
IEEE TRANSACTIONS ON BROADCASTING, VOL. 69, NO. 1, MARCH 2023 97

Why No Reference Metrics for Image and Video
Quality Lack Accuracy and Reproducibility

Margaret H. Pinson

Abstract—This article provides a comprehensive overview of no
reference (NR) metrics for image quality analysis (IQA) and video
quality analysis (VQA). We examine 26 independent evaluations
of NR metrics (previously published) and analyze 32 NR metrics
on six IQA datasets and six VQA datasets (new results). Where
NR metric developers claim Pearson correlation values between
0.66 and 0.99, our measurements range from 0.0 to 0.63. None of
the NR metrics we analyzed are accurate enough to be deployed
by industry. Performance evaluations that indicate otherwise are
based on insufficient data and highly inaccurate. We will examine
development strategies, tools, datasets, root cause analysis, and
our baseline metric for collaboration, Sawatch.

Index Terms—Image quality, metric, no reference, NR, root
cause analysis, RCA, Sawatch, video quality.

I. INTRODUCTION

CONFLICTING assessments lead to dissenting opinions
on the reliability of no-reference (NR) metrics for

video quality assessment (VQA) and image quality assess-
ment (IQA). NR metric developers often publish extremely
favorable performance claims, such as 0.99 Pearson correla-
tion coefficient between the NR metric and the mean opinion
scores (MOS). But this is often just a single dataset. This sets
unrealistic expectations based on insufficient data.

At the opposite extreme, industry assessments and dis-
cussions during the Video Quality Experts Group (VQEG)
meetings often report poor performance for NR metrics. These
assessments are typically unpublished and thus difficult to
verify or replicate. Intel [1] evaluated six NR-IQA metrics
on consumer content and reported that “those algorithms did
not correlate well with human perceptual judgement of image
quality.” Shanghai Jiao Tong University used their Smartphone
Camera Photo Quality Database (SCPQD2020) to analyze ten
NR-IQA metrics and reported that “no current objective NR
model works well” [2].

Part of the problem is a lack of communication between
academic researchers and industry users. To address this
issue, VQEG created and published industry requirements
for NR metrics [3]. These requirements simplify into two
assertions. First, to be exploitable, NR metrics must provide
root cause analysis (RCA). Most industry applications for
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NR metrics involve identifying and mitigating specific impair-
ments. Second, the external validity of an NR metric (outside
the lab where it was developed) depends on its ability to assess
camera capture impairments.

Another part of the problem is the lack of a comprehensive
assessment of the current state of NR metric research for mod-
ern camera systems. Developers need this information to make
the best decisions on where to focus future research. Industry
needs this information to trust and deploy NR metrics.

We will begin by examining the accuracy and repeatability
of subjective tests. We will consider the bias and noise asso-
ciated with dataset design. We present a primary experiment
design, for datasets that will be used to train or test NR met-
rics. This information creates an upper bound on NR metric
performance.

We will then survey prior art and describe issues that cre-
ate difficulties for NR metric research. We consider what
“good quality” means to different users and how this impacts
the datasets used to train NR metrics. We identify various
strategies for developing NR metrics.

We compare statistics reported by NR metric developers
with performance statistics from 26 independent evaluations
on modern camera systems. We observe a concerning trend of
training and testing on a single dataset. Comparisons among
independent evaluations of NR metrics produce unstable statis-
tics, because they used too few data points. We conclude
that NR metrics must be trained and tested with at least ten
datasets.

Guided by insights from prior research, we present a
paradigm for NR metric development and describe NR met-
ric Sawatch, which implements this paradigm. We split the
research effort into separate algorithms that assess different
impairments and that can be studied separately. These indi-
vidual NR metrics combine to provide an overall quality
estimation. A simple equation allows the end-user to adjust the
weight of each impairment on the overall quality estimation,
based on their unique requirements.

NR metric Sawatch leverages our open software framework
for collaborative development of NR-IQA and NR-VQA met-
rics, called the NR Metric Framework. This framework pro-
vides the support tools necessary to begin research and avoid
common mistakes. It also facilitates training and evaluating
NR metrics on multiple datasets. Standard support tools will
enable repeatable analyses and incremental improvements.

Using the NR Metric Framework, we evaluate the accuracy
of 32 NR metrics. To ensure stability and reliability, our anal-
ysis uses twelve datasets that characterize different aspects of
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modern camera systems. We do not limit our analyses to the
NR metric’s intended scope, and we do not retrain machine
learning algorithms. These analyses include both VQA and
IQA metric research because, in the modern age of digital
monitors, images are indistinguishable from still videos.

Where NR metric developers claim Pearson correlation
coefficient values between 0.66 and 0.99, our measurements
range from 0.0 to 0.63. Our analysis confirms the need for
more research and development on NR metrics for modern
camera systems. None of the NR metrics we analyzed are
accurate and reliable enough for commercial applications.

We then present the performance of NR metric Sawatch on
our twelve datasets. Caution must be exercised when compar-
ing Sawatch with the other NR metrics in this paper, because
Sawatch’s training data is the other metrics’ testing data. Our
final analysis uses the Sawatch RCA to reveal complex rela-
tionships between impairments, quality, industry use cases,
and NR metric performance. These confounding factors may
explain some of the instability we observe. The code, media,
and data used by this report are available online at [4].

Our goal is to support the development of NR metrics
that are accurate enough for commercial applications. The
broadcast workflow would be able to detect quality prob-
lems and specific impairments in real-time broadcast streams.
NR metrics could be used to optimize the encoding parame-
ters of real-time video streams, similar to per-title encoding
optimization for video on demand [5].

II. GLOSSARY, STATISTICS, AND SCATTER PLOTS

A. Glossary

We will begin with a glossary. NR metrics and datasets of
media with subjective ratings tend to have very long names
that hinder readability. We will use abbreviations instead. Blue
text indicates names and abbreviations that we created, when
the author did not propose a name or abbreviation.

Table I and Table II list the NR metrics mentioned in this
report. The column “#” identifies the number of datasets used
to develop the NR metric. Roman numerals in the reference
(“Ref.”) column refer to sections of this paper. Table III lists
the datasets mentioned in this report. The “Notes” column of
Table III briefly summarizes the experiment design, using the
following codes: “I” for images, “V” for videos, “C” for cam-
era capture impairments, “T” for transcoding (possibly with
rescaling), “S” for simulated impairments, “E” if the dataset
uses an experiment method to rate the media, and “M” for mis-
cellaneous (e.g., tonemapping, multiexposure fusion, image
enhancement, and image blending algorithms).

Three of the NR metrics in Table I and Table II are modi-
fied from the author’s original intent. 2stepQA [6] is a two-step
reduced reference (RR) metric. The first step, an NR metric
that we refer to as 2stepQA-NR, is an NR constrained variant
of SpEED-QA [44]. LBP [29] was intended for texture classifi-
cation. HVS-MaxPol includes four variants, NSS three variants,
and SpEED-NR two variants. Since these variants yield similar
results, we only examine HVS-MaxPol natural 1, NSS trained
on CID2013, and SpEED-NR SingleScale.

TABLE I
NR METRIC LIST

B. Groups of Datasets

Table III lists the 39 datasets mentioned in this paper.
We will use twelve of these datasets to analyze the
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TABLE II
NR METRIC LIST, PART 2

performance of various NR metrics. Nine of these datasets
were designed for NR metric research. The remaining three
datasets (AGH/NTIA/Dolby, CCRIQ and CCRIQ2 & VIME1)
were not designed for NR metric research.

The first set contains six IQA datasets with camera impair-
ments and user generated content (named IQA UGC). BID
includes blur from a variety of causes with diverse subject
matter. CCRIQ has photographs of the same subject matter
taken with 23 cameras and displayed at two monitor reso-
lutions (HD and 4K). The CCRIQ2 & VIME1 dataset has
two parts: CCRIQ2 has extra photographs from CCRIQ, and
VIME1 has photographs of a city in Scotland. CID2013 has a
design similar to CCRIQ but one monitor resolution (HD) and
limited scene composition. ITS4S2 has a large variety of sub-
ject matter, cameras, and camera impairments. LIVE-Wild has
a large variety of subject matter from mobile devices; these
are 500 × 500 pixel images. The Table III “Notes” column
marks these six datasets with 1.

The second set contains three VQA datasets with camera
impairments and user generated content (named VQA UGC).
ITS4S3 has simulated first responder content and a variety of
cameras. ITS4S4 has a mix of simulated camera pans and
real camera pans; other impairments are avoided. KoNViD-
1K contains a large variety of subject matter and camera
impairments. The Table III “Notes” column marks these three
datasets with 2.

The third set contains three VQA datasets with transcoding
impairments and broadcast content (named VQA BC). These
datasets have subject matter, cameras, and bitrates suitable for
broadcast applications. AGH/NTIA/Dolby contains MPEG2,
AVC, and HEVC. ITS4S simulates a 720p adaptive bitstream
ladder. Dataset vqegHDcuts reuses video files and MOSs from
VQEG high definition (HD) tests, but each source video was
cut whenever the content or camera motion changed. The
Table III “Notes” column marks these three datasets with 3.

