
Power Consumption Trends in Supercomputers: A
Study of NERSC’s Cori and Perlmutter Machines

Ermal Rrapaj
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
ermalrrapaj@lbl.gov

Sridutt Bhalachandra
NVIDIA

sriduttb@nvidia.com

Zhengji Zhao
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
zzhao@lbl.gov

Brian Austin
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
baustin@lbl.gov

Hai Ah Nam
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
hnam@lbl.gov

Nicholas J. Wright
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
njwright@lbl.gov

Abstract—The rising power demands of supercomputers put
high importance on understanding the underlying sources of
power use. We compare a comprehensive set of power mea-
surements covering six months from two supercomputers, the
Cori and Perlmutter machines at the National Energy Research
Scientific Computing Center (NERSC). We show that power
usage varies considerably, and is always significantly below
the peak provisioned power. Several factors cause this – the
machine may not be fully utilized, applications’ computational
characteristics are not those which maximize power usage, and/or
applications can be waiting on resources external to the node.
Our analysis shows that while the power usage of applications
in the same science domain is similar, the power usage of the
same application run by different users is even more similar. As
NERSC transitioned to GPU accelerated nodes, the peak power
capabilities increased, but the production workload’s power
demands did not increase at the same rate, further decreasing
the fraction of thermal design power (TDP) used. These results
indicate that future machines could be power capped and over-
provisioned and a metric different than thermal peak design
is needed for future procurement, in alignment with the actual
power needs of production workloads. These results suggest that
with appropriate technologies, such as power-aware scheduling
or dynamic power management, future HPC systems could be
operated with power caps well below TDP, avoiding the high cost
of over-provisioned infrastructure.

I. INTRODUCTION

In 2008, the exascale computing study [1] put forth a
definitive challenge to deliver an exascale machine within
a 20 megawatts (MWs) power budget. The current exascale
machines are already over this limit. As of November 2023, the
current #1 Top500 [2] listed fastest supercomputer, Frontier,
consumes 22.7 MW of power at 1200 PFLOPS, while the #2
listed supercomputer Aurora, consumes around 24.7 MW at
600 PFLOPS [3]. Power usage of high performance computing
(HPC) resources continues to be a concern to the community,
because it translates into significant one-time fixed costs, such
as the installation of a greater amount of power distribution or
cooling infrastructure, as well as ongoing costs, to purchase

electricity. In addition, the rise of energy consumption by
the HPC community and large machine learning models in
industry has environmental impacts, e.g. carbon emission,
which need to be taken into consideration as well. In short,
power demands in HPC have become a key limiting factor
in both current exascale system operations and the design of
future supercomputers [4].

As a result, there has been much research into power
and energy usage of HPC resources. However, much of this
research uses benchmarks that are not always representative of
the actual workloads that run on today’s supercomputers. This
disparity often makes the insights presented too generic, too
specific, or infeasible for practical purposes, however elegant
they may be. As such, there is a need for studies that shed
light on power consumption trends in modern supercomputers,
even more so given the underlying challenges in collecting,
monitoring and analyzing facility and systems data at the
supercomputer level [5]. Anecdotally, it is often reported that
production power draws from HPC resources are significantly
less than the Thermal Design Power (TDP), but the reasons for
this are unclear. As a result, the values quoted for TDP give an
upper bound on the power consumption observed in day-to-day
operations. The actual power consumed changes based on the
HPC workload running at any given time on a supercomputer
and could, in principle, be tuned by the respective facilities to
accommodate constraints on the available power. Investigating
the power characteristics of HPC production workloads can
reveal potential avenues towards improving system power
efficiency and help guide future system procurement. With
advancements in power measurement techniques and data
collection over the past years, it has become possible in most
systems to observe total power usage over any time range of
interest, as well as at individual nodes and their component
levels [6].

We investigate such issues by studying power data col-
lected in production, on a per-node basis, for leadership-
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class HPC resources, the Cori machine [7] for the time
period February-August 2019 and the Perlmutter machine [8]
for the time period February-August 2023 at NERSC. In
2019 more than 4,000 unique users ran their applications
on Cori, and in 2023 there were more than 9,000 unique
users on Perlmutter, making these architectures perfect testing
grounds for understanding the breadth of possible power usage
scenarios on an HPC machine. The Cori system, comprised
only by CPU partitions, was previously analyzed in [9] and
the Perlmutter system, comprised of both CPU and GPU
partitions, was recently analysed in [10]. Our comprehensive
analysis includes a power timeline for the full system and
daily variation analysis by comparing measured power to
models. Furthermore, we perform set of micro-benchmarks
and application-based benchmarks to gain an understanding of
limiting cases and the causes of the variation in power draw.
We conclude by performing a breakdown by scientific domain
and application name with the aim of understanding power
trends and differences across the years and HPC architectures.

