
Solving Millions of Eigenvectors in Large-Scale
Quantum-Many-Body-Theory Computations

Alexey Tal
VASP Software GmbH

Vienna, Austria
alexey.tal@vasp.at

Martijn Marsman
VASP Software GmbH

Vienna, Austria
martijn.marsman@univie.ac.at

Georg Kresse
University of Vienna

Vienna, Austria
georg.kresse@univie.ac.at

Anton Anders
NVIDIA

Santa Clara, CA, USA
antona@nvidia.com

Samuel Rodriguez
NVIDIA

Santa Clara, CA, USA
srodriguezbe@nvidia.com

Kyungjoo Kim
NVIDIA

Albuquerque, NM, USA
kyungjook@nvidia.com

Alexander Kalinkin
NVIDIA

Santa Clara, CA, USA
akalinkin@nvidia.com

Alexey Romanenko
NVIDIA

Yerevan, Armenia
aromanenko@nvidia.com

Matthias Noack
NVIDIA

Berlin, Germany
mnoack@nvidia.com

Patrick Atkinson
NVIDIA

Bristol, UK
patkinson@nvidia.com

Stefan Maintz
NVIDIA

Zurich, Switzerland
smaintz@nvidia.com

Abstract—We present large-scale simulations of photovoltaics
materials in the Vienna Ab initio Simulation Package [1] (VASP)
that are only possible by pushing the boundaries of practically
solvable eigenproblems. Thus, we enable analyses for semicon-
ductors that were inaccessible within state-of-the-art predictive
methods before. To achieve this, we a) implemented a distributed
eigensolver in cuSOLVERMp that fully runs on the GPU,
b) adapted VASP’s Bethe-Salpeter Equation (BSE) algorithm
for GPUs and to employ cuSOLVERMp, and c) dramatically
improved the BSE workload distribution to yield near perfect
load-balancing at scale. With a size of two million, we solve one
of the largest dense, complex eigenproblems reported so far in
under 5 hours sustaining 7.8 PFLOPS using 34.5 GJ on 4096
GPUs of NVIDIA’s Selene supercomputer. Our results facilitate
new breakthroughs in material science. These improvements in
compute and energy efficiency apply to other domains relying on
solving large eigenproblems, as well.

Index Terms—High Performance Computing, Accelerator Ar-
chitectures, Linear Algebra, Distributed Eigensolvers, Quantum-
Many-Body-Theory Simulations, Quantum Chemistry, Bethe-
Salpeter Equation, VASP, Photovoltaics

I. INTRODUCTION

Breaking the ground for new results in scientific high
performance computing requires joint innovations on multiple
levels, for instance, at the domain-specific application codes
implementing specific mathematical models, and at the highly
optimized numerical solver libraries that make sure hardware
such as GPUs is fully utilized. In this work, we present
advances in implementing a distributed GPU-only eigensolver,
integrate it into VASP’s implementation of the Bethe-Salpeter-
Equation (BSE) method, and use it to compute properties of
complex photovoltaic materials inaccessible to this method
before. This involves solving one of the largest dense, complex
eigenproblems reported so far with a dimension of two million

within 5 hours at 7.8 PFLOPS on the Selene supercomputer
using 4096 GPUs.

This paper is structured as follows: The remainder of
this section introduces the various problems we address.
Thereafter, we provide an overview of related work (Sec-
tion II), describe the innovations realized on the different
layers (Section III), and present the insights gained for the
simulated materials (Section IV). Sections V and VI then
provide the benchmark methodology and detailed performance
analysis. The paper concludes with a summary discussing the
implications of our results (Section VII).

A. Predicting Optical Properties

The ongoing search for materials capable of efficiently
converting solar energy into electricity has become one of
the main priorities in the collaborative effort to reduce carbon
dioxide emissions and transition to green technologies. Solar
panels have shown a steep increase in efficiency reaching
25% in just a few years [2]. The properties of materials that
make them efficient for photovoltaic (PV) applications are
grounded in their ability to absorb solar radiation, which is
determined by the energy separating the electronic valence
states from the conduction states, i.e., the band gap. Another
crucial property of these materials is the energy required to
move apart an electron excited by incoming light and a positive
charge formed in-place of the excited electron called ”hole”
as shown schematically in Fig. 1. This binary system of an
excited electron and a hole is known as exciton and their
binding strength is called the exciton binding energy. The
band gap and the exciton binding energy are the fundamental
properties that define the efficiency of the material for PV.

Fig. 1. Left: Schematic representation of the exciton formation in the process
of photoabsorption. Right: The atomic structure of FASnI3. The coloring
scheme is the following: I: magenta, Sn: purple, N: blue, C: brown, H: white.

Among the most promising materials for such applications
is a class of systems with the perovskite atomic lattice struc-
ture. The perovskite structure offers a great variety of semi-
conducting materials, which exhibit suitable band gaps and a
small exciton binding energy which is ultimately required for
an efficient PV system. Furthermore, perovskite materials are
cheap and easy to produce, stable at elevated temperatures, and
non-toxic, which overall makes them a very good candidate
for high-efficiency solar panels. The formula OMX3 shows
that cubic perovskite materials consist of three components:
an organic cation O, a metal M , and a halide X . This leads
to a vast number of combinations that can potentially be
explored [3].

Computational modeling has sped up the process to discover
and synthesize materials in PV research significantly, while
the search for the ideal perosvkite system remains a very
challenging task. Most theoretical modeling is driven by
calculations based on the density-functional theory (DFT),
which is incredibly successful and warranted a Noble Prize
to its authors Kohn and Pople [4]. However, while DFT
can inexpensively treat materials consisting of thousands of
atoms on HPC hardware, it is fundamentally a ground-state
theory [5]. The excitation effects required in PV research
cannot be described within DFT. The Many-Body Perturbation
Theory (MBPT) provides the means to accurately describe
the excitations. Thus, the GW approximation within MBPT
is considered state-of-the-art for the band-gap predictions
in solids. However, the increased computational cost of the
approach typically limits simulations to materials composed
of several hundreds of atoms. As shown by Ben et al. [6], for
a system of 2,742 atoms, the GW approach can greatly benefit
from running the calculations on GPUs. Nevertheless, the GW
approximation does not account for the interaction between
excited particles, which makes it inadequate for describing the
photoabsorption process in semiconducting materials.

Here, we will focus entirely on the approach capable of
accurately describing the excitation of electrons due to an
incoming photon in crystalline materials. This is done by
solving the Bethe-Salpeter Equation (BSE) [7]. The BSE is
an integro-differential equation dependent on four spatial and
time coordinates. It was derived from quantum-many-body-
theory (QMBT) for describing a two-particle bound state, such
as an exciton. The standard approach for solving this equation
is to map it onto an eigenvalue problem. Furthermore, by

neglecting the coupling between excitations and de-excitations
in the Tamm-Dancoff approximation (TDA) [8], the problem
is reduced further to the Hermitian eigenvalue problem

HX = XΩ, (1)

where H is a two-particle Hamiltonian describing the prop-
agation of the interacting electron-hole pairs, Ω represents
the eigenvalues corresponding to the two-particle bound state
eigenenergy, and X contains the eigenvectors describing the
two-particle quantum state. In PV research, the detailed anal-
ysis of the excitations often requires all the eigenvectors as
well as the eigenvalues.