The vqegHDcuts dataset was created using an unprece-
dented method, as described in [84]. Longer videos that
contained temporal changes were divided into shorter seg-
ments that do not contain temporal changes. The original
rating was assigned to each segment. The goal was to exclude

temporal integration from the videos and the NR metric. This
is an unprecedented method, so the magnitude of the error
added to the MOSs is unknown. We created this faux dataset
because few freely available VQA datasets combine broadcast
content with the large variety of subject matter needed for NR
metric research.

C. Notation and Statistics

Throughout this report, we will compare MOS to the esti-
mated MOS from an NR metric (̂MOS). Our primary statistic
is Pearson correlation coefficient (ρ) between MOS and ̂MOS,
because Pearson correlation coefficient is usually reported by
prior publications. We use ̂MOS directly as output by the NR
metric; we do not apply a logistic fit to the dataset’s MOSs.
If the NR metric fails for some media, those data points will
be omitted from our calculations.

We will use “dataset” to refer to the data produced by a sin-
gle experiment (i.e., a set of images or videos with individual
subject ratings). No limits are placed on the number of sub-
jects, media, labs, test environment, or rating method. Most of
the datasets mentioned in this report were conducted with the
5-level Absolute Category Rating (ACR) method. We cannot
currently recommend any techniques for combining multiple
ACR datasets into a superset for NR metric research.

III. SUBJECTIVE TESTING

Ultimately, the accuracy of an NR metric depends on the
internal validity of the datasets used for training and testing.

A. Accuracy Limitations and Increasing Data Requirements

A study of subject rating behaviors [87] shows that subjects’
scoring is a random process. This is expected behavior that
must be accepted; not a flaw or fault that can be eliminated.

The VQEG MM2 dataset studied the impact of test environ-
ment on subject ratings [77]. Ten subject pools were collected
from six labs under various environmental conditions. The
analyses predicted lab-to-lab Pearson correlation coefficients
in the range of 0.90 to 0.99 for 15 subjects (as per ITU-R
Rec. BT.500) and in the range of 0.95 to 0.99 for 24 subjects
(as per ITU-T Rec. P.913). The mode is 0.96 and 0.97 for 15
and 24 subjects, respectively. The mode decreases to ≈0.92 if
the subjective test spans a narrow range of quality, due to the
random error around each MOS.

A more comprehensive analysis of 60 subjective tests
appears in [88]. This report uses the Student’s t-test to
analyze statistical differences at the 95% confidence level.
“Disagreement” incidents are defined as both labs concluding
that media A and B have significantly different quality, but the
MOSs are A > B for one lab and A < B for the other lab. The
likelihood that two labs will disagree on the rank order of two
media is ≤ 1%, for tests with at least 15 subjects. This report
also measures the MOS confidence interval (�SCI), which is
defined as the difference in MOS values at which 95% of the
pairs will be statistically different. The following relationships
are trends for subjective tests that use the 5-level ACR scale:

1) 24 subjects: �SCI ≈ 0.5 to 0.7
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TABLE III
DATASET LIST

2) 15 subjects: �SCI ≈ 0.7 to 1.0
3) 9 subjects: �SCI ≈ 1.1 to 1.4
4) 6 subjects: �SCI ≥ 1.5
These values provide a lower limit to expected performance,

based on well-designed experiments conducted by the ITU

and VQEG. Deviations from this ideal produce larger values
of �SCI for the given numbers of subjects, as may unknown
factors.

The implication for NR metric training is that MOSs have
limited accuracy. If the Pearson correlation coefficient between
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MOS and ̂MOS is 0.96 < ρ≤1.0, the NR metric is probably
overtrained; and 0.90 < ρ ≤ 0.96 is an extraordinary claim
that must be justified by overwhelming proof. These thresh-
olds are informed by analyses of subject ratings in [77], [87],
and [88].

To develop an NR metric, the researcher must design an
experimental NR metric and compare the metric values to
MOSs. The results of one trial feeds into the next. This cycle of
multiple comparison tests steadily increases the likelihood of
concluding that a defective idea has merit (i.e., type-1 error).
To compensate, we must develop and evaluate NR metrics
with a lot of subjective data. See [89] for details.

Ultimately, ρ cannot prove whether an NR metric behaves
similarly to a subjective test; we cannot determine a mini-
mum performance threshold. A solution is proposed in [88],
where statistics gathered from 60 subjective tests and 90 lab-
to-lab comparisons are used to conclude whether an NR
metric is equivalent to a subjective test. The metric’s confi-
dence interval (CI) is computed, so that the user can make
statistically significant decisions. We will not use these statis-
tics, because they are not intended for comparisons between
metrics. Code implementing these statistics is available at [4].

B. Impact of Dataset Design on NR Metrics

The ability of a dataset to characterize a media system
depends on the subject matter depicted. Common subject mat-
ter selection strategies are convenience sampling, systematic
selection, and maximum variety. Convenience sampling uses
media conveniently available, which produces biased results
(e.g., see the analysis of VIME1 in [58]). Datasets that use con-
venience sampling are not always explicitly labeled as such.
AGH/NTIA/Dolby, CCRIQ, and CCRIQ2 use the systematic
selection criteria from [86]. Variables include textures, shapes,
colors, object size, in-scene motion, camerawork, lighting,
focal distance, depth of field, camera viewpoint, and unusual
characteristics (e.g., ramped color, multiple objects moving
in an unpredictable manner). The maximum variety strategy
leverages random chance and large pools of subject matter
(e.g., AVA, BID, KoNViD-1K, KonVid-150k, ITS4S2, and LIVE-
Wild). Some datasets combine convenience sampling with
maximum variety (e.g., ITS4S, ITS4S3, and vqegHDcuts).

The media system itself must be characterized with equal
care. Variables include the camera, encoder, transmission
system, decoder, and monitor. A single software encoder can-
not demonstrate the visual differences produced by encoders
from different manufacturers. Software encoders and simulated
impairments rarely match the visual response of hardware
codecs and camera capture. Example strategies from worst
to best in terms of external validity (ability to characterize
real applications) are one software codec (ITS4S), conve-
nience sampling of multiple cameras (ITS4S3, ITS4S4), and
a systematic selection of cameras (CCRIQ).

The most impactful design decision is the use case. Most of
the datasets in Table III contain user generated content (UGC)
for entertainment purposes. Some datasets provide insights
into other use cases, like optical character recognition (DIQA),
medical (FocusPath and MD-Derm), public safety (ITS4S3),

video surveillance (SIQD), and service quality for video on
demand (vqegHDcuts, ITS4S, and AGH/NTIA/Dolby).

Discussions during VQEG meetings indicate that the use
case with the highest demand but fewest datasets is live
services for broadcast applications. For example, a profes-
sional broadcast studio produces high quality news or sporting
event videos for live streaming. The studio production is
typically high quality but could include some UGC content
(e.g., remote news crews) or variability from weather, light-
ing, and bandwidth limitations from the field to the studio.
High footage costs hinder academic research.

Datasets with conventional experiment designs, like LIVE-
2006 [70], avoid media with camera impairments. These
experiment designs reflect the perspective that ̂MOS should
only assess the quality of the transmission system. Thus, ̂MOS
should ignore aesthetics, subject matter, and camera capture.
Several impactful industry use-cases support this viewpoint
(e.g., a quality feedback loop when transcoding broadcast
videos). Consequently, research often begins with the suppo-
sition that a trustworthy NR metric can be developed from
datasets that characterize the transmission system.

The opposing perspective is that ̂MOS must assess all
impairments, so that ̂MOS tracks the user’s ad-hoc assess-
ments of quality. Users may reject an NR metric if ̂MOS
does not reflect their intuition of the media’s overall qual-
ity. Our knowledge of human factors supports this viewpoint.
MOSs are influenced by aesthetics, subject matter, and cam-
era impairments—especially at bitrates used by modern video
systems where compression artifacts are subtle.

To complicate matters, different applications define “good
quality” differently. Broadcasters ignore some impairments,
or rather consider them to be artistic intent that must be
retained—like muted color and dark night scenes. Our prior
analysis of public safety content indicates that first responders
place a higher than usual importance on vibrant colors [4].

Task specific concerns impact how first responders describe
the quality of media [90] and by consequence may subtly
impact MOSs. If a bodycam is more sensitive than the human
visual system, this could be good sometimes (e.g., a remote
viewer can understand events) and bad other times (e.g., a
jury incorrectly concludes that the first responder saw events
that were not visible at the time). Detectives can reach invalid
conclusions if a video surveillance recording changes shapes,
motion, or colors. First responders who participated in the
ITS4S3 and ITS4S4 subjective tests told us that their primary
concern was whether they could extract a high quality still
frame, to serve as evidence.

Each dataset contains bias and noise from design
decisions [91] around use case, subject matter, impairment cre-
ation, dataset size, and number of subjects. NR metrics inherit
the bias and noise of their training datasets. This can cause an
NR metric to respond very differently during training, testing,
validation, and application (by third parties).

A mitigation strategy is to combine multiple datasets
into a meta-dataset using anchor conditions and a reference
test [92]. The vqegHDcuts dataset uses such a method to
merge multiple VQEG datasets [84]. In addition to reducing
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bias and noise, meta-datasets simplify the NR metric training
process. However, [93] challenges the concept of anchor con-
ditions or a “common set” in cross-lab experiments. Inclusion
of a common set impacted both the evaluation of the common
set and the evaluation of the media in the new experiment.
We recommend supplementing meta-dataset analyses with
analyses of the individual datasets.