The data for the Cori machine is already in the public
domain [11], and the data collection for Perlmutter will also
be made public. The primary contributions of this work are as
follows.
• The average power of both Cori and Perlmutter systems is

well below their TDPs and that the gap between average
power and TDP is larger on the newer, GPU-based Perl-
mutter system.

• Variations in Perlmutter system power timeline are well
explained by the starting and stopping of jobs with different
time-averaged power demands. This contrasts with Cori,
where temporal power variation within individual jobs was
the largest contributor to the system’s power variation.

• Applications running on Perlmutter typically draw less
power than STREAM (memory bandwidth intensive) or
DGEMM (flop-intensive) microbenchmarks. The distinction
between micro-benchmarks and production workloads is not
apparent on Cori, where the CPUs were the only compute
domain.
This paper is organized as follows. Section II covers related

work, Section III describes Cori and Perlmutter systems and
the data collection framework in more detail. Section IV
analyses the power at system level and Section V provides
our findings from a set of micro-benchmarks on a single
node. Section VI breaks down the power measurements based
on workload characteristics. Finally, Section VII presents our
concluding remarks.

II. RELATED WORK

With the emphasis on energy efficiency in supercomputing
centers over the last decade, power management has become
a crucial aspect of design and operation. Most of the HPC
research in power management has centered around four
key areas - operations/infrastructure, scheduling, operating
systems/runtimes, and analysis/modeling/surveys.

As the infrastructure considerations for supercomputer sites
and datacenters are fairly consistent, scheduling plays a pivotal

role in accommodating the differences in workloads. Conse-
quently, a large amount of HPC research in power management
has centered around scheduling. In 2010, a power-budget-
guided jobs scheduling policy that maximizes overall job
performance [12] was proposed and was followed by other
solutions that used Dynamic Voltage and Frequency Scaling
(DVFS) [13], [14]. Another solution proposed during this time
tried to minimize the number of active servers of a sys-
tem while still satisfying incoming application requests [15].
More recently, a data-driven scheduling approach for power
management based on profiling data of production jobs runs
has been proposed [16]. In [17], an approach to factor and
mitigate manufacturing variability is proposed. There have
been also other approaches focusing on over-provisioned HPC
systems [18], [19].

A considerable amount of effort has focused on improving
job energy efficiency, performance, or both during execution
through operating system and runtime improvements. The
runtime efforts have targeted mostly MPI and OpenMP with
attempts to mitigate problems due to computational workload
imbalance, waiting on memory, communication, and others.
These works predominantly target the CPUs, but research
focused on GPUs too is gaining momentum [20]–[23]. Many
works focus on reclaiming slack in the presence of workload
imbalance using controls like DVFS and Dynamic Duty Cy-
cle Modulation (DDCM) [24]–[33]. The processor expends
significant power while waiting on memory, so several efforts
have focused on mitigating idle waiting [34]–[38]. Attempts to
eliminate idle waiting during communication have also been
suggested [39]–[43]. Similarly, improving resource utilization
through concurrency throttling [44]–[46] and switching of
components [47], [48] have too been explored.

The existing analysis/modeling/survey works form a basis
for many of the above efforts, and the current work is an
effort in this direction. In 2005, a framework for direct and
automatic profiling of power consumption for non- interactive,
parallel scientific applications was proposed [49]. Power mea-
surements for various computational loads on large scale HPC
systems has been studied showing that the Linpack benchmark
consumed power very close to any subset of a typical compute-
intensive scientific workload. [50]. A comprehensive definition
and evaluation of memory power estimation and limiting algo-
rithm that significantly improves sensing accuracy, power limit
enforcement, and system performance has been presented [51].
The power-specific features of several architectures [52] and
the interaction of supercomputing centers with their electricity
service providers have also been studied [53]. There has been
considerable work to leverage the fact that systems operate
using less than their TDP [54]–[56]. Recent work [57] looks
at the impact of power capping on the notion of application
progress and proposes a model to capture the general behavior
of the progress of different classes of applications under a
power cap. In [58] a power analysis of one year time period
of the Summit machine is provided.