The dimension of the Hamiltonian scales as N3 with the
size of the system. Thus, the overall problem of finding the so-
lution of Eq. 1 scales as N6 with state-of-the-art eigensolvers.
The scaling of the method has hitherto limited it to materials
that can be represented by not more than a few atoms.

B. The Eigenvalue Problem

A general procedure to solve the eigenproblem described in
Eq. 1 consists of three phases: 1) apply the orthogonal transfor-
mation to reduce the given Hermitian matrix H to a tridiagonal
form QHHQ = T , 2) compute all eigenpairs of T = V DV H ,
and 3) backtransform the eigenvectors H = QVD(QV)H .
Thus, D is a diagonal matrix including eigenvalues and QV
is the eigenvectors of the Hermitian matrix H . Implementing
these functions efficiently on a distributed GPU platform is
a challenging task, as it requires achieving a high degree of
concurrency for all building blocks, which have diverse com-
munication patterns and computational intensity. For instance,
the reduction to a tridiagonal form and backtransformation of
the eigenvectors use block Householder transformations [9]
to exploit efficient matrix-matrix multiplication, which can be
leveraged by using cuBLAS. On the other hand, our imple-
mentation for the eigensolution of the tridiagonal form, based
on Cuppen’s divide-and-conquer algorithm [10], benefits little
from cuBLAS and cuSOLVER. Different kinds of parallelism
need to be exploited traversing the resulting binary tree: at the
bottom level, there are many small independent subproblems,
while the problem sizes increase towards the root. To achieve
efficient parallelism for all levels, we need new kernels, e.g., a
batched version of the QR algorithm and root-finding kernels
for the secular equations. Another important aspect of the
parallel implementation on a distributed GPU cluster is to use
fast and non-blocking communications among GPUs enabling
kernels to run asynchronously. To support various communi-
cation libraries and cutting-edge interconnects, cuSOLVERMp
introduces the Communication Abstraction Library (CAL).
This allows cuSOLVERMp to use the best available transport
layers across a variety of systems, e.g., UCX or NCCL for
different communication sizes and collectives. Developing an
efficient and scalable eigensolver for GPU supercomputers
required solving the above problems and harnessing all the
components together.

II. RELATED WORK

A. Solving the Bethe-Salpeter Equation

The calculations for systems with a BSE Hamiltonian matrix
of ranks up to 200,000 are performed routinely on modern
hardware. Beside the VASP [1], [11], [12] implementation,
BerkeleyGW [13] and BSEPACK [14] address solving the
BSE. To our best knowledge, the BSE method is GPU accel-
erated in BerkeleyGW [13], but we are not aware of reported
scientific applications at a comparable scale. BSEPACK [14]
which goes beyond the TDA even has been combined with
ELPA (Eigenvalue soLvers for Petaflop Applications) [15] for
GPU support [16], with the largest matrix rank reported being
125,000. Hence, our order-of-magnitude increase of the matrix
rank n for typical BSE jobs leads to a 1,000x increase of the
problem size in light of the O(n3) complexity.

This improvement is crucial for complex materials such as
perovskites, where a large number of k-points is required to
sample the material on a three-dimensional grid in reciprocal
space. At the same time, the number of wavefunctions grows
very quickly with the number of atoms in the material. The
BSE matrix is of rank Nk × Nc × Nv , where Nk is the
number of k-points, Nc the number of the treated conduction
wavefunctions and Nv the number of valence wavefunctions.
Hence, the rank of the BSE matrix quickly reaches one million
and more for these complex materials, which hitherto has been
impossible to solve without crude approximations.

The BSE Hamiltonian in VASP [1], [11], [12] is represented
in the basis of electron-hole pairs and consists of three terms:

Hv′c′k′

vck =(εck − εvk)δvv′δcc′δkk′

+ ⟨ck, v′k′|V |vk, c′k′⟩
− ⟨ck, v′k′|W |c′k′, vk⟩.

(2)

The computation of the last two terms of Eq. 2 poses the
main challenge as it requires computing the integrals

W v′c′k′

vck = ⟨ck, v′k′|W |c′k′, vk⟩

=

∫
drdr′ϕ∗

ck(r)ϕ
∗
v′k′(r′)W (r, r′)ϕc′k′(r)ϕvk(r

′),

(3)

and similar integrals for V . Thus, in VASP, the matrix elements
of the Hamiltonian are computed with the following algorithm:

Algorithm 1 Algorithm for computing matrix elements of W
for k ← 1 to Nk do

for k′ ← k to Nk do
ρck,c′k′(r) = ϕ∗

ck(r)ϕc′k′(r)
ρck,c′k′(G) = FFT{ρck,c′k′(r)}
ρ̃ck,c′k′(G) = ZGEMM{W (G,G′), ρck,c′k′(G′)}

ρvk,v′k′(r′) = ϕ∗
v′k′(r′)ϕvk(r

′)
ρvk,v′k′(G′) = FFT{ρvk,v′k′(r′)}

W v′c′k′

vck = ZGEMM{ρ̃ck,c′k′(G), ρvk,v′k′(G′)}
end for

end for

First, the product of the wavefunctions in real space is
computed. The calculated density is then transformed into
the reciprocal space via the Fourier transform. Finally, the
screened potential is applied and the two overlap densities are
multiplied. The matrix elements V v′c′k′

vck are computed in the
same loop for the corresponding indices. The next step after
that is solving the eigenproblem via a distributed eigensolver
for the energies and quantum states of the excitations. In this
work, we contribute a) a scalable way to set up the matrices,
and b) a distributed GPU-only eigensolver.

B. Distributed Parallel Eigensolvers

ScaLAPACK is widely recognized as the standard library
for distributed dense linear algebra operations [17], [18]. It
offers a vast range of solvers and is designed for CPU-only
systems, with most of its performance coming from underlying
calls to BLAS and LAPACK libraries [19], [20]. ScaLAPACK
includes routines for solving eigenproblems for real-valued
(e.g. PDSYEVD) and complex-valued (e.g. PZHEEVD) matri-
ces. The eigensolver in ScaLAPACK only supports one-stage
tridiagonalization and solves a tridiagonal eigenproblem using
the divide-and-conquer algorithm [21].