C. Ideal Dataset for NR Metric Research

In [32], we describe discrepancies between the experiment
designs commonly used for subjective tests and the needs of
NR metric research. We conclude that the optimal dataset for
training an NR metric for modern camera systems will:

• Contain a huge variety of subject matter
• Include camera impairments
• Portray all state-of-the-art camera applications
• Assess various display devices
• Implement an unrepeated scene design [94]
• Exclude outdated impairments
• Exclude temporal integration
• Exclude transmission errors
• Contain images or videos of 4 s duration
This experiment design is informed by ATIS, VQEG, and

ITU validation tests of video quality metrics (see the author
biography). In the unrepeated scene design, each subject views
each source media once. The goal is to characterize the diverse
responses of popularized media systems. For example, ITS4S3
contains faux public safety media that demonstrate application
specific problems, like camera jiggle and inclement weather.
The subjects (a mixture of first responders and people in
related fields) were able to express task specific requirements
on the 5-level ACR scale, without the complexities and limita-
tions of ITU-T Rec. P.912 recognition tests. This experiment
design maximizes the variety of subject matter and impair-
ments, which minimizes the likelihood that an NR metric will
behave erratically when tested on new scenes or a different
manufacturer’s codec.

We recommend postponing study of excluded impair-
ments. Outdated impairments are excluded because they could
mislead machine learning. Temporal integration is excluded
because it can be studied separately and applied as post pro-
cessing (e.g., how to estimate the overall quality of a movie
from immediate quality impressions gathered each second).
The maximum video duration results logically from the exclu-
sion of temporal integration. Subjects can comfortably rate
4 second videos, as demonstrated by the ITS4S dataset [32],
but the pre-test subjects did not feel comfortable rating 3 sec-
ond videos. Transmission errors are extremely challenging for
full reference (FR) metrics. NR solutions may require supple-
mentary network data or advanced support tools (e.g., object
detection).

As datasets diverge from this ideal, the NR metric developer
is increasingly likely to miss a critical factor. This can cause
the NR metric to produce wildly inaccurate ̂MOS for subject
matter and impairments that do not appear in their training
data. For example, CCRIQ [56] reveals whether an NR met-
ric correctly emulates the relative perceptual impact of HD

and 4K monitors, because subjects rated images at both mon-
itor resolutions. Most datasets do not model the small MOS
difference between HD and 4K monitors. This difference is
≈0.2 MOS for high quality images and ≈0.0 MOS for low
quality images [56].

IV. NR METRIC STRATEGIES AND IMPEDIMENTS

A. NR Metric Development Strategies

We will now move from considerations of quality to
a review of the various algorithm development strategies
used by NR metric developers. Some NR metrics, like
VIQET [50]–[51] and Sawatch [3], deploy multiple strategies
and combine the outputs of multiple NR metrics.

The first strategy is to extract simple statistics from the
media. We will refer to these as simple structural pattern (SSP)
metrics. The most prominent SSP metrics are SI and TI [43],
which characterize videos in a subjective test. Because indus-
try continues to rely on SI and TI, VQEG is developing a
proposal to update ITU-T Rec. P.910 to clarify SI and TI ambi-
guities that stem from recent technology advances. Other SSP
metrics include AGWN [8], Entropy Noise [17], and LBP [29].
NR-IQA-CDI calculates five SSP statistics from the luma plane
(mean, standard deviation, skewness, kurtosis, and entropy) but
does not combine these into an overall quality estimate.

The second strategy applies the theory of natural scene
statistics (NSS) from [95] to identify structural patterns
or irregularities in the media that characterize compres-
sion or other artifacts. These metrics transform the image,
extract statistics, and then apply machine learning. We will
refer to these as machine learning NSS (ML-NSS) metrics,
to avoid confusion with the NSS metric [39]. NIQE [34]
uses a circularly-symmetric Gaussian weighting function
and a multivariate Gaussian model. 2stepQA-NR [6] and
NIQE-K [35] combine NIQE with other algorithm compo-
nents. BRISQUE [10] uses mean subtracted contrast nor-
malized (MSCN) coefficients. PIQE [41] takes inspiration
from NIQE and BRISQUE, using both circularly-symmetric
Gaussian weighting function and MSCN. SpEED-NR [44]
uses a Gaussian scale mixture (GSM) model. ADMD [7] and
JP2KNR [22] use wavelets. Log-BIQA [30] uses Gradient
Magnitude and Laplacian of Gaussian (LOG). OG-IQA [40]
uses the gradient orientation and magnitude. NSS [39] uses the
five statistics from NR-IQA-CDI [37].

The third strategy is to mimic characteristics of the human
visual system (HVS). We will refer to these as HVS met-
rics. CPBD [13] models human perception of localized blur.
JNB [21] relies upon heuristics obtained from a subjective test
that characterizes the response of the human visual system
to blurriness. MaxPol [31] and HVS-MaxPol [19] model the
relative sensitivity of the human visual system to image blur,
using a convolutional filter. NR-PWN [38] applies a perceptual
noisiness model.

The fourth strategy is to detect a single impairment. We will
refer to these as RCA metrics. Guidance on training RCA
metrics appears in [3]. The RCA strategy is often used in
conjunction with HVS or another strategy. Examples include
ADMD (uneven illumination for dermoscopy images), AGWN
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(noise), and MaxPol (blur). TDME [46] and TDMEC [47] use
a discrete cosine transform (DCT) to detect contrast enhance-
ment. BTMQI [11] detects tone-mapped images (i.e., converted
from high dynamic range to low dynamic range). NoRM [36]
detects 3D rendering artifacts. The Key Indicators [23]–[28]
are a set of 15 RCA metrics that detect blackout (all picture
content lost), blockiness, block loss, blur, contrast, exposure,
flickering, freezing, interlacing, letter-boxing, noise, pillar-
boxing, slicing, spatial activity, and temporal activity. Sawatch
version 3 uses a set of eleven RCA metrics.

The fifth strategy is to train the NR metric using empiri-
cal data from which the relative ranking of two media can be
inferred. We will refer to these as ranking (RANK) metrics.
The resulting metric may have scope limitations, such as only
allowing comparisons among different transcodings of a sin-
gle media. Metric dipIQ [16] is trained on data from a FR
metric, which was fed into a pairwise learning to rank (L2R)
algorithm. The authors also propose performance assessment
statistics.

The sixth strategy is to assess media quality based on
success or failure of a specific task. Examples include the
likelihood that computer vision (CV) will succeed or fail
(iAITech-NJIT, DIQA dataset) and automatic focusing of dig-
ital pathology slides (HVS-MaxPol). We will refer to these as
TASK metrics.

The authors of HVS-MaxPol [19] provide another perspec-
tive on NR metric development strategies. The authors evaluate
30 NR-IQA metrics published between 2002 and 2018 that
detect sharpness vs blur. These RCA metrics are catego-
rized by run speed and algorithm development approach (i.e.,
learning-based, gradient map, contrast map, wavelet, phase
coherency, luminance map, total variance, and singular value
decomposition). They observe that most of these NR met-
rics have acceptably high accuracy but unacceptably poor
computational speeds.

B. Motivation for Scope Limitations

Researchers eliminate variables to focus their efforts, and
this can increase the likelihood of success. NR-IQA met-
ric research eliminates motion and requires fewer computing
resources. The same modern cameras and displays are used to
create and consume UGC, so NR-IQA metrics can in theory
be extended to perform well for NR-VQA. Ad-hoc support for
this theory can be found later in this paper, by comparing the
performance of NR-IQA metrics on IQA UGC, VQA UGC,
and VQA BC.

The most popular strategy is to limit the impairments. RCA
metrics take this to the extreme of allowing only a single
impairment. Numerous NR-IQA metrics limit their scope to
the LIVE-2006 dataset’s [70] impairments, which are JPEG
compression, JPEG2000 compression, and three simulated
impairments—white noise, Gaussian blur, and a fast-fading
Rayleigh channel (FF)—to simulate bit-errors during transmis-
sion over a wireless channel. This dataset was indispensable
for early NR-IQA research.

All datasets become less relevant over time. For exam-
ple, the LIVE-2006 dataset [70] dataset has undesirable

characteristics for ongoing NR metric research. White noise
and Gaussian blur do not look like the noise and blur pro-
duced by camera capture. Modern transmission systems do
not produce bit-errors. The image resolution (typically 768 ×
512 pixels) is low by today’s standards. Camera technology
has advanced rapidly since 2006, so even the dataset’s high-
quality images may differ in subtle ways from high-quality
images captured by modern cameras.

An alternate strategy is to limit the subject matter depicted.
Sometimes, this is an unintentional consequence of train-
ing on a single dataset that contains limited subject matter.
VIQET [50]–[51] contains four different NR-IQA metrics,
one for each allowed subject matter: flat surface, landmark
at night, landscape with good lighting, and still life. VIQET
was trained on the CCRIQ dataset [56], which includes pho-
tographs from a variety of modern cameras (phones, tablets,
compact cameras, and DSLR cameras).