With few exceptions, many of these solutions are not always
representative of production workloads and considerations.
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And, more comprehensive studies that show the power con-
sumption of production supercomputers at different scales are
still needed for a better understanding. To tailor future energy-
efficient HPC solutions for production, studies that provide
key information about the overall system, its power demand
fluctuations, as well as job and application-specific trends, are
necessary. Consequently, our current work hopes to fill this gap
by providing a comprehensive analysis of two HPC machines
and drawing trends for future machines from the combined
analysis.

III. SYSTEM CONFIGURATION

A. Cori

The Cori supercomputer [7] is a Cray XC40 with a peak
performance of about 30 PFLOPS. Cori is comprised of
12,076 compute nodes, a 30 PB Lustre scratch filesystem,
and a first-of-its kind NVRAM “burst buffer” storage system,
all connected by a Cray Aries interconnect. Cori’s compute
nodes are of two types. The primary compute partition has
9,688 nodes with one 68-core 1.4 GHz Intel Xeon Phi 7250
“Knight’s Landing” (KNL) processor, 96 GB of 2400 MHz
DDR4 memory, and 16 GB of high-bandwidth MCDRAM
and thermal design power (TDP) of 215 W. A second partition
is composed of 2,388 “Haswell”-based nodes, each with two
16-core 2.3 GHz Intel Xeon E5-2698 v3 processors, 128 GB
of 2133 MHz DDR4 memory, and a TDP of 135 W per
processor. Cori is NERSC’s longest running machine. The
supercomputer had its first users in 2015 and after 8 years
it was decommissioned in 2023.

B. Perlmutter

The Perlmutter supercomputer is based on the HPE Cray
Shasta platform with a theoretical peak performance of
about 70 PFLOPS. Perlmutter is comprised of 1,792 GPU-
accelerated nodes and 3,072 CPU-only nodes, and an all-flash
Lustre system with 35 PB of disk space all interconnected
with the HPE Slingshot network. Each GPU-accelerated node
contains one 64-core 2.45 GHz AMD EPYC 7763 “Milan”
processor, 256 GB DDR4 memory, four NVIDIA A100 GPUs
and four HPE Cray Cassini NICs. The TDPs for the GPUs
and CPUs are 400 W and 280 W, respectively yielding total
node TDP of 2340 W, including all other components in the
node. The CPU-only nodes have two AMD EPYC 7763 Milan
processors, 512 GB DDR4 memory, one Cassini NIC, and a
node TDP of 700 W. The first phase of the Perlmutter [8]
installation was completed in 2021, and various hardware and
network upgrades continued until February 2023.

There is a drastic change in architecture between Cori
and Perlmutter. There is a dramatic increase in the node
TDP, coinciding with the larger number of processors and
growing TDP (and performance) per processor. System-wide,
the performance and power efficiency have improved. On
Cori-KNL, the high performance Linpack (HPL) benchmark
achieved 14 PFLOPS using 3.94 MW. On Perlmutter-GPU,
HPL reached 79 PFLOPW with only 2.95 MW.

C. Power Measurement Infrastructure

Power consumption can be measured from various sources
throughout the systems with different levels of spatial and
temporal granularity. System-level power is measured via
Modbus [59], the electrical industry power reporting standard
for electrical equipment. The total power is the sum of Modbus
measurements from the electrical substations, and includes, be-
sides the compute cabinets, blower cabinets and disk cabinets.
Cabinet-level power data is obtained from the electrical whips
that power each cabinet; these revenue-grade meters measure
AC power with high resolution and accuracy. Node-level
power measurements (including all peripherals) are obtained
through Cray’s power monitoring (PM) architecture [60]. The
Cray XC blade design used on Cori includes a microproces-
sor that measures the power consumption of each node on
the blade. The highest resolution power measurements are
obtained from Intel’s Running Average Power Limit (RAPL)
counters [51]. RAPL probes a processor’s voltage regulators
to determine power measurements for the processor package
and its DRAM and can be sampled at very high frequencies.
On Perlmutter, the highest resolution measurements are from
NVIDIA’s Data Center GPU Manager (DCGM, version 3.1.6).
NERSC also collects power usage data for the cooling units.
However, as shown in [10], these components require much
less power than the compute racks, and are not analyzed in
this work.

