequent manual correction. We think that our
framework increases the time taken to create user instructions
because it allows the color boundaries to be specified. On the
other hand, the time for manual correction was reduced, and

the total work time was also slightly reduced. In the coloriza-
tion of the entire 30 frames, our framework did not require the
engineer to correct many of the frames manually because the
color-propagation CNN colorized the frames well. With regard
to the total work times of (a) and (b), our framework reduced
the work time by a factor of approximately 8 compared with
Zhang et al.’s method. In addition, the work time was only
about 1/15th that of the manual colorization.

Now, let us describe the limitations of our framework and
future issues. From table III , the colorization of video (b) took
more than twice as long as the colorization of video (a). This is
because (b) includes fast-moving objects, and it was necessary
to create many key frames. Two key frames were created for
video (a), whereas seven key frames were created for video
(b). In video (b), a new object appears approximately every 5
frames, so it was necessary to colorize the frame containing
the new object and create a key frame each time. Thus, the
effect of our framework is strongly influenced by the amount
of motion of the objects in the video. In particular, we will
have to devise a way to properly and automatically colorize
objects that do not exist in the key frame but exist in the target
frame.

We implemented our framework on a GTX1070 GPU; it
takes less than 20 milliseconds to colorize one frame (the
same as other colorization methods [6,11]). If an ideal fully
automatic colorization CNN with no errors could be realized,
30 frames could be colorized in 600 milliseconds or less.
That is, almost all of the work time measured in the experi-
ment was time spent in manual operation, and most of it was
color correction work. This indicates that there is still a lot of
room for reducing the work time by improving the colorization
accuracy.

D. Practical Use of Our Colorization Framework

We put the proposed framework to practical use in broad-
cast program production [40], where it was used to colorize
monochrome video footage dating back to around 1939. Note
that the CNN used in the actual system differs from the one
described in Section III with regard to the following points:

e We used a local enhancer CNN as proposed in the

pix2pixHD framework [33] to expand the output to 2K
resolution.

o For the learning data, we used about 18 months of TV

programs broadcast during 2017.
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o To match the learning data to the condition of the film
to be colorized, Gaussian random noise was added with
50% probability to the monochrome images input to the
network. This change was essential to bridge the gap
between the pristine modern broadcast video and the
noisy historical film footage.

Figure 1 shows some examples of images colorized using
the proposed framework for use in TV broadcasts. The
colorization workload required for a broadcast program of
approximately one hour was about 36 person-days. This is
remarkable when we consider that previous colorization work
of a similar scale required approximately 2, 250 person-days
of effort. Although this is not a strict comparison because the
target videos for colorization were not the same, the video res-
olutions and frame rates were the same, and the videos were
similar in content. Thus, our framework may indeed be able

to reduce workload to about 1/62 of that of manual coloriza-
tion. It should be pointed out as well that the workload figures
include time spent doing work other than in this framework,
including colorization-related investigations and the like. The
program production team said that our framework enabled the
experts to verify the color correction results in real time, and
that this greatly reduced working time. They said that in past
productions, a lot of time was taken up by the experts pointing
out color errors and the subsequent manual color corrections,
a process that had to be repeated over many days. On the other
hand, with our framework, errors pointed out by experts can
be immediately reflected in the colorization result, and it can
immediately be reconfirmed whether the adjusted color is cor-
rect. Therefore, the color verification work can be completed
in one meeting. This may have led to a significant reduction
in work time.
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Fig. 12. Results of our color-propagation CNN with the interval of key frame extraction K set to 40. R is the number of key frames input to the CNN. The
accuracy of color propagation decreases in the case of a cut with large interframe difference (the left half of the figure). Even in such cases, the accuracy is

improved by increasing R in our framework.