Subject matter limitations may also reflect the needs of a
specific use case. The DIQA [61] dataset contains scanned
documents and simulated “ratings” that assess the likelihood
that optical character recognition (OCR) will succeed, by
comparing the original document with the text produced by
OCR. ADMD [7] limits the scope to dermoscopy images
(skin lesions). NIQE-K [35] models the opinion of radiologists
when viewing ultrasound images. The ITS4S3 dataset [65]
depicts subject matter used by first responders: crime scenes,
fireground, prison riots, search and rescue, and cityscapes.

Niche use cases have added challenges around privacy con-
cerns, access to media, subject recruitment, and rating method
(e.g., how to ask experts about the usability of images for their
task). The tasks performed may have media quality require-
ments that differ from the default consumer camera settings.
First responders and medical professionals could greatly bene-
fit from NR-IQA and NR-VQA metrics that would let cameras
understand and respond to these user requirements.

NR metrics with limited scopes could theoretically be
updated with an expanded scope. Retraining is particularly
important for ML-NSS metrics, and MATLAB offers tools to
re-train NIQE [34] and BRISQUE [10].

Users wantonly ignore scope limitations. Thus, the per-
ceived accuracy of an NR metric depends on its response to
both in-scope and out-of-scope media. Users expect the NR
metric’s performance to degrade gracefully as the media stray
increasingly beyond the intended scope. We expect ̂MOS to
become less accurate, but random values are unacceptable.

C. NR Metrics Analyzed on Modern Cameras

Table IV, Table V, and Table VI summarize the accuracy
of NR metrics for modern camera systems, as reported in a
variety of publications. These analyses usually appear as a side
comment within a publication that announces a new dataset
or NR metric.

The first two columns contain the NR metric’s name and
the Pearson correlation coefficient (ρ) or range of coefficients
reported by the metric developer. See Table I and Table II for
these references.
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TABLE IV
ACCURACY OF NR METRICS FOR MODERN CAMERA SYSTEMS, PART 1

The next four columns contain information from indepen-
dent assessments of the NR metrics. Column “ρ” is the
Pearson correlation coefficient from the reference noted in col-
umn “Ref.” Column “Dataset” identifies the dataset used for
the analysis, or the number of datasets if more than one dataset
is used. Occasionally, the authors retrain the metric using
dataset A and test on dataset B. We show this as (A → B).
Our preliminary analysis [84] uses six UGC datasets that mix
IQA and VQA: BID, CCRIQ, CCRIQ2&VIME1, CID2013,

TABLE V
ACCURACY OF NR METRICS FOR MODERN CAMERA SYSTEMS, PART 1I

KoNViD-1K, and LIVE-Wild. Similarly, [48] uses three datasets
(KoNViD-1K, LIVE-Qualcomm, and CVD2014) and [98] uses
three datasets (KoNViD-1K, LIVE-VQC and YouTube-UGC),
which they refer to as UGC-VQA.



PINSON: WHY NR METRICS FOR IMAGE AND VIDEO QUALITY LACK ACCURACY AND REPRODUCIBILITY 105

TABLE VI
ACCURACY OF NR METRICS FOR MODERN CAMERA SYSTEMS, PART 1II

Column “Notes” summarizes any procedures used other
than simply correlating ̂MOS to MOS. “Retrain” means a
machine learning metric was retrained and analyzed on the
dataset (e.g., with an 80/20 split). “Fit” means ̂MOS was fit-
ted to MOS using a non-linear mapping. “Misc.” refers to
other miscellaneous processing. Information could be missing
from this column; some publications did not describe their test
procedures clearly.

Additional NR metric assessments can be found in the doc-
uments cited in Table IV, Table V, and Table VI. These
tables focus on NR metrics that are analyzed by multiple
publications.

Most of these assessments use a single dataset. Likewise,
most of the NR metrics are trained on a single dataset (see
Table I). This results in a huge range of ρ values. For exam-
ple, BRISQUE analyses ranges from 0.11 to 0.90, and NIQE
analyses ranges from 0.09 to 0.84. These examples make it
clear that ρ for any single dataset cannot be interpreted as an
indicator of ρ outside that dataset.

One of the few evaluations that uses many datasets appears
in [19]. This paper compares HVS-MaxPol to seven other
sharpness vs blur metrics. The authors use four datasets with
synthetic blur and three datasets with camera capture blur.
Their meticulous analysis includes a table that allows easy
comparisons among the four synthetic datasets (LIVE-2006
and three others) and the three camera capture datasets (BID,
CID2013, and FocusPath).

The primary issue we observe is insufficient data—
development and evaluation based on a single dataset or
datasets that are too similar to each other. These very nar-
row results can then establish unrealistic expectations for more
general NR metric performance. Evaluators analyze NR met-
rics on tiny “proof of concept” datasets and imply that their
results (good or bad) will extend to a broader evaluation
of modern media systems. Derivative issues follow—brilliant
ideas discarded, erroneous ideas pursued, and widespread
misinformation about the accuracy of NR metrics.

The choice to train or test on a single dataset cannot be jus-
tified. Better, faster, and more reliable results can be obtained
with multiple datasets—some in-scope, to improve internal
validity, and some out-of-scope, to ensure external validity.
Many datasets are now freely available: 25 datasets from
LIVE (see [96]), 9 datasets from the Universität Konstanz
(see [97]), 37 datasets on the Consumer Digital Video Library
(https://www.cdvl.org), etc. The metric’s internal validity can
be improved by including datasets that focus on a spe-
cific application. Each of the following datasets emulates a
different use case: AVA, DIQA, FocusPath, ITS4S3, LIVE-
YouTube-HFR, Panorama, SIQD, SRID, UHD-HDR-WCG,
and YouTube-UGC.

A secondary issue is measurement noise from differences in
analysis methods. The impact can be observed by comparing
results for the CID2013 dataset from different papers. Different
publications report different ρ values for the CID2013 dataset
(e.g., BRISQUE [0.45 to 0.62], NIQE [0.22 to 0.66], and
DIIVINE [0.23 to 0.53]). This makes it very difficult to reach
any viable conclusions.

The most common method variants are fitting and retraining.
The choice to fit ̂MOS to MOS is influenced by VQEG vali-
dation tests. The VQEG validation tests are designed for high
performing metrics that have a linear response to MOS. The
logistic fit removes subtle nonlinearities associated with the
subjective dataset. However, NR metrics are much less accu-
rate. The logistic fit disguises the NR metric’s nonlinearity
problems, which is undesirable. We recommend against fitting
functions when analyzing NR metrics.

Retraining is a confounding factor because each evalua-
tor retrains the NR metric differently. Retraining requirements
may hinder the adoption of an NR metric. Evaluators should
either analyze the NR metric exactly as provided by the
developer or provide two analyses—first without retraining
and second with retraining. The first analysis would provide
baseline statistics for comparisons between datasets. The sec-
ond analysis would demonstrate the NR metric’s potential
improvement for the new dataset.

Since no single publication provides us with stable accuracy
measurements for NR metrics applied to modern camera
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systems, we will infer a threshold using the average accuracy
across multiple tests. If an author provides multiple estimates,
these will be averaged. Statistics from developers are ignored;
these are usually the metric’s performance on the training data.
Taking the average of correlation values (denoted ρ) is suspect
from a mathematic theory standpoint, but we have no viable
alternative.

For BRISQUE, ρ = 0.48 overall and ρ = 0.42 when retrain-
ing is eliminated. For NIQE, ρ = 0.39 overall and ρ = 0.38
when retraining is eliminated. For the NR metrics in Table VI,
ρ = 0.41 overall and ρ = 0.34 when retraining is elimi-
nated. Finally, for the seven blur/sharpness NR metrics in [19],
ρ = 0.51. This estimate includes the author’s prior work
(MaxPol) but omit HVS-MaxPol, as it was trained on these
three modern camera datasets.

Most of these experiments were conducted by uni-
versities or our department. YouTube-UGC [82], [83] by
Google R©provides an independent industry assessment of
NR metrics for the UGC use case. YouTube-UGC contains
1,500 videos that were selected from 1.5 million YouTube
videos. Their analyses of BRISQUE, NIQE, and VIIDEO
approach the minimum reported accuracy. The NR metric
with the best accuracy is NIMA [33] with ρ = 0.53. Google
attributes some of the decreased performance of NR metrics
on YouTube-UGC to aesthetic quality problems that are outside
the NR metrics’ intended scope [83]. Youku-V1K has a simi-
lar design—1,072 videos from the Youku service—but much
higher correlations.

V. NR METRIC SAWATCH: BASELINE FOR

COLLABORATION

We must now interrupt our overview of NR metrics to
describe NR metric Sawatch Version 3 and the RCA metrics
upon which Sawatch is built. We will use these NR metrics to
expose the differences among datasets and the repercussions
of these differences for NR metrics.

We begin with the supposition that NR metrics must be
trained on a minimum of ten datasets that characterize a variety
of modern camera systems and camera capture impairments.
This is not an exact calculation. Most researchers must depend
on openly available datasets. Ten datasets should ensure a judi-
cious variety of principal investigator, use case, subject matter,
experiment design, noise, and bias.