NERSC uses the Lightweight Distributed Metric Service
(LDMS) [61] to aggregate the Cray PM and DCGM counters,
as well as other performance metrics. Although the underlying
measurement interfaces are capable of higher sampling rates
our LDMS configuration downsamples these measurements
to 1 Hz to keep the total data volume and ingest rates
manageable. The data are then stored by NERSC’s Operations
Monitoring and Notification Infrastructure (OMNI) [6], which
was developed to monitor and track operational data from
NERSC systems.

D. Physical and Mechanical Infrastructure

Several energy-efficiency considerations allow NERSC to
operate an energy efficient data center. For instance, the system
dissipates HPC waste heat directly to the outside environment
and avoids vapor-compression based air conditioning as much
as possible. NERSC participipates in the LBNL Energy and
Water Management Program and tracks power usage effective-
ness (PUE), IT power usage effectiveness (ITUE), and water
usage effectiveness (WUE). NERSC maintained average PUE
scores of 1.08 during 2019, and 1.05 during 2023.

IV. SYSTEM POWER

Figure 1a shows the power consumption, measured through
Modbus, of Cori and Perlmutter for six consecutive months,
February to August, averaged over 1 hour intervals during
2019 for Cori and 2023 for Perlmutter. As we are interested
in power management of active systems, this data excludes
times when the system power is less than 0.1 MW for both
systems, such as when maintenance required the system to shut
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System Power (MW)
HPC Standard
System Average Deviation Maximum TDP
Cori 3.18 0.36 4.21 5.72

Perlmutter 3.19 0.49 4.86 6.90

TABLE I: Distribution of system-level power measurements
Cori and Perlmutter.

down or be idle. There is a conspicuous gap visible during
the month of June 2023 on Perlmutter which corresponds
to an infrastructure upgrade period for OMNI. Some under-
standing of breadth of the power distribution can be gleaned
by examining the timeline in Figure 1a. Rapid (hour-to-hour)
fluctuations with swings up to 1.89 MW for Cori and 2.13 MW
for Perlmutter are typical, but slower (e.g. seasonal) variations
are not evident.

The distribution of the one hour power samples for both
supercomputers is illustrated in Figure 1b and summarized in
Table I. Despite a 20% increase in TDP, the average power on
Perlmutter is the same as Cori. Thus, the average fraction of
TDP used dropped- from 56% on Cori to 46% on Perlmutter,
as did the maximum fraction of TDP- from 73% to 70%.
However, the power variation increased by 36%.

One possible explanation for the low power demands (rela-
tive to TDP) is low system utilization, but our data do not

Fig. 1: Power consumption of NERSC’s Cori and Perlmutter
systems over a six-month period.

support this. In Figure 2 we display the two dimensional
distribution of the total system power and the percentage of the
compute nodes allocated by the job scheduler at the time of the
power measurement. On both systems, the system utilization
is typically close to 80% (and higher on Perlmutter), well
above the 46-56% power utilization. Other features of Figure 2
point to sources of power variation. The perceptible slopes of
the distributions suggest that utilization may be a contributing
factor, while scatter around the (imagined) trendlines indicates
the importance of other factors, such as workload-dependent
power draw.

To estimate the importance of different sources of Cori’s
power fluctuation over time, Bhalachandra [9] compared a
series of approximate model power timelines. All of the
models were constructed from the same set of measured power
data, but each model used a different averaging scheme to
control which sources of variation it included. Here, we use the
same approach to understand power fluctuation on Perlmutter,
and begin by providing a brief description of each model.

The utilization power model (Putil) includes only the ef-
fects of system utilization. (See the preceding discussion of
Figure 2.) It combines an average active power value and idle
power for active and idle nodes respectively,

Putil(t) = Pidle Nidle(t) + Pactive Nactive(t). (1)

The active power is the average of all Cray-PM power records
from nodes that were active at the time of measurement,
and the measurement of idle power is described in detail in
Section V.