Another project for solving large-scale eigenproblems is
ELPA. It contains two distinct methods of solving dense
eigenproblems: a one-stage and a two-stage solver, these are
commonly referred to as ELPA1 and ELPA2, respectively.
Both of these solvers have GPU support [22]. ELPA’s one-
stage solver performs the tridiagonalization in a single step,
employing a similar method to the ScaLAPACK routines
PDSYEVD and PZHEEVD. Whilst the two-stage solver per-
forms the tridiagonalization by first reducing a full matrix
to a banded matrix, and then reducing the banded matrix
to a tridiagonal matrix. Prior to version 2023.11, all MPI
communications were done via the host. This reduced overall
performance data as communication required transferring data
from GPU to the host, sending via MPI, and transferring back
to the GPU. ELPA version 2023.11 can now perform some –
but not all – communications via NCCL. This eliminates many
host-device transfers and has led to significant performance
improvements in ELPA (see Section VI-C).

Recent results [23] in Fermionic Quantum Turbulence uti-
lized ELPA’s one-stage solver for dense, complex eigenprob-
lems of similar sizes as shown in this work on up to 4096
GPUs of the LUMI supercomputer.

SLATE serves as the successor to the ScaLAPACK li-
brary [24]. It aims to improve performance over ScaLAPACK
by introducing asynchrony and GPU support. Like ELPA,
it also aims to implement both the one-stage and two-stage
algorithms for solving eigenproblems. The addition of eigen-
solver routines is relatively recent [25] and results have not yet
been published for any large-scale eigenproblems running on
distributed GPU systems. SLATE could be a target for future
studies.

A prior record eigenproblem with a dimension of one mil-
lion was computed on 82,944 nodes of the K-computer [26].
This experiment was repeated on 4096 nodes of the Fukagu

system [27], achieving similar runtimes but half the efficiency
due to a decreased ratio of network to node performance. The
reported eigenproblem is a synthetic benchmark of a dense,
real input matrix, while QMBT computations typically require
solving dense, complex eigenproblems. It was solved using the
one-stage tridiagonal solver of the EigenExa software, which
does not support GPUs.

III. IMPLEMENTATION

In order to successfully tackle the challenges described in
Section I at scale, both, VASP and cuSOLVERMp, require
algorithmic innovations, which are described in this section.

A. Construction of the Two-particle Hamiltonian

The presented implementation of the BSE achieves the
best performance by exploiting the parallelism over k-points,
which reduces the necessary communication and minimizes
redundant calculations. As the BSE Hamiltonian is a Hermitian
matrix, only the upper triangle of the matrix is calculated
explicitly. The computational load is efficiently distributed
over both k-point indices, i.e., k and k′. This way, the matrix
elements Mk,k′ = V v′c′k′

vck −W v′c′k′

vck for each pair of k and
k′ are computed independently.

All significant mathematical operations on the GPU are
performed by using cuBLAS for linear algebra and cuFFT for
Fourier transforms. To avoid the data movement between CPU
and GPU, all the data, such as single-particle wavefunctions,
grids, and matrix elements of the BSE matrix, are copied to the
device as early as possible. To minimize the memory footprint,
we only store the wavefunctions in reciprocal space for locally
treated k-points and clear them from the GPU before calling
the distributed eigensolver.

1) Communication and math libraries: The communication
between the ranks is required in three parts of the code: a)
when relevant wavefunctions are gathered from the round-
robin distribution over wavefunctions; b) in PZTRMR2D,
and c) in cuSOLVERMp. For (a) we employ grouped
ncclSend/Recv calls for the relevant wavefunctions which
allows NCCL to optimize communication paths and hence
hide the latency of the plethora of individual messages.

The major part of the matrix element computation consists
of FFTs. The FFTs of the wavefunctions and charge densities
involve rather small grids, that do not saturate a modern GPU.
Thus, FFT batching is used throughout the computation to
increase throughput on each single GPU. Here, the FFTs from
reciprocal to real space are done in one batch for all Nc and
Nv wavefunctions, maximizing FFT efficiency.

The asynchronous execution of the FFT kernels allows us
to efficiently overlap them with the aforementioned commu-
nications and to further optimize the Fourier transform part in
the calculation of the integral as in Eq. 3.

2) Data Distribution: Most distributed eigensolvers, in-
cluding cuSOLVERMp, use a 2D block-cyclic distribution of
the matrix and the elements of the locally computed matrix
must be copied into the distributed matrix. This poses the main
challenge for setting up the BSE Hamiltonian on the GPUs

efficiently. In the original VASP CPU-implementation the
communication in the data distribution scheme was based on
broadcasting, which became a bottleneck when the calculation
of the local matrices was ported to GPUs.

In order to distribute the matrix computed locally into the
block-cyclic matrix, we created a GPU implementation of
the ScaLAPACK PZTRMR2D routine. The GPU version of
PZTRMR2D performs the packing and unpacking of the matrix
data to and from the communication buffers in parallel on the
GPU and the data is communicated using CUDA-aware MPI.
The efficiency of such a scheme increases with the size of
the matrix, which means that the distribution of the matrix
by parts must be avoided. This imposes the requirement that a
large submatrix is computed before it can be distributed. To be
able to use such a scheme for distributing a triangular matrix
and avoid load imbalance, we have to iterate the k-points in
a specific order that allows to copy large matrices in as few
PZTRMR2D calls as possible.

In Fig. 2, we illustrate the distribution scheme of the BSE
matrix with 8 k-points computed on a grid of 20 ranks in
an 8× 5 grid. The colored numbers show the k- and k′-point
indices and the superscript is the process number in the grid. A
256× 256 matrix Mk,k′ corresponds to a pair of k-points and
is represented by a single cell in the table. In this scheme, the
upper half of the triangular matrix is computed in the natural
order and copied in a single PZTRMR2D call. The k indices
for the bottom half of the triangular matrix are calculated
in the reverse order. As shown in Fig. 2, by reversing the
order of processes in the grid (Fig. 2.b) and swapping the
local matrices (Fig. 2.c), the bottom half of the matrix is
transformed into the upper triangular matrix which can be
copied in a single PZTRMR2D call. Thus, the full matrix can be
copied in only two PZTRMR2D calls. Minimizing the number
of PZTRMR2D calls increases the end-to-end bandwidth by
avoiding overheads from posting individual communication
operations to the CPU.