We use functional programming to split the research effort
into independent algorithms, each providing RCA for a single
impairment. These can be developed separately and replaced
with improved algorithms. Sawatch is provided as a base-
line metric for collaboratively developing NR metrics using
this paradigm. Code is available in the NRMetricFramework
repository [4]. Sawatch Version 3 can be used for any purpose,
commercial or non-commercial. However, Sawatch Version 3
calls dipIQ, which is only freely available for research.

The Sawatch mountain range in central Colorado con-
tains eight of the 20 highest peaks in the Rocky Mountains.
Similarly, the Sawatch metric is a collection of NR metrics
and RCA parameters. Mountain climbers tackle increasingly

difficult mountains. Similarly, NR metric development is a dif-
ficult challenge, and our goal is steady improvement until we
achieve the highest levels of performance.

A. Background

Sawatch builds upon the development methods we used
from 1989 to 2011 to develop FR metrics that can be imple-
mented as reduced reference (RR) metrics. The best known
of those are Video Quality Metric (VQM) [102] from ITU-T
Rec. J.244 (2004) and ITU-R Rec. BT.1683 (2004) and Video
Quality Metric for Variable Frame Delay (VQM-VFD) [103].

Our FR/RR design strategy was to develop several differ-
ent metrics using the HVS and RCA strategies. These metrics
were motivated by the human visual system and provide lim-
ited RCA. ̂MOS is a linear equation that takes these individual
metrics as input parameters. VQM was trained on 11 datasets
and VQM-VFD was trained on 79 datasets. Our training lever-
aged both per-dataset analyses and meta-dataset analyses. The
large number of datasets and RCA/HVS strategy produced
metrics that are resilient to advances in video technology, as
demonstrated by [104].

B. Design Principles

NR metrics typically assess overall quality (̂MOS), but com-
panies tell us that NR metrics must also provide RCA that
explains why the quality is bad [3]. Companies want to use
NR metrics to detect and respond to problem in real time—
adjust camera settings, apply post-processing to remove the
impairment, select appropriate encoder settings, change to a
more appropriate computer vision algorithm, etc.

Instead of a “one size fits all” solution, industry wants an
NR metric that can be easily adjusted—like a muffin recipe
that tells the chef how to adjust the recipe for nut muffins,
chocolate chip muffins, blueberry muffins, or cheese muffins.
NR metrics must provide RCA and, if possible, a simple
way for a lay person to adjust the impact of each measured
impairment on MOS.

Sawatch is a versioned series of NR metrics that provide
RCA, open source, and moderate to fast run speed. The inten-
tion is that Sawatch will be updated regularly instead of
remaining a fixed, static algorithm. Sawatch is intended for
a broad range of modern camera systems, video content, pho-
tography problems, and camera capture impairments. ̂MOS is
calculated as a weighted sum of the other NR metrics, each
assessing a single impairment. This equation can easily be
adjusted to omit an impairment that users do not wish to be
penalized.

To simplify development, we accept the following con-
straints. First, Sawatch version 3 cannot assess transmission
errors or temporal integration, as per Section III–C. These can
be studied separately and applied as post-processing. Second,
Sawatch assesses the quality of the image or video after scal-
ing to a monitor for display. That is, the added value of a
40 megapixel (MP) photograph over an 8 MP is irrelevant
when both are displayed to a 1080 × 1920 pixel monitor.
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TABLE VII
RCA PARAMETERS IN NR METRIC SAWATCH VERSION 3

Sawatch version 3 is a linear combination of eleven NR
metrics. We will refer to these as parameters. Each parame-
ter analyzes one impairment to provide RCA. Sawatch results
are on a one to five scale as per the 5-level ACR method.
Due to relative differences between datasets and error in the
RCA metrics, ̂MOS is sometimes above or below this range.
Each parameter is on a zero to one scale, where zero indi-
cates no impairment and one is a nominal upper limit for the
maximum impairment. Sawatch has the form:

̂MOS = 6.2 −
11∑

p=1

(
wpxp

)
(1)

where wp is the weight for parameter p, and xp is the value
of parameter p. The influence of the nth parameter can be
removed from ̂MOS by setting wn to zero. The expected rating
behavior is thus retained: media with few or no impairments
will have ̂MOS ≈ 5.0. Table VII lists the parameters and their
weights.

The constant (6.2) is derived observationally, from our
twelve training datasets (IQA UGC, VQA UGC, and VQA BC).
Extensions above five and below one occur whenever multiple
datasets are mapped to a single scale. For example, when the
six VQEG HD datasets are mapped to a single scale, the MOSs
range from 0.82 to 5.26 [101].

We could not use linear regression to determine these
weights. Each training dataset yields very different values for
wp, due to differences in the frequency and severity of impair-
ments among datasets. Imperfections in the RCA metrics
create dataset dependencies, and the low accuracy of all NR
metrics leaves us hesitant to trust meta-data analyses. Instead,
we manually adjusted one weight at a time and examined how
the accuracy of Sawatch changed for each dataset.

For some applications, ̂MOS estimation accuracy is more
important than flexibility. Machine learning could be used to
replace (1) with an optimal combination of the RCA metrics
for general use. This strategy might let us model the complex
interactions between impairments that we note in Section VII.

Several factors influence the upper and lower bounds for
Sawatch ̂MOS on the 12 training datasets (5.1 to 0.0). ̂MOS
< 1 tend to be outliers but can also be caused by the rel-
ative nature of MOSs (i.e., subjects adjust their use of the
rating scale to the media in the dataset). The distribution of

MOSs is influential: subjects are reluctant to assign a perfect
5.0 MOS to any media, and datasets tend to have few media
with MOS < 2. Some impairments cannot be detected (e.g.,
jerky motion, lens distortion, lens flare, flickering, freezing,
and ghosting). Each of the eleven parameters in Table VII
has a limited accuracy. Sawatch tends to produce values in
the middle of the range (roughly 2.6 to 3.8); values at either
extreme (near 5.0 or 1.0) are unlikely. As the overall accu-
racy of Sawatch improves with future versions, we expect the
distribution of ̂MOS to flatten.

C. Assumptions and Filters

The parameters adhere to the following design specifi-
cations. Calculations occur in the YCbCr color space with
8-bit pixel depth. Thus, the luma (Y) plane spans [0..255].
Parameters are scaled to [0..1], where zero indicates no impair-
ment and one indicates maximum impairment. Images and
videos are scaled to the monitor resolution prior to beginning
calculations.

Spatial impairments are defined for images (photographs)
and calculated for each video frame separately. Temporal
impairments are calculated on sequential pairs of video frames;
images are replicated to create a still video. Per-frame video
results are aggregated into a single value, typically the mean of
all frames. This aggregation can be replaced with an improved
temporal integration algorithm later.

Some parameters divide images into subregions that contain
≈1% of the pixels. The results for each subregion are com-
bined into a single estimate, typically focusing on the worst
case (high impairment levels) or the best case (low impair-
ment levels). This technique allows us to avoid the impact
of confounding visual patterns (e.g., intentionally blurred
backgrounds look blurry but may not impact MOS).

Several parameters refer to the spatial information (SI) filter,
which forms the core of VQM [102] and VQM-VFD [103]. We
will refer to this edge detection filter as si5 for a 5 × 5 edge
filter, si11 for 11 × 11, and si15 for 15 × 15. These are band-
pass filters, where each row or column is identical. Like the
Sobel filter, the SI filter applies separate horizontal and ver-
tical filters and combines them using Euclidian distance (i.e.,
square, sum, square root). Larger edge filters, like si15, are
fairly impervious to small edges and shot noise. Like Sobel,
the SI filter has a ×4 edge magnitude multiplier.

The horizontal and vertical filtered images can be used to
compute a more robust calculation of edge angle than is possi-
ble with the 3 × 3 Sobel filter. This angle estimation is used to
separate the SI pixels into horizontal and vertical edges (HV)
and diagonal edges (HVbar), using an angle threshold, �. For
more information, see filter_si_hv_adapt.m [4].

D. RCA Metric Training

Our training data consists of the twelve datasets described
in Section II–B: IQA UGC, VQA UGC, and VQA BC. We
chose six IQA dataset and six VQA datasets as a compromise
between the ideal (more datasets) and the reality of computa-
tion resources (storage and computation speed). Our primary
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challenge in training RCA metrics is that these datasets pro-
vide MOSs, not RCA. We used the following RCA metric
training strategies. Other strategies are proposed in [3].

Our first strategy is to create a challenge dataset—a set of
images or videos that demonstrate a single impairment, while
avoiding others. This strategy is used by [55] for RCA metrics
that detect blur. The authors begin with a dataset of synthet-
ically blurred images and then verify their results using BID
which contains naturally blurred images. Similarly, ITS4S4
includes camera pans with different speeds, frame rates, and
subject matter. While other impairments could not be fully
eliminated, their influence was minimized. The ITS4S4 dataset
was used to train the S-PanSpeed metric in Sawatch Version 3.

A challenge dataset simplifies algorithm development,
because MOS is highly correlated with the quality of the cho-
sen impairment. The disadvantage is that challenge datasets
will probably be small and may lack external validity. For
example, RCA metrics for noise, like AGWN, seem to have
trouble with unforeseen photographs that contain fine details.
Similar dataset design problems cause facial recognition to
fail on people wearing certain t-shirts [105]. The RCA metric
must be verified using other datasets. The expense of creating
a challenge dataset limits the viability of this strategy.