The job-mix power model (Pmix) includes the effects of
system utilization and adds the variation that occurs when
a low-power job is replaced by a high-power job in the
scheduling and vice versa,

Pmix(t) = Pidle Nidle(t) +
∑

j∈jobs(t)

P j (2)

P j is the (time-averaged) job-level power usage, which we
derived by integrating the Cray-PM records over the node-
lists and wall-times recorded in the Slurm [62] jobs database.
The sum includes only jobs that are running at time t.

The augmented job-mix power model (Paug) takes into
consideration the effects of large jobs on the system’s power
fluctuation by substituting the large jobs’ average power with
their actual timelines, Pk(t),

PAug = Pidle Nidle(t) +
∑

k∈ large
jobs(t)

Pk(t) +
∑

j∈ other
jobs(t)

P j (3)

The emphasis on large jobs is related to the prevalence of
bulk synchonous programming models, which can cause large
power swings if, for example, all of the nodes in the job
simultaneously stop computing as they enter I/O phases. In [9],
large jobs used at least 1,024 of Cori’s KNL nodes (10.5% of
that partition). In our analysis, large jobs are those that use
at least 224 of Perlmutter’s GPU-accelerated nodes (12.5% of
that partition). If the large job threshold was eliminated, then
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all the P j would be replaced by Pk(t), and the augmented
job-mix power model would reproduce the measured power
timeline exactly.

The modeled power timelines for Perlmutter’s GPU partition
are shows in Figure 3. The utilization model is shown in red,
the job-mix model in green, and the augmented job-mix model
in yellow. In Table II, we report the accuracy of the power
models using the metric 1 − RMSE/STD, where RMSE is
the root mean squared error, and STD is the standard deviation
of the measured power variation. We have also included the
results of the analysis on the Cori machine [9] for comparison.
On both systems, the utilization model accounts for only a
modest fraction (7-8%) of the systems total variation, which
matches the consistently high utilization shown in Figure 2.
However, the job-mix model accounts for an additional 28%
of Perlmutter’s variation, but only 6% of Cori’s, implying that
the jobs on Perlmutter have a broader distribution of average
power per node than those on Cori. The causes of this will
be investigated in Section V. A noteworthy observation of
[9], was that power variation on Cori was dominated by the
transient power fluctuations within large jobs, accounting for
60% of the total variation. This effect is much less pronounced
on Perlmutter, where it accounts for only 12%. The difference
is explained, in part, by the fraction of node hours used by
large jobs on the selected days: 43% on Cori and 26% on
Perlmutter.

The power fluctuations within individual jobs, which are de-
scribed by the augmented job-mix model, have both temporal
and spatial components. In figure 4a we plot the timeline of
one large-scale application running on Perlmutter: the X-point
Gyrokinetic Code (XGC) [63] is a whole-volume, total-f
gyrokinetic particle-in-cell code developed for modelling toka-
mak fusion reactors. The timeline is marked by rapid power
spikes of up to 125 kW. To better understand the distribution
among the 224 GPU-accelerated nodes active during its run,
we select multiple time snapshots of the power distribution
among nodes in figure 4b. The bimodal distributions and long
tails are indications of load imbalance as some nodes are
performing high power computation while others are close to

Model
HPC Machine

Cori Perlmutter
Accuracy (%) ∆ (%) Accuracy (%) ∆ (%)

Utilization 8 - 7 -
Job−Mix 14 6 35 28
Augmented 74 60 47 12

TABLE II: Summary of power variation explainable by the
Utilization, Job-Mix, and Augmented Job-Mix models for Cori
and Perlmutter. The higher the value, the better the model is
at explaining the measured variation. ∆ is the improvement of
each model with respect to the previous one in terms of the
difference of the respective values.

idle power levels. Similar behavior was also present among
the applications studied on Cori [9].

V. SINGLE-NODE POWER CONSUMPTION

The effectiveness of the Job-Mix power model suggests
that the power requirements for each job can vary signifi-
cantly. This section examines the application characteristics
that contribute to these difference. We begin our analysis
by measuring the power used by four simple single-node
activity patterns (Idle, STREAM, DGEMM and Firestarter)
that represent limiting cases for application behavior. The Idle
test is no-op and represents the baseline power requirement
of an inactive node. The STREAM [64] kernel, and its GPU
version BabelStream [65], measure memory bandwidth and
stress the memory subsystem. The DGEMM kernel exercises
the node’s floating-point performance by performing double-
precision matrix-matrix multiplication. Firestarter [66] is a
power virus designed to drive all of the subsystems simul-
taneously and determine a node’s maximum achievable power
(Pmax). All benchmarks were compiled with CUDA [67] for
the GPU-accelerated nodes and the benchmarks on the KNL
nodes were compiled with Intel Math Kernel Library [68].
Each application was run on 50 unique nodes, and the power
draw was averaged over the execution time. To avoid any
temperature effects on power measurement each run was at
least 30 minutes long [69]. The total power of each node was
obtained from the Cray PM counters.