B. Distributed GPU-only Eigensolver

We developed a GPU-only distributed parallel eigensolver in
cuSOLVERMp. A conventional approach in a parallel eigen-
solver on GPUs is to split the computation and use both CPU
and GPU wherever it is appropriate. For instance, the GPU
can be used effectively for the reduction to a tridiagonal form
and backtransformation phases while the CPU can be used
for the eigensolutions of the reduced tridiagonal system. The
hybrid approach can gain certain performance benefits [28];
however, it also includes inherent inefficiency and complexity
compared to the developed GPU-only implementation. First,
the hybrid implementation essentially requires data transfers
between CPU and GPU, and each such transfer could become
a synchronization point. When the transfer is not carefully
managed, it can also waste significant time on both CPU
and GPU waiting for the other. Even if the overhead can
be mitigated by using efficient pipelining that can overlap
computations such as double buffering, this requires additional
tuning efforts for various heterogeneous computing platforms.

a)

1,11 1,21 1,3 2 1,42 1,53 1,63 1,74 1,84

8,85 2,25 2,36 2,46 2,57 2,67 2,78 2,88

7,89 7,79 3,3103,4103,5113,6113,7123,812

6,8136,7136,6144,4144,5154,6154,7164,816

5,8175,7175,6185,518 –19 –19 –20 –20

b)

–20 –20 –19 –19 5,6185,5185,8175,717

4,7164,8164,5154,6156,6144,4146,8136,713

3,7123,8123,5113,6113,3103,410 7,89 7,79

2,78 2,88 2,57 2,67 2,36 2,46 8,85 2,25

1,74 1,84 1,53 1,63 1,32 1,42 1,11 1,21

c)

–20 –20 –19 –19 5,5185,6185,7175,817

4,8164,7164,6154,5154,4146,6146,7136,813

3,8123,7123,6113,5113,4103,310 7,79 7,89

2,88 2,78 2,67 2,57 2,46 2,36 2,25 8,85

1,8 4 1,74 1,63 1,53 1,42 1,3 2 1,21 1,11

Fig. 2. a) The table showing the order of k-points calculated on a rectangular grid of processes 8× 5. The processor numbers are given in superscript and
the k-point indices are given in blue and green fonts for upper and lower part of the matrix, respectively. Each cell of this table denotes a matrix Mk,k′ with
the corresponding k-point indices. The bold lines separate data corresponding to different MPI ranks. b) Reverse the processors grid. c) Reverse the order of
local matrices.

Second, our GPU-only implementation can effectively lever-
age the fast interconnect technologies and advanced software
infrastructure that are dedicated for GPUs. CUDA-aware MPI
can transfer data directly among GPUs and enable fast intra-
node communication via NVLink. We also adopted CAL to
support multiple transport layers such as UCC and NCCL.
The communication library exposes stream semantics allowing
asynchronous communication and computation.

On the other hand, the main challenge of the GPU-only par-
allel eigensolver is to implement all computational kernels to
run well on GPUs. In particular, we implemented an efficient
GPU-only parallel divide-and-conquer algorithm to compute
eigensolutions of a symmetric tridiagonal system, STEDC in
LAPACK notation, which is usually computed on the CPU
in the conventional hybrid approach. A general procedure of
the tridiagonal eigensolver can be briefly described as follows:
A tridiagonal system is recursively partitioned into two sub-
problems forming a binary tree until it reaches the minimum
problem size. The independent subproblems at the leaf-level
of the tree can be solved using the QR algorithm. Combining
the two eigensolutions along the tree, a next level subproblem
is formed and eigenvalues are computed by solving the secular
equations. Then, the eigenvectors are updated via matrix-
matrix multiplication. This process is recursively performed
until it reaches the root. The algorithm first requires solving
many small subproblems at the leaf-level and the problem
sizes become bigger with traversing the tree. Thus, we need
all the building blocks of the algorithm considering a wide
range of problem sizes and different parallel implementations
are necessary in all levels, i.e., thread-block, single GPU, and
multi-GPU level. To solve the many small subproblems at leaf-
level, we developed a batched version of the QR algorithm
(STEQR). The parallel implementation of the merging step
(LAED2,4) including the deflation and the solutions of the
secular equations should correspond to increasing problem
sizes as traversing the binary tree. When subproblems are
scoped within a single GPU, we use multiple instances of
merging kernels with different thread-block sizes such that
a bigger thread-block is used to solve bigger problems. For
the case that the subproblem dimension spans over multiple

TABLE I
REQUIREMENTS FOR ACCURATE BSE CALCULATION OF FASNI

Variable Description Value
Nv Number of valence states 16
Nc Number of conduction states 16
Nk Number of k-points 163

NG Number of G-vectors 5044

GPUs, we use another variant of the implementation that
handles communication. The same goes for the updates of the
eigenvectors. For small problems, we use a batched version
and multiple subproblems are updated simultaneously. For
bigger problems, eigenvectors are updated using the highly
efficient cuBLAS GEMM.

Putting all building blocks together, we demonstrate a
scalable and efficient GPU-only distributed eigensolver in this
paper.

IV. APPLICATION TO PHOTOVOLTAICS

In this section, we apply the adapted VASP BSE imple-
mentation using cuSOLVERMp to study the properties of a
perovskite material relevant for photovoltaics.

A. Material under Study

Formamidinium tin iodide (FASnI3) is a very important
example of a system whose excitonic properties are very
difficult to describe without making crude approximations. The
crystal structure of FASnI3 is shown in Fig. 1. This material
has a strong dependency of the single-particle energies on the
momentum in reciprocal space, which means that the BSE
calculation has to be performed for a dense k-point mesh [29].
In the previous attempt to study the excitonic properties of this
material, the authors could only account for 2 valence and
2 conduction wavefunctions, i.e., covering only 1/10 of the
valence band, when computing the exciton binding energy for
a 20× 20× 20 k-points grid. For that reason, and to the best
of our knowledge, the converged optical absorption spectrum
of this material has never been demonstrated.

By using cuSOLVERMp and the GPU implementation of
the BSE algorithm, we are able to perform the BSE calculation
of FASnI3 with the explicit grid of 16× 16× 16 k-points, 16

valence, and 16 conduction wavefunctions. In the performed
calculations, the spin-orbit coupling is explicitly treated. The
screening of the Coulomb potential W is approximated by a
model dielectric function described in [29]. The DFT elec-
tronic structure is corrected by the scissor operator to match
the GW band gap. The parameters of the calculation are
summarized in Tab. I.

B. Computational Results

We found an exciton binding energy of 51 meV. The good
agreement with the results reported in Ref. [29] indicates that
in FASnI3 the exciton is strongly delocalized and is dominated
by the two states at the band edges.

By treating explicitly the states beyond the band edges in
the BSE, we yielded the optical absorption spectrum up to
6 eV with the convergence error of 20 meV, which shows
an excellent agreement with the experiment in Fig. 3. Dis-
crepancies at higher energies are attributed to the fact that the
scissor operator was used to match the band edges of GW and
is therefore less accurate for transitions at higher energies. In
addition, we provide the so-called ”fatband” plot in Fig. 4,
which includes many states beyond the band edges. Fig. 4
shows that the two highest states of the valence band and
the two lowest states of the conduction band minimum give
the dominant contribution for the first optically active exciton,
while the contribution of the other states is much smaller.

The accuracy of 20 meV is sufficient for a converged optical
absorption spectrum. However, in order to find the exciton
binding energy with a higher accuracy denser k-points grids
should be used. For such calculations we consider the 18×18×
18 and 20× 20× 20 k-points grids, for which we provide the
performance analysis of the Eigensolver call in Section VI-A.
The Hamiltonian for the largest calculation has the rank of
2,048,000.