Our second and more commonly used strategy is to visually
examine scatter plots. Differences in the impairment’s preva-
lence and severity can cause the scatter plots from different
datasets to look very different. However, we expect the MOS
and ̂MOS scatter plots for multiple datasets to cover a similar
area and depict similar shapes. Multiple impairments influ-
ence MOSs, so there is considerable noise around the MOS vs
̂MOS fit line of an RCA metric and we expect low ρ values.
Pearson correlation coefficient assumes that the data should
form a scattering of points around a fit line. This assumption
is only true when the impairment is very common, either in
general (like blurriness) or because it is the main impairment
of a particular dataset (e.g., blur for BID or pan speed for
ITS4S4).

Our RCA development cycle was as follows. We chose an
impairment, brainstormed algorithms with low complexity and
fast run speed, and calculated the algorithms for one dataset
that contains the impairment. Our analysis included exam-
ining statistics (ρ), examining MOS vs ̂MOS scatter plots,
and visually inspecting media, to see whether the algorithm
detects the intended impairment. Promising algorithms were
iteratively improved, applied to other datasets, and compared
to Sawatch’s residuals. The iterative improvement cycle is
computationally efficient, because [4] provides a mechanism
to save and investigate intermediate results of the NR metric
calculation. Scatter plots heavily influenced these decisions.

Where possible, we evaluate RCA metrics on datasets that
include low levels of the impairment. This indicates the RCA
metric’s false positive error rate. For example, the goal of
ADMD [7] is to detect uneven illumination, but our analysis
of datasets without uneven illumination indicates that ADMD
detects an infrequent characteristic of high-quality media.

The scatter plots for low impairment datasets may have
no obvious pattern and misleadingly low ρ. The fit line can
change direction (positive correlation to neutral or negative

correlation). Thus, low impairment datasets can only be under-
stood in the context of other datasets’ scatter plots. This
does not indicate a problem if the range of ̂MOS values is
in the range associated with “no impairment” for datasets
with low levels of the impairment. For example, Sawatch’s
White Level has ρ values between 0.00 and 0.08 for the three
video compression datasets, because the videos were produced
by professional videographers who correctly set the camera’s
white level.

As a final verification step, we visually inspected media.
Only by viewing media with high and low ̂MOS can we know
whether the metric assesses the intended impairment.

E. Sawatch Parameters

Let us now examine the nine parameters associated with
Sawatch Version 3. We describe each parameter at a high
level. Our goal is to identify underlying characteristics of the
human visual system, not the quirks of a scene, camera, or
codec. Omitted algorithm details, such as scaling factors and
clipping levels, can be found in [4]. This repository contains
scatter plots and additional statistics for each parameter. Each
RCA metric is prefixed with “S-” to denote the association
with Sawatch.

S-BlackLevel estimates whether the black level is too high,
based on the standard deviation of Y (the luma image). S-
BlackLevel only triggers when the mean of Y is above mid-
level grey.

S-Blockiness analyzes the angle of small edges in the luma
plane, using an si5 filter with � = 0.01 radians. Put simply, S-
Blockiness triggers if the entire image has higher than expected
HV edge energy, relative to the HVbar edge energy. HV pixels
adjacent to HVbar pixels are omitted (set to zero), because the
measured edge angle is unreliable there. The image is divided
into ≈100 subregions. For each subregion, we compute the
average HV magnitude divided by the average HVbar mag-
nitude. The denominator is clipped to prevent low magnitude
noise from amplifying the ratio. S-Blockiness is the average of
the low value subregions; this eliminates intentional horizontal
and vertical lines (e.g., news feed banner, faux picture frame,
picture-in-picture border).

S-Blur analyzes the delta that an Unsharp filter would add
to the image. The image is divided into ≈100 subregions,
and each subregion’s average magnitude is divided by the
range of filtered values. Unsharp averages the high value sub-
regions (i.e., areas with the sharpest, most in-focus edges).
A divisor normalizes for differences between low and high
contrast content—think lion vs zebra fur patterns. S-Blur has
a correction factor for 4K monitors.

S-ColorNoise uses quirks of the YCbCr color space to detect
color problems. The Cb and Cr color planes do not align
to how people think and talk about colors. Thus, we expect
edges in the Cb plane to also appear in the Cr plane. Put
simply, S-ColorNoise triggers when the Cb and Cr planes
are too dissimilar. This flags colorful camera noise from
low light environments, abnormal colors (e.g., the camera
responded poorly to very bright light), and some manual color
enhancements.
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We apply the si11 filter to the Cb and Cr planes, divide these
into ≈100 subregions, and calculate ρ between the si11 filtered
Cb and Cr. S-ColorNoise averages the high value subregions
(giving the benefit of doubt to Cb/Cr differences being legit-
imate) and clips at an experimentally determined upper limit
(Cb/Cr similarity meets or exceeds expectations). Color noise
cannot be computed for color deficient images.

Sawatch is the dipIQ metric, linearly scaled to [0..1]. We
will refer to this simply as dipIQ in our plots and tables. As
mentioned previously, dipIQ uses an L2R algorithm and truth
data calculated from an FR metric [16]. Our analysis indicates
dipIQ is well suited as an RCA metric for compression arti-
facts. dipIQ performs best for ITS4S and AGH/NTIA/Dolby,
which closely match the scope where FR metrics work best
(e.g., professional footage, compression only impairments).

S-FineDetail is Pearson correlation coefficient squared (ρ2)
between the si5 and si15 filtered luma planes. High val-
ues (near one) indicate that all small edges are pieces of
larger edges. S-FineDetail identifies up-sampling, too aggres-
sive noise filtering, and low bit-rate compression that erases
fine details.

S-Jiggle estimates camera jiggle. For each pair of frames,
we divide the frame into ≈100 subregions to estimate hori-
zontal and vertical motion. The camera jiggle for each frame
is computed as the spread of estimates for each subregion.
These separate estimates are combined at different levels of
temporal granularity to avoid the influence of frame repeats
from 3/2 pulldown and frame rate conversions.

S-PanSpeed was trained on dataset ITS4S4, which includes
pan speeds from very slow to the background crossing the
monitor in ≈0.33 s (e.g., bodycams and security cameras).
For each pair of frames, we use the ≈100 horizontal and ver-
tical motion estimates from S-Jiggle. These separate estimates
are combined at different levels of granularity to obtain an
overall estimate for motion that is more influenced by hori-
zontal motion than vertical motion. S-PanSpeed demonstrates
the viability of the challenge dataset strategy.

S-Pallid identifies images that have too little pigmenta-
tion (i.e., deficient in color). Artists choose black-and-white
media for a variety of reasons, but subject ratings indicate a
small but consistent preference for colorful media. The Cb and
Cr planes are divided into ≈100 subregions, and S-Pallid is
the fraction of regions that contain little variation in Cb or
Cr, based on the standard deviation of Cb and Cr. S-Pallid
has an unusually well-defined upper-triangle shape for ITS4S,
ITS4S2, and ITS4S3, which evaluate media quality for public
safety use cases. This seems to indicate that color deficiency
is an impairment that hinders first responder applications.

S-SuperSaturated detects media whose color saturation was
manually boosted beyond typical values. We calculate the frac-
tion of pixels where either Cb or Cr have larger magnitudes
than commonly observed in cameras. S-SuperSaturated may
be associated with a drop in quality, as demonstrated by dataset
KonVid-1K. However, the other datasets neither support nor
convincingly reject this conclusion. The need for additional
training data is reflected in a low weight, wp.

S-WhiteLevel is the 98th percentile of luma values, when
dark border regions are ignored. S-White Level is undefined

if the entire image is dark, because many videos include
intentionally black frames. S-WhiteLevel is clipped at an exper-
imentally determined upper threshold, where training data
indicates quality stops rising.

VI. NR METRIC ACCURACY FOR

MODERN CAMERA SYSTEMS

Previously published analyses of NR metrics contain exag-
gerations, ambiguities, and inaccuracies. We conclude that NR
metrics must be developed and evaluated with at least an order
of magnitude more data (i.e., at least 10 datasets). To address
these concerns, we will now present our analyses of NR met-
rics for modern camera systems. Algorithm discrepancies may
occur unintentionally. Note that we:

• Do not retrain machine learning algorithms
• Do not apply a non-linear fit to ̂MOS
• Ignore the NR metric’s intended scope
• Use freely available NR metric code if possible
• Compare to diverse media from modern camera systems
This protocol emulates an industry user who wants plug-

and-play convenience. NR metrics with very slow computation
speeds are omitted as impractical for industry use cases.

A. Our Evaluation Methods and Datasets

Our analysis uses the same twelve datasets that were used to
train Sawatch Version 3: IQA UGC, VQA UGC, and VQA BC
(see Section II–B). Before running the NR metric, the images
and video frames are scaled to the monitor resolution, to repli-
cate the subjects’ viewing conditions. NR-IQA metrics are
applied to videos by calculating per-frame values and then
taking the average over all frames. We expect this to be a toler-
able strategy for 8 s videos where the quality may change over
time (like KoNViD-1K and AGH/NTIA/Dolby) and an excel-
lent strategy for shorter video with consistent quality over time
(like ITS4S, ITS4S3, ITS4S4, and vqegHDcuts).