On the other hand, it became clear that the still-image-
colorization CNN did not work properly for objects that
appeared small in the old film images. Small objects in ver-
ification images, which are pristine modern images, were
colorized relatively correctly. Therefore, one reason could
have been that the still-image-colorization CNN was trained
on pristine modern color images rather than noisy historical
footage. This meant that we had to use manual colorization for
regions that could not be properly colorized by the still-image-
colorization CNN, such as the collar badges in the upper row
of figure 1. On the other hand, the color-propagation CNN
worked well even when the key frames included parts that had
been colorized manually. The resolution of the issue affecting
the still-image-colorization CNN is worthy of further study.

VI. CONCLUSION

We proposed a colorization framework for monochrome
videos in which it is possible to perform colorization reflect-
ing the user’s intentions. We have made it easy for the
user to perform correction work in a short space of time
through our newly proposed combination of two CNNs: a
still-image-colorization CNN and a color-propagation CNN.
We confirmed that the incorporation of a new color-boundary
hinting method into the still-image-colorization CNN resulted
in an improvement in the PSNRs of the colorized images
in comparison with those of previous methods. Furthermore,
by making it possible for the user to designate color bound-
aries, this framework offers the user more choices of how to
issue hints to the CNN and thereby allows colorization to be

performed more flexibly according to the user’s intentions.
Our color-propagation CNN colorizes entire motion image
sequences in accordance with key frames colorized by the still-
image-colorization CNN. With a structure that takes multiple
key frames as input, we confirmed that an improvement of
PSNR of approximately 3.3% can be achieved when K = 40
and R = 4. In addition, the user can easily create color videos
with a low level of color discontinuity without having to main-
tain strict color shade consistency between key frames. In an
experiment on colorizing two 30-frame videos, our framework
reduced the colorization work time to about 1/8th that of
the conventional method. We used the proposed framework in
actual broadcast program production and showed the possibil-
ity of colorizing video in a significantly shorter time compared
with manual colorization.

APPENDIX A
NETWORK ARCHITECTURE DETAILS

This section describes the details of the networks (the gen-
erator G, the encoders Epjne and Eyey) described in Section IV.

A. Generator G

Fig. 10 shows the details of the generator G. The generator
consists of 3 downsampling blocks, 4 convolution blocks, and
3 upsampling blocks. Each downsampling block consists of
two or three convolution layers followed by a batch normal-
ization layer and a nearest-neighbor downsampling layer. Each
convolution block consists of three convolution layers followed
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by a batch normalization layer. Each upsampling block con-
sists of a transposed convolution layer followed by one or two
convolution layers and a batch normalization layer. The down-
sampling blocks and upsampling blocks are connected by three
shortcut connections with one convolution layer. Finally, there
is a convolution layer that acts as a projection layer for the
output.

The kernel size is 3 x 3, and the stride is 1 x 1 for all of
the convolutional layers. The convolution layers, except the
projection layer, use ReLU as an activation function. The pro-
jection layer does not use an activation function. The dilation
parameter in each convolution layer for the second and third
convolution blocks is 2 and the parameters in the other layers
are each 1. As shown the figure, the number of channels in the
convolution layer for the first downsampling block is 64, dou-
bling with each reduction in spatial resolution. The number of
channels in the projection layer is 2 except during pre-training,
and the projection layer outputs color information. The pro-
jection layer for pre-training outputs a color distribution, and
the number of channels depends on the colors in the training
data. In this study, the color was quantized into 400 classes
by dividing both the a-channel and b-channel in the Lab color
space into 20, and of these, we used 313 color classes, as in
Zhang et al. [12]. Classes that were not used had no, or few,
instances in the training data.

B. Encoders Epjny and Ejey

Fig. 11 shows the details of the encoders Epine and Ejey.
The encoders consist of 3 downsampling blocks, 4 convolu-
tion blocks, and a projection layer for Context. Only Eyey has
an additional projection layer for Confidence. Except for the
projection layer, the parameters of the layers are the same as
the downsampling blocks and convolution blocks in G. The
number of channels in the projection layer for Context is 512.
The number of channels in the projection layer for Confidence
is 1.

APPENDIX B
ADDITIONAL COLORIZATION RESULTS

Fig. 12 shows the colorization results of the experiment
described in Section V-B.
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