0 2 4 6

Energy (eV)

0

2

4

6

ε 2
(ω

)

Theory

Experiment

Fig. 3. The imaginary dielectric function of FASnI3 calculated for 16 ×
16× 16 k-points grid with 16 occupied and 16 unoccupied states compared
to the experimental spectrum from [30]. A Lorentzian broadening of 0.1 eV
and the scaling of 1.4 is applied to the calculated spectrum to facilitate the
comparison with experiment.

MRZ
k-point

−2

0

2

4

6

E
n

er
g

y
(e

V
)

Fig. 4. The fatband plot for the lowest exciton in FASnI3 calculated for
16× 16× 16 k-points grid with 16 occupied and 16 unoccupied states.

V. PERFORMANCE MEASUREMENTS

A. Environment and Application Profiling

Our runs were performed on NVIDIA’s Selene supercom-
puter [31] which has the following configuration:

• up to 560x DGX A100 nodes
• 8x A100 SXM4 80GB GPUs (connected via NVSwitch)

per node
• 2x AMD EPYC 7742 (64-core) CPUs per node (NPS4

mode)
• 8x HDR200 InfiniBand connections per node (1 per GPU)

Selene is currently ranked the thirteenth fastest supercomputer
in the Top500 List [32]. The full system entered the list on
rank five in November 2020.

We used the following software environment in a container
using the overhead-free Enroot runtime:

• VASP (development branch based on VASP 6.3)
• NVIDIA HPC SDK 23.1
• HPCX-2.13
• cuSOLVERMp (development branch)
VASP provides internal timers to measure the elapsed run-

time for different parts of the code. It can generate a detailed
profile at the lowest possible overheads as the profiling mark-
ers are called only at appropriate places. Hence, they interfere
as little as possible with the execution of the application,
especially in contrast to attaching sampling-based profilers.
This feature needs to be enabled in VASP at compile time.
The OUTCAR file then contains the timing information we
used. No additional software or tools are required to measure
time-to-solution numbers.

The Selene system allows collecting various metrics which
are aggregated using Grafana [33]. Its API allows querying
power use over time for individual CPUs, GPUs, and PSUs,
either for the whole job, or a given time frame. We use this
data with timestamps from the VASP output to quantify the
energy used for the eigensolver and complete run. The reported
numbers for energy consumption do not take into account the
network infrastructure, which is negligible for large jobs.

For performance measurements, we use the same FASnI3
compound, but varied the k-point grid to control the dimension
of the Hamiltonian and hence the problem size to solve. This
allowed us to run similar jobs at different scales. For each input
size, we selected a specific launch configuration for running on
the Selene supercomputer. The optimal configuration depends
on a number of constraints: Since VASP is optimized well
for GPUs, a single rank per device is sufficient to best
utilize them. Moreover, GPU oversubscription is not allowed
by the NCCL library, which is used in VASP to pass data
asynchronously between GPUs to overlap GPU computation
and communication. Thus, each MPI rank is assigned to a
single GPU. The NUMA and PCIe topology of the nodes
requires some consideration for the ideal process placement.
Given that there are 8 NUMA nodes, but only 4 of them have
a direct physical link to a GPU and NIC, every second rank
is placed on a NUMA node that has one extra, intra-socket
hop to the ideal GPU and NIC affinity. Here, this is the best
compromise between not sharing CPU resources and device
affinities. The second limitation is the available GPU memory.
To solve the eigenvalue problem, each GPU needs to store its
part of the input matrix, the eigenvectors, the eigenvalues, and
a workspace for intermediate data. Given the available memory
per device, we deduce the minimal number of nodes needed
to fit the problem into GPU memory and achieve a balanced
domain decomposition. Tab. II and III summarize the problem
sizes and the resulting node and GPU counts.

B. Matrix Diagonalization Efficiency

The diagonalization of the BSE matrix based on
cuSOLVERMp’s SYEVD implementation consists of three
main subroutines: SYTRD, STEDC, and ORMTR. The peak
limiting hardware bound for each routine differs, therefore we
quantify their efficiencies separately. They are calculated as a
percentage of either peak compute throughput or peak memory
bandwidth.

The STEDC and ORMTR routines are both compute-bound,
bottle-necked by the large GEMM operations they must perform.
The FLOP counts of the complex valued ORMTR are taken
from the LAPACK working note [34] and would be 8n3 ig-
noring lower order terms where n is the size of the matrix. The
FLOP count of STEDC is 8

3n
3, as given by Haidar et. al [35].

To calculate efficiency for STEDC and ORMTR, the FLOP rate
is calculated from the FLOP count and the runtime, and then
expressed as a percentage of the peak FLOPS of all GPUs. The
peak FLOPS used is the FP64 tensor-core rate of the NVIDIA
A100 GPU, which is 19.5 TFLOPS.

Unlike the STEDC and ORMTR, the SYTRD is memory-
bandwidth bound. The algorithm implemented in SYTRD is
denoted as two-sided factorization, where the orthogonal trans-
formations are applied from both left and right sides. Although
a blocked version of the algorithm [9], [36] is used for the
reduction casting, the trailing updates with level-3 BLAS
operations, each panel factorization still requires to perform
level-2 BLAS operations, i.e., SYMV with the entire trailing
matrix. This requires a total number of matrix elements read

from memory of n3

3 [37]. Using this equation, we can estimate
the total amount of data transferred from main memory, and
therefore calculate the efficiency as a percentage of the peak
memory bandwidth. The peak memory bandwidth of a single
A100 SXM4 80GB GPU is 2.039 TB/s.

The overall SYEVD efficiency is then calculated as the
ratio of the theoretical minimum runtime achievable given the
algorithmic workload and peak capabilities of the hardware,
and the actually measured runtime.

VI. BENCHMARK RESULTS

A. Timing, Energy, and Peak Performance

In this section, we present the performance numbers mea-
sured for VASP and cuSOLVERMp on the Selene supercom-
puter. For the problem at hand, we ran VASP with a BSE
matrix rank of up to 1,048,576. We further benchmarked
cuSOLVERMp’s SYEVD in a standalone benchmark for ma-
trices up to rank 2,048,000. With 512 nodes, the largest
jobs used almost the entire Selene supercomputer and ran
for several hours. Given that the algorithms used in SYEVD
are non-iterative and the execution path is independent of the
actual values in the matrix, this is equivalent in terms of the
performance that would be observed in VASP’s BSE matrix
diagonalization step when computing inputs resulting in such
a problem size.

TABLE II
VASP: RUNTIME AND ENERGY CONSUMPTION

k-points 103 163

nodes 16 128
GPUs 128 1,024
matrix rank 256,000 1,048,576
elapsed time [sec] 1,129.1 8,739.6
- BSE setup [sec] 137.8 1,049.1
- BSE diag [sec] 906.0 7,258.0
total energy [MJ] 74.8 4,351.3
- GPU [MJ] 33.3 2,060.3
- CPU [MJ] 3.8 231.1

Tab. II and III list the measured times, energy consumption,
and sustained PFLOPS. We show VASP’s internal timer for
the total time to solution (Elapsed time), the time for setting
up the BSE matrix (BSE setup), and for running the SYEVD
solver (BSE diag). The Total energy is based on the PSU power
metric of the system and thus contains CPU and GPU power,
as well as all other node components, such as NICs, DRAM,
and local storage.