Our analyses use 90% of media from each dataset; the
remaining 10% of media are held in reserve for verifying the
performance of future NR metrics. This 90/10 split was per-
formed once and is recorded in the NRMetricFramework. We
recommend the same 90/10 split be used for all future training
and evaluation. Thus, ML-NSS metrics would sub-divide the
90% for training and testing.

A few of the NR metrics evaluated in this section were
trained on one or two of our twelve evaluation datasets.
Munsell Red was trained on ITS4S. HVSMaxPol was trained
on BID and CID2013. NSS was trained on CID2013; the other
two variants of NSS yield similar performance.

Pearson correlation coefficient will not detect undesirable
data distribution patterns, like one value of ̂MOS spanning the
full range of MOSs. Therefore, we will also perform visual
examinations of MOS vs ̂MOS scatter plots. A broad scattering
of points around a line is always desirable. If the NR metric
detects an infrequently occurring impairment, then we would
expect a lower triangle (i.e., narrow range for high quality,
wide range for low quality). If the NR metric detects an infre-
quently occurring characteristic of high-quality media, then we
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Fig. 1. Scatter plots depict the response of previously published NR metrics to the CCRIQ dataset (blue dots) within the context of the six IQA UGC
datasets (green dots). The red line shows the linear fit for the CCRIQ dataset.

would expect an upper triangle (i.e., wide range for high qual-
ity, narrow range for low quality). See Figure 1 to visualize
the triangle patterns: TDMEC is an upper triangle shape, and
dip-IQ is a lower triangle shape.

B. Pearson Correlation Coefficient Comparisons

Table VIII reports the accuracy of NR metrics when assess-
ing MOS. Column “ω” indicates the intended outcome of the
metric: M for MOS, R for RCA, C for CV failure rate, and K
for RANK metrics that order media. By failure rate, we mean
the NR metric predicts the likelihood that CV will fail due to
media quality problems. The intended outcome of the TDME
and TDMEC metrics is ambiguous (RCA or MOS). Table VIII
emphasizes RCA metrics because we intentionally sought this
type of NR metric.

Column “Shape” indicates the shape of the scatter plots. “//”
indicates a scattering of data around a fit line. “�” indicates an

upper triangle. “�” indicates a lower triangle. “ ” indicates
a random scattering with no obvious pattern. “ε” means the

scatter plot has severe outliers that must be investigated, or
the code produced errors for some media.

Column “ρ” is the Pearson correlation coefficient reported
by the NR metric’s developer. Column “IQA UGC” reports ρ

for our six IQA UGC datasets. Column “VQA UGC” reports ρ

for our three VQA UGC datasets. Column “VQA BC” reports
ρ for our three VQA BC datasets. The symbol “ ” indicates
values could not be computed because the code runs too slowly
to be practical (e.g., 10 m to 4 h per video).

We cannot compute ρ for CurvletQA because the code
produced errors for too many media and some scatter plots
depict data scattered around two or more fit lines. Despite this
problem, CurveletQA is one of the more promising NR metrics
based on the underlying shape (see [4] for plots).

The evaluations shown in Table VIII always compare ̂MOS
to MOS but some NR metrics do not produce MOS estimates
(see column ω). The mismatch explains some of the decrease
in ρ. This mismatch is most severe for dipIQ, which pro-
duces rankings instead of MOS estimates. Other statistics and
new methods are needed to properly analyze NR metrics that
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TABLE VIII
COMPARISON BETWEEN PEARSON CORRELATION COEFFICIENT OF ̂MOS

VS MOS, FROM DEVELOPERS AND EVALUATORS

produce rank orders or predict CV success rates. The develop-
ers of the iAITech-NJIT NR metrics note differences between
human perception and their CV use case [20]. The developers
of dipIQ propose three statistics for evaluating the ability of
RANK metrics [16].

For RCA metrics, an upper or lower triangle indicates that
the NR metric could plausibly detect the intended impairment.
However, the media must be visually examined to ensure that
the correct impairment is detected with increasing sensitivity
in response to changes in ̂MOS. We did not perform this visual
examination for the NR metrics in Table VIII.

Table IX reports the accuracy of NR metric Sawatch Version
3 and its parameters for its training datasets. S-BlackLevel pro-
duces zero (0) for all media in the six VQA datasets. The
GitHub repository provides scatter plots for each dataset (MOS
vs ̂MOS). Lab-to-lab differences have been retained (i.e., the
MOSs are not mapped to a single scale).

C. Scatter Plots

A deeper understanding of NR metric performance requires
visual examination of scatter plots of MOS vs ̂MOS.
Differences in the impairment’s prevalence and severity can
cause the scatter plots from different datasets to look very
different. However, we expect the scatter plots for multiple
datasets to cover a similar area and depict similar shapes.

Figure 1 plots the NR metrics from Table VIII for the
CCRIQ dataset, within the context of the other five IQA UGC
datasets. CurveletQA is omitted due to the aforementioned

TABLE IX
ACCURACY OF SAWATCH ON TRAINING DATA

problems. Figure 2 shows these same NR metrics for the
ITS4S dataset within the context of the other VQA UGC and
VQA BC datasets. Each metric’s values span a different range
and larger values could have either a positive or negative
connotation.

Figure 3 and Figure 4 show the same plots for Sawatch.
Each RCA metric spans a similar range (zero to one), where
one indicates maximum impairment. We want RCA metrics to
produce a vertical line at zero if the impairment is not present
(e.g., the IQA UGC datasets lack motion impairments).

Each of these scatter plots shows the response of one NR
metric on one dataset (blue dots) within the context of several
other datasets (green dots). The x-axis is ̂MOS and the y-axis
is MOS. The red line shows a linear fit for the current dataset
(blue dots). To simplify comparisons between plots, the LIVE-
Wild MOSs have been linearly mapped from its native [0,100]
scale to [1,5]. This mapping does not fully account for dif-
ferences between how subjects use the 5-level and 100-level
ACR scales. More scatter plots are available at [4].

The NR metric scatter plots produce one of four shapes.
From most desirable to least desirable, these are a scattering
of data around a fit line, a lower triangle, an upper triangle,
or no apparent pattern. An upper or lower triangle is undesir-
able if the NR metric predicts overall quality (MOS). A lower
triangle is desirable for an RCA metric that detects a char-
acteristic that appears infrequently in low quality media (e.g.,
noise or coding artifacts). An upper triangle is desirable for
an RCA metric that detects a characteristic of some (but not
all) high quality media (e.g., sharpness, colorfulness, or good
composition). However, if the NR metric is supposed to detect
an impairment associated with low quality, an upper triangle
probably means the RCA metric detects something other than
the intended impairment.

D. Analysis

Table VIII shows a significant drop in accuracy from the
developer’s ρ to our ρ. Most of these NR metrics produce a
scatter plot shape that is undesirable when estimating MOS
(i.e., upper triangle, lower triangle, or no discernable pattern).
Therefore, users may perceive a random relationship between
̂MOS and their ad-hoc assessments of MOS.
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Fig. 2. Scatter plots depict the response of previously published NR metrics to the ITS4S dataset (blue dots) within the context of the six VQA datasets
(green dots). The red line shows the linear fit for the ITS4S dataset.

Only NIQE and 2stepQA-NR portray a spread of data around
a line and both had severe outliers (recall that 2stepQA-
NR calls NIQE). 2stepQA-NR and HVS-MaxPol have the
best ρ, but ρ was too low to support industry deployment.
dipIQ portrays a spread of data around a line for ITS4S and
AGH/NTIA/Dolby but not for the other ten datasets.

Sawatch Version 3 portrays a spread of data around a line
for IQA UGC (see Figure 3) and VQA UGC / VQA BC (see
Figure 4). The Sawatch Version 3 RCA metric ρ in Table IX is
often low. This does not necessarily indicate that the RCA met-
ric is inaccurate. The ideal RCA metric should detect a single
impairment and not respond to other impairments. We nor-
malize RCA metric response to the [0,1] range (i.e., each
xp in (1)). We want ̂MOS> 0.8 for the severe levels of the
intended impairments. We want a vertical line at ̂MOS = 0.0
if the impairment is not present. We observe this behavior
in Figure 3 for S-Jiggle and S-PanSpeed and in Figure 4
for S-Blockiness. For RCA metrics, we want to see consis-
tent response across 10+ datasets and scatter plot shapes that
match the expected metric behavior. Media near ̂MOS ≈ 1.0
must be visually examined to confirm the presence of the
impairment.

When the impairment is extremely rare, the fit line will
be nearly random. The scatter plots can only be understood
within the context of scatter plots from many other datasets,
as per S-Blockiness in Figure 4. Only KoNViD-1K has enough

super saturated media to properly analyze S-SuperSaturated.
More datasets with super saturated colors and black balance
problems are needed to further develop these NR metrics and
ensure they provide proper RCA.

S-Black Level, S-Blockiness, and S-White Level detect infre-
quent impairments and so either portray a lower triangle or a
vertical line around ̂MOS ≈ 0.0, depending on the dataset.
Blur portrays a loose scattering of data around a line, indi-
cating this is a dominant impairment for all 12 datasets.
S-PanSpeed portrays a scattering of data around a line for
ITS4S4, where pan speed is the dominant impairment, ̂MOS ≈
0.0 for the motionless IQA datasets, and a lower triangle oth-
erwise. S-Color Noise, S-Pallid, and S-Super Saturation have
less well-defined plot shapes, indicating these impairments are
infrequent or less influential.