Fig. 2: Distribution of the correlation between system utilization and system power. Cori has more than twice the number
of nodes in comparison to Perlmutter, but a lower range of system power values. Both systems have a high concentration of
nodes for system power values close to 3 MW.
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Figure 5 shows the fraction of TDP used by the two node
types when running these kernels. For all benchmarks studied
here, the variation in power measured about the mean is less

Fig. 3: Utilization Model for the GPU partition on Perlmutter:
a two-parameter model reflecting only whether a node is
idle or active. (All jobs use the same average power.) Job-
Mix Model: adds job-specific power values to the utilization
model. Errors result from each job’s power changing over
time. Augmented Job-Mix Model: small jobs are treated by
the Job-Mix model, and large jobs are represented by their
measured time-dependent power values. Residual errors result
from temporal fluctuations in small jobs’ power.

Fig. 4: Execution snapshots of the power consumption, time
intervals in minutes, for one of the large jobs from figure 3 on
the GPU partition of Perlmutter. The bimodal distributions in
some of the snapshots is likely due to load imbalance during
the run.

Fig. 5: Power consumption of several mircobenchmarks. Total
node power was measured using Cray PM counters. Error bars
denote the standard deviation of the total power across 50 runs.

than 8% on both machines. As there are four GPUs and one
CPU per Perlmutter node, the absolute power demands are
naturally higher than Cori’s single-CPU nodes. The idle power
of the single-socket KNL nodes is 110 W, which is about
37% of the TDP, while the idle power of the GPU nodes is
around 460 W, quite a bit higher than KNL, but only about
20% of the respective TDP. A sharp difference between the
two architectures is evident in the memory bandwidth kernels:
on Cori, the STREAM benchmark reaches 90% of the Pmax,
while on Perlmutter, BabelStream reaches only 40%. The
power for DGEMM (with random input [70]) is 90% of Pmax

on Cori’s KNL nodes and 80% of Pmax on Perlmutter’s GPU
nodes. When running Firestarter, Cori’s KNL nodes use 90%
of TDP and Perlmutter’s GPU nodes use 90%.

The difference in power consumption between these two
benchmarks on Cori and Perlmutter is due to architectural
differences. On Cori, the CPU is the only compute available;
actively used by both. On Perlmutter, DGEMM primarily uses
the GPUs, while Firestarter utilizes the whole compute power
of the node (both CPU and GPU are actively performing oper-
ations at the same time). This distinction becomes visible when
we compare the power draw of the individual components. For
DGEMM the average power draw of each GPU is about 83%
of its TDP, and for the CPU it is 23% of its TDP. For Firestarter
the respective values are 72% and 56%. In both cases most of
the power needs are due to the activity of the GPUs with the
increased CPU activity for Firestarter likely being the reason
behind the difference observed at node power level. We also
checked the power draw for the memory in the node, and it
was 76 W for DGEMM and 96 W for Firestarter.

As we are interested in both power and energy efficiency,
we dive deeper into the compute capabilities achieved by
these benchmarks. In table III we display the bandwidth and
compute performance per unit of energy for STREAM and
DGEMM. It is easy to notice that while STREAM energy
efficiency is essentially the same in both machines, DGEMM
has vastly improved (over six times) due to the presence of
four GPUs per node on Perlmutter. For STREAM the average
power draw of each GPU was about 49% of its TDP, and for
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HPC Machine STREAM DGEMM
Efficiency [GB/J] Efficiency [Gflop/J]

Cori 1.22 6.85
Perlmutter 1.36 42.10

TABLE III: STREAM and DGEMM node energy efficiency
in terms of bandwidth and compute performance per unit of
energy per node on the Cori and Perlmutter machines.

the CPU it 25%. This is a similar power consumption with
respect to DGEMM for the CPU, but much lower with regard
to the GPU. The memory power consumption for STREAM