To our best knowledge, with a rank of 2,048,000, the solved
dense, complex eigenproblem is on par with only one other
recently reported result [23]. The solver took 17,727.8 sec-
onds, i.e. under 5 hours, and achieved 7.8 PFLOPS. The
energy efficiency for the eigensolver with 4.0 GFLOPS/W
is roughly 17% of Selene’s LINPACK efficiency reported in
the Green500 List [38]. While the calculations with different
matrix sizes and different node counts are not directly compa-
rable, the sweet spot in terms of energy efficiency is the 128
node job solving a matrix with a rank of 1,048,576 with an
achieved overall 4.9 GFLOPS/W.

TABLE III
CUSOLVERMP SYEVD: RUNTIME AND ENERGY CONSUMPTION

nodes 16 128 384 512
GPUs 128 1,024 3,072 4,096
matrix rank 256,000 1,048,576 1,492,992 2,048,000
runtime [sec] 906.0 7,258.0 9927.2 17,905.1
total energy [MJ] 60.1 3,776.4 14,015.3 34,532.9
- GPU [MJ] 28.4 1,891.7 6,224.4 15,890.0
- CPU [MJ] 2.9 187.7 764.4 1,819.0
perf [PFLOPS] 0.3 2.6 5.4 7.8
perf/GPU [TFLOPS] 2.3 2.5 1.8 1.9
eff. [GFLOPS/W] 4.5 4.9 3.8 4.0

While the methods and algorithms outlined in this paper
are by no means limited to the NVIDIA platform, any system
equipped with NVIDIA GPUs of an appropriate size can be
readily used with our implementation.

B. Efficiency and Scalability

The ‘perf/GPU‘ row of Table III shows that a low per-
centage of peak performance is achieved per GPU—the
peak is 19.5 TFLOPS whilst SYEVD only achieves be-
tween 1.8 and 2.5 TFLOPS per GPU. This result is explained
by examining Table IV, which shows the runtime of SYEVD
broken down by each of its subroutines. The forward trans-
formation (SYTRD) constitutes by far the largest portion of
the runtime. Combined with the fact the routine is memory-
bandwidth bound, this explains why SYEVD overall achieves
a low percentage of peak FLOPS.

TABLE IV
PERCENTAGE OF RUNTIME SPENT IN EACH OF OF CUSOLVERMP’S

SYEVD SUBROUTINES.

N SYTRD STEDC ORMTR
256000 84.41% 3.48% 12.11%
1048576 85.70% 3.47% 10.80%
1492992 83.13% 7.00% 9.87%
2048000 83.04% 7.09% 9.87%

To better assess how close the eigensolver implementation
is to the maximally achievable performance, we show the
efficiencies of the three major eigensolver subroutines across
the different problem sizes, and aggregate them into an overall
SYEVD efficiency in Tab. V. Hence, we employ the term
efficiency as the achieved percentage of the theoretical opti-
mum on the given compute hardware. As only large problem
instances are of scientific interest here, we did not focus on
dedicated scalability experiments. However, we performed a
small 16-node run of a system with 103 k-points to compare
efficiency with. The resulting efficiencies are with the excep-
tion of STEDC very similar across all node counts and the
individual parts of the solver range between 22% and 61% of
the respective peak hardware capability.

The efficiency for the memory-bandwidth bound SYTRD
varies between 35% and 47%. During the routine, the updates
to the local matrices gradually decrease in size such that the
communication overhead is more easily exposed. This effect
becomes stronger with fewer local matrix blocks on each GPU.

TABLE V
ACHIEVED EFFICIENCIES OF CUSOLVERMP’S SYEVD SUBROUTINES, AS

A PERCENTAGE OF THE PEAK OF THEIR LIMITING HARDWARE BOUND.

subroutine SYTRD STEDC ORMTR SYEVD
bound by memory compute compute combined
16 nodes (256k) 45% 57% 49% 46%
128 nodes (1M) 47% 61% 59% 59%
384 nodes (1.5M) 35% 22% 46% 35%
512 nodes (2.0M) 37% 23% 49% 37%

We see a very similar effect in ORMTR as well where
efficiencies range from 46% to even 59% on 128 nodes.
However, relative to its surrounding routines STEDC is much
more exposed to such influences: From a satisfying 61% of
the available compute performance for the 128 node problem,
its efficiency drops by almost a factor of 3 down to 22% on
384 nodes with a matrix rank of 1,492,992. This is due to
the creation of subcommunicators on every step of the divide
and conquer recursion. The underlying expensive splitting
operation in NCCL takes up a significant portion of the STEDC
runtime. This is expected to be solved in future release of
NCCL. While the eigensolver presented in this work shows
impressive performance and enables computations of ground-
breaking problem sizes with good efficiency, there is still room
for improvement. Optimizing both, VASP and cuSOLVERMp,
is an ongoing process.

C. Comparisons to Other Dense Linear Algebra Libraries

We compared the performance of cuSOLVERMp to ELPA
(2023.11 release) for other large symmetric double-complex
eigenproblems. Fig. 5 shows the performance of ELPA1
with and without NCCL (NVIDIA Collective Communications
Library), and cuSOLVERMp for a 294k × 294k matrix on
128, 256, and 512 GPUs, and a 576k × 576k matrix running
on 1000 GPUs. The GPU-only approach of cuSOLVERMp
delivers significant speed-ups over the fastest ELPA1 refer-
ence: 1.12x, 1.25x, and 1.11x for 128, 256, and 512 GPUs,
respectively, on the 294k matrix, and 1.33x for the 576k matrix
on 1000 GPUs. We used a single process per GPU, with a
matrix block size of 256—the same configuration as used for
the VASP BSE results. For this configuration, ELPA2 lags
significantly behind ELPA1 and cuSOLVERMp as can be seen
in Fig. 6.

ELPA2 requires oversubscribing MPI ranks to GPUs to
perform well for two reasons. Firstly, the banded-to-tridiagonal
step of the method is computed entirely on the CPU, hence
one needs to make use of the available CPU cores. Secondly,
oversubscription is required to improve throughput of the GPU
operations that are part of the tridiagonal-to-banded step [22].
When oversubscription is necessary, NVIDIA Multi-Process
Service (MPS) is also required for good performance. As
discussed in the Performance Measurements section, oversub-
scribing ranks to GPUs is in conflict with the optimal VASP
configuration which uses only one rank per GPU.

Fig. 5. Runtime comparison of the matrix diagonalization step in
cuSOLVERMp and ELPA (one-stage) as used in VASP, i.e. with one process
per GPU.

Fig. 6. Runtime impact of oversubscribing MPI ranks (processes) to GPUs for
a 128K double complex eigenproblem running on 64 GPUs for both ELPA1
and ELPA2.