Several of the NR metrics in Table VIII show potential
for RCA. Some of these were intended for RCA: CPBD,
HVS-MaxPol, JNB, and MaxPol for blur/sharpness; TDME
and TDMEC for contrast enhancement; and NR-PWN for
noisiness. Other metrics were intended for MOS estima-
tion but show potential for RCA based on the scatter plot
shapes: NR-IQA Entropy, NR-IQA Kurtosis, OG-IQA, and
SpEED-NR. These algorithms would need to be trained on
more data, to ensure resiliency, and visual inspection must
be performed, to ensure these metrics detect a specific
impairment.
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Fig. 3. Scatter plots depict the response of Sawatch and its constituent param-
eters to the CCRIQ dataset (blue dots) in the context of the six IQA UGC
datasets (green dots). The red line shows the linear fit for the CCRIQ dataset.

The two NR metrics in Table VIII that seem to have the
best potential for RCA respond differently for the UGC and
BC use cases. HVS-MaxPol has a lower triangle shape, ρ =
0.49 for the nine UGC datasets, and ρ = 0.25 for VQA BC.
This is consistent with an impairment that is less prevalent for
the broadcast use case. dipIQ has a lower triangle shape and
ρ = 0.36 for the nine UGC datasets, but a scatter around a fit-
line and ρ = 0.63 for the three BC datasets. This is consistent
with an impairment that is less prevalent for the UGC use case.

The NR metrics in Table VIII exhibit problematic behaviors
caused by insufficient training data. About half of them had
problems (noted by ε) that must be addressed before the NR
metric could be incorporated into an automated system. NR-
PWN had particularly divergent responses to different datasets,
with ρ ranging from 0.01 to 0.55. JNB responded poorly to
the CCRIQ images displayed on a 4K monitor. CPBD had
an undesirable scatter plot shape and fit but relatively high ρ.
Generally, we conclude that the metrics in Table VIII need
to be trained on more datasets before they will mature into
accurate, reliable, and deployable algorithms.

By contrast, Sawatch has demonstrated consistency across
multiple datasets but needs to be supplemented with more
RCA metrics (to assess missing impairments) and must be
validated on unforeseen datasets. Examples of missing impair-
ments include banding, mosquito noise, ringing, lens distor-
tion, sun flare, ghosting, scaling errors, slicing, motion blur,

Fig. 4. Scatter plots depict the response of Sawatch and its constituent
parameters to the ITS4S dataset (blue dots) within the context of the three
VQA BC datasets (green dots). The red line shows the linear fit for the ITS4S
dataset.

flickering, jerky motion, de-interlacing artifacts, and panorama
stitching artifacts.

VII. CAVEATS AND COMPLICATIONS

Some datasets include similar impairments but at different
levels of severity. Other datasets may omit an impairment
entirely. ITS4S3 emphasizes camera jiggle and lens flare
because these are common problems for first responders.
Camera jiggle and lens flare are missing from VQA BC
because professional videographers avoid these impairments.
White balance and black balance problems are common in
UGC content that mostly comes from phones, tablets, and
compact cameras. These problems do not appear in broad-
cast footage, where professional videographers manually set
the camera’s white balance and black balance.

Different use cases can change the relative impact of an
impairment on MOS, or even invert the relationship between
the impairment and MOS. Professional videographers slowly
pan to create a pleasant visual appearance during the pan.
Conversely, video surveillance users and drone operators pan
and zoom very quickly to minimize travel time from one view
another area. For this task, the pan quality may be irrelevant.
When digital pathology (DP) slide imaging systems are not
adjusted properly, the automatic focal system produces blurry
DP images [19]. Conversely, professional videographers use
blur to create pleasing aesthetics.
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TABLE X
PEARSON CORRELATION COEFFICIENT RESPONSE TO

BITRATE FOR ITS4S DATASET

We cannot predict or fully explain the relationship between
the end user’s use case and the perceptual impact of vari-
ous impairments. Unexpected factors will make the NR metric
appear to be more accurate or less accurate. This is a particu-
lar problem for proprietary NR metrics and ML-NSS metrics.
The lay person has no way to understand or explain the NR
metric’s unexpected response to their use case.

We can infer a complex relationship between MOS, qual-
ity, and impairments by examining Table X, which shows the
relationship between the ITS4S dataset [32] and RCA metrics.
ITS4S emulates the bitrate ladder of broadcast video streaming
service at 720p 24fps using an unrepeated scene experiment
design, where each media contains similar content (e.g., dif-
ferent segments of a dance video). The Pearson correlation
coefficient values in Table X are noisy and inexact, because a
different the set of videos is used for each bitrate.

Table X shows three of the Sawatch Version 3 parameters.
S-FineDetail is more accurate for lower bitrates than higher
bitrates. S-PanSpeed is more accurate for high bitrates than low
bitrates. S-ColorNoise is minimally influenced by bitrate. Our
point is that impairments may have greater or lesser impact on
MOS in response to resolution, compression bitrate, or other
unknown factors.

We know that market expectations and prior experience
influence MOSs. Packet loss is commonplace for subjects with
low Internet connectivity at home but may seem out of place
for subjects with high-speed networks. Older datasets (like
LIVE-2006) need to be deprecated or analyzed separately.

We suspect that gender, age, hobbies, and culture influence
MOSs. However, [87] indicates that analyzing these factors
would be prohibitively expensive (e.g., 200 subjects in a lab
environment). Demographic differences may contribute to our
difficulties when comparing datasets.

VIII. CONCLUSION

Based on this overview of prior research and our indepen-
dent analysis of NR metric performance for modern camera
systems, we conclude that none of the NR metrics we analyzed
are accurate enough to be deployed by industry. Performance
evaluations that indicate otherwise are based on insufficient
data and are highly inaccurate.

All datasets have limitations that impact NR metric research.
Datasets with MOSs are inherently size limited, due to con-
straints on how many media a subject can rate. The relation-
ship between subject matter, impairment, and industry use-case

is extremely complex. Analyses of a single dataset yield unsta-
ble performance statistics and lack external validity. Therefore,
there is a high risk for any dataset that it does not meaningfully
demonstrate the relationship between media, impairments, and
MOS. This problem has three consequences.

First, NR metrics must be developed and evaluated with
much more data. Based on our experience, we recommend a
minimum of ten datasets with diverse characteristics. To have
external validity, the dataset design must match an industry
use case (e.g., variety of modern cameras, realistic impairment
creation process). Datasets with unprecedented or unrealistic
elements, like simulated impairments or limited subject matter,
should be balanced by more realistic datasets.

Second, NR metrics should provide RCA. We began with an
assertion from industry that impactful use cases require RCA,
not MOS (see [3]). The complex relationship between indus-
try use-case, impairments, and MOS means that NR metrics
will rarely satisfy the industry end-user’s exact requirements.
The NR metric must justify ̂MOS by identifying specific
impairments (i.e., explain why the quality is bad). This action-
able information will allow industry users to bridge the gap
between the NR metric design and their use case.

Third, NR metrics must be trained on a broad scope
of all modern camera systems. Similar conclusions appear
in [72] and [73]. Most NR metric research builds on the
unstated hypothesis that media with limited impairments can
be used to develop NR metrics that are accurate enough for
industry. Our and other people’s evaluations of NR metrics
for modern camera systems reject this hypothesis. NR met-
ric research based on limited impairments provides a rich and
impactful foundation for future research—but has not by itself
yielded viable solutions.

We believe the path to eventual maturity, standardization,
and industry acceptance of NR metrics will require modu-
lar construction, collaboration, and devotion to incremental
improvements. We propose a paradigm for collaboratively
developing NR metrics that uses functional programming to
split the research effort into independent algorithms, each pro-
viding RCA for a single impairment. These can be developed
separately and replaced with improved algorithms. We provide
a baseline NR metric, Sawatch Version 3, to kick start NR met-
ric research that uses this paradigm. We encourage researchers
to leverage the tools from the NRMetricFramework repository.
An interactive demo [106] lets users to run Sawatch on their
own images.

We propose an experiment design for datasets that will
be used to develop and evaluate NR metrics. We orga-
nize datasets into subsets to understand the likely range of
responses for common use cases (e.g., UGC videos). Our
recommended initial scope includes camera capture impair-
ments and compression but excludes temporal integration,
transmission errors, and outdated impairments. Extending an
NR metric’s scope involves three steps: 1) gather datasets with
the new impairments, 2) make sure the existing NR metric
does not respond to the new impairments, and 3) develop
new algorithms that only predict the quality impact of the new
impairments (e.g., residuals ̂MOS − MOS). When we split the
research into independent algorithms, each providing RCA,



PINSON: WHY NR METRICS FOR IMAGE AND VIDEO QUALITY LACK ACCURACY AND REPRODUCIBILITY 115

the NR metric should inherently not respond to other impair-
ments. Thus, we expect most of the effort to fall within the
first and third step.

The information and ideas in this report, while occasionally
discouraging, are necessary to enable a future where industry
deploys NR metrics as trusted components of innovative new
media services.
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