In comparison to the two-stage solver as shown in Fig. 6, the
one-stage solver in ELPA performs well when using a single
rank per GPU. Another difference is that the performance
of the two-stage solver can be affected by the matrix block
size. Fig. 7 shows that performance degrades for ELPA2 with
increasing matrix block size. In comparison, cuSOLVERMp
performs well with block sizes over 64, and ELPA1 is mostly
unaffected by any choice of block size.

Currently, cuSOLVERMp is optimized for problems of the
largest scales where, e.g., the combined memory of a large
amount of GPUs is required to fit the problem. For small
matrices, using ELPA or even a non-distributed eigensolver
(e.g. cuSolver) can be preferable.

Fig. 7. Runtime of solving a 128K double complex eigenproblem on 64
GPUs using cuSOLVERMp, ELPA1, ELPA2 with varying block sizes.

VII. SUMMARY

We have demonstrated the results of an efficient implemen-
tation of an eigensolver and the BSE algorithm for the GPU
architecture. In particular, we have shown that by performing
the BSE calculations on GPUs, the feasible problem size
for the computationally demanding BSE method increases by
1,000x. To achieve this, we solved one of the largest reported
dense, complex eigenproblems.

By solving the BSE for FASnI3 with the 16 × 16 × 16 k-
points grid and including 32 single-particle states explicitly,
we have obtained the converged optical absorption spectrum,
which can be directly compared to the experiment and shows
an excellent agreement, which was inaccessible before. The
analysis of the states beyond the band edges based on the
fatband plot suggests that the contribution of the strongly
delocalized wavefunctions of the bands maxima gives the
dominant contribution for the exciton binding energies.

The results of this work have implications for material
science in general, and photovoltaics research in particular.
Our method lays the foundation for high-throughput search of
complex materials for solar cells with efficiency as high as
45% [39]. The achieved performance bridges the BSE method
to complex systems, such as double-perovskites [40], two-
dimensional heterostructures [41], metal-organic frameworks
[42], and other systems which can require tens or hundreds of
atoms to be treated explicitly for accurate modeling. Having
shown that such accurate calculations are possible with modern
supercomputers, we believe that this level of accuracy will find
its way into common practice amongst material researchers.

While we have applied the accelerated BSE calculations
to a material to help with sustainable energies, the applied
methodology also facilitates predictions of rather mundane
properties like the color of a material, important for dyes.
Beyond that, it can extend into high-impact research areas,
such as quantum computing and superconductivity, and also
any other area, where excitonic effects play a major role. More

generally, higher-order diagrams in the many-body perturba-
tion theory which require solving large eigenvalue problems
become accessible with the help of cuSOLVERMp, improving
the accuracy of currently used approximations.

The scientific domain of quantum-chemistry is surely one
of the easily relatable heavy users for eigensolvers, given that
it is fundamentally based on the Schrödinger equation, which
implicitly connects it to this mathematical discipline. However,
there are other domains outside our own area of expertise that
also employ eigensolvers for their computational predictions
like geosciences, mechanical, and civil engineering. Given the
fast increases in compute capabilities, what is groundbreaking
supercomputing today will likely become mainstream methods
in just a few years—with an unpredictable impact on material
science and other domains.

ACKNOWLEDGMENTS

We would like to thank the ELPA authors, especially
Andreas Marek and Peter Karpov, for their quick support with
benchmarking.

REFERENCES

[1] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid
metals,” Phys. Rev. B, vol. 47, pp. 558–561, Jan 1993. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.47.558

[2] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang,
M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P.
Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin,
L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel, and
J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite
solar cells,” Nature, vol. 592, no. 7854, pp. 381–385, 2021. [Online].
Available: https://doi.org/10.1038/s41586-021-03406-5

[3] J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park,
“High-Efficiency Perovskite Solar Cells,” Chemical Reviews, vol.
120, no. 15, pp. 7867–7918, Jul. 2020. [Online]. Available:
https://doi.org/10.1021/acs.chemrev.0c00107

[4] W. Kohn, “Nobel Lecture: Electronic structure of matter—wave
functions and density functionals,” Rev. Mod. Phys., vol. 71, pp.
1253–1266, Oct 1999. [Online]. Available: https://link.aps.org/doi/10.
1103/RevModPhys.71.1253

[5] W. Kohn and J. M. Luttinger, “Ground-State Energy of a Many-Fermion
System,” Phys. Rev., vol. 118, pp. 41–45, 1960. [Online]. Available:
http://dx.doi.org/10.1103/PhysRev.118.41

[6] M. D. Ben, C. Yang, Z. Li, F. H. d. Jornada, S. G. Louie, and J. Deslippe,
“Accelerating Large-Scale Excited-State GW Calculations on Leadership
HPC Systems,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020, pp. 1–11.

[7] E. E. Salpeter and H. A. Bethe, “A Relativistic Equation for
Bound-State Problems,” Phys. Rev., vol. 84, pp. 1232–1242, 1951.
[Online]. Available: http://dx.doi.org/10.1103/PhysRev.84.1232

[8] S. M. Dancoff, “Non-Adiabatic Meson Theory of Nuclear Forces,”
Phys. Rev., vol. 78, pp. 382–385, 1950. [Online]. Available:
http://dx.doi.org/10.1103/PhysRev.78.382

[9] C. Bischof and C. Van Loan, “The WY Representation for Products
of Householder Matrices,” SIAM Journal on Scientific and Statistical
Computing, vol. 8, no. 1, pp. s2–s13, 1987.

[10] J. J. Cuppen, “A divide and conquer method for the symmetric tridi-
agonal eigenproblem,” Numerische Mathematik, vol. 36, pp. 177–195,
1980.

[11] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab
initio total-energy calculations using a plane-wave basis set,” Phys.
Rev. B, vol. 54, pp. 11 169–11 186, Oct 1996. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevB.54.11169

[12] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave basis
set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, 1996.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0927025696000080

[13] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen,
and S. G. Louie, “BerkeleyGW: A massively parallel computer
package for the calculation of the quasiparticle and optical properties
of materials and nanostructures,” Computer Physics Communications,
vol. 183, no. 6, pp. 1269–1289, 2012. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0010465511003912

[14] M. Shao, F. H. da Jornada, C. Yang, J. Deslippe, and S. G. Louie,
“Structure preserving parallel algorithms for solving the Bethe–Salpeter
eigenvalue problem,” Linear Algebra and its Applications, vol. 488,
pp. 148–167, 2016. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0024379515005637

[15] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H.-J. Bungartz, and H. Lederer, “The ELPA library:
scalable parallel eigenvalue solutions for electronic structure theory
and computational science,” Journal of Physics: Condensed Matter,
vol. 26, no. 21, p. 213201, may 2014. [Online]. Available:
https://dx.doi.org/10.1088/0953-8984/26/21/213201

[16] C. Penke, A. Marek, C. Vorwerk, C. Draxl, and P. Benner,
“High performance solution of skew-symmetric eigenvalue problems
with applications in solving the Bethe-Salpeter eigenvalue problem,”
Parallel Computing, vol. 96, p. 102639, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819120300326

[17] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “ScaLAPACK:
a scalable linear algebra library for distributed memory concurrent
computers,” in [Proceedings 1992] The Fourth Symposium on the
Frontiers of Massively Parallel Computation. IEEE Computer Society,
1992, pp. 120–127. [Online]. Available: https://www.computer.org/csdl/
proceedings-article/fmpc/1992/00234898/12OmNCctfdR

[18] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 1997.

[19] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (BLAS),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[20] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney et al.,
LAPACK users’ guide. SIAM, 1999.

[21] F. Tisseur and J. Dongarra, “A Parallel Divide and Conquer Algorithm
for the Symmetric Eigenvalue Problem on Distributed Memory Archi-
tectures,” SIAM Journal on Scientific Computing, vol. 20, no. 6, pp.
2223–2236, 1999.

[22] V. W. zhe Yu, J. Moussa, P. Kůs, A. Marek, P. Messmer, M. Yoon,
H. Lederer, and V. Blum, “GPU-acceleration of the ELPA2 distributed
eigensolver for dense symmetric and hermitian eigenproblems,”
Computer Physics Communications, vol. 262, p. 107808, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0010465520304021

[23] G. Wlazlowski, M. M. Forbes, S. R. Sarkar, A. Marek, and M. Szpindler,
“Characterizing the Cascade of Energy in Fermionic Quantum Turbu-
lence: Pushing the Limits of High-Performance Computing,” 2023.

[24] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “SLATE:
design of a modern distributed and accelerated linear algebra library,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2019, pp. 1–18.
[Online]. Available: https://dl.acm.org/doi/10.1145/3295500.3356223

[25] K. Akbudak, P. Bagwell, S. Cayrols, M. Gates, D. Sukkari,
A. YarKhan, and J. Dongarra, “SLATE performance improvements:
QR and eigenvalues, SWAN no. 17,” Innovative Computing
Laboratory, University of Tennessee, Tech. Rep. ICL-UT-
XX-XX, 4 2021, revision 04-2021. [Online]. Available:
https://www.icl.utk.edu/publications/swan-017

[26] H. Imachi and T. Hoshi, “Hybrid Numerical Solvers for Massively
Parallel Eigenvalue Computation and Their Benchmark with
Electronic Structure Calculations,” Journal of Information Processing,
vol. 24, no. 1, pp. 164–172, 2016, arXiv:1504.06443 [cond-mat,
physics:physics]. [Online]. Available: http://arxiv.org/abs/1504.06443

[27] T. Imamura, T. Terao, T. Ina, K. Ozaki, and Y. Uchino, “Performance
benchmark of the latest EigenExa on Fugaku,” Jan. 2022. [Online].
Available: https://sighpc.ipsj.or.jp/HPCAsia2022/poster/108 poster.pdf

[28] A. Haidar, R. Solcà, M. Gates, S. Tomov, T. C. Schulthess, and J. J.
Dongarra, “Leading Edge Hybrid Multi-GPU Algorithms for General-

ized Eigenproblems in Electronic Structure Calculations,” in Information
Security Conference, 2013.

[29] M. Bokdam, T. Sander, A. Stroppa, S. Picozzi, D. D. Sarma,
C. Franchini, and G. Kresse, “Role of Polar Phonons in the Photo
Excited State of Metal Halide Perovskites,” Sci Rep, vol. 6, p. 28618,
2016. [Online]. Available: http://dx.doi.org/10.1038/srep28618

[30] K. Ghimire, D. Zhao, Y. Yan, and N. J. Podraza, “Optical response
of mixed methylammonium lead iodide and formamidinium tin iodide
perovskite thin films,” AIP Advances, vol. 7, no. 7, p. 075108, Jul.
2017. [Online]. Available: https://doi.org/10.1063/1.4994211

[31] “NVIDIA Selene: Leadership-Class Supercomputing Infras-
tructure,” https://www.nvidia.com/en-us/on-demand/session/
supercomputing2020-sc2019/, accessed: 2023-12-15.

[32] “Top500 List - November 2023,” https://www.top500.org/lists/top500/
list/2023/11/, accessed: 2023-12-15.

[33] “Grafana: The open observability platform,” https://grafana.com/, ac-
cessed: 2023-12-15.

[34] S. Blackford and J. Dongarra, LAPACK Working Note 41 Installation
Guide for LAPACK, 1999. [Online]. Available: https://netlib.org/lapack/
lawnspdf/lawn41.pdf

[35] A. Haidar, H. Ltaief, and J. Dongarra, “Toward a High Performance Tile
Divide and Conquer Algorithm for the Dense Symmetric Eigenvalue
Problem,” SIAM Journal on Scientific Computing, vol. 34, no. 6,
pp. C249–C274, 2012. [Online]. Available: http://epubs.siam.org/doi/
10.1137/110823699

[36] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling, “Block reduction
of matrices to condensed forms for eigenvalue computations,” in
Parallel Algorithms for Numerical Linear Algebra, ser. Advances in
Parallel Computing, H. A. van der Vorst and P. van Dooren, Eds.
North-Holland, 1990, vol. 1, pp. 215–227. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780444886217500153

[37] J. H. Wilkinson and J. H. Wilkinson, The Algebraic Eigenvalue Problem,
ser. Numerical Mathematics and Scientific Computation. Oxford
University Press, 1988.

[38] “Green500 List - November 2022,” https://www.top500.org/lists/
green500/list/2023/11/, accessed: 2023-12-15.

[39] F. Khan, B. D. Rezgui, M. T. Khan, and F. Al-Sulaiman,
“Perovskite-based tandem solar cells: Device architecture, stability,
and economic perspectives,” Renewable and Sustainable Energy
Reviews, vol. 165, p. 112553, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S136403212200452X

[40] F. Ji, G. Boschloo, F. Wang, and F. Gao, “Challenges and
Progress in Lead-Free Halide Double Perovskite Solar Cells,”
Solar RRL, vol. 7, no. 6, p. 2201112, 2023. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/solr.202201112

[41] S. Joseph, J. Mohan, S. Lakshmy, S. Thomas, B. Chakraborty,
S. Thomas, and N. Kalarikkal, “A review of the synthesis, properties,
and applications of 2D transition metal dichalcogenides and their
heterostructures,” Materials Chemistry and Physics, vol. 297, p.
127332, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0254058423000408

[42] V. F. Yusuf, N. I. Malek, and S. K. Kailasa, “Review on Metal–Organic
Framework Classification, Synthetic Approaches, and Influencing Fac-
tors: Applications in Energy, Drug Delivery, and Wastewater Treatment,”
ACS Omega, vol. 7, no. 49, pp. 44 507–44 531, 2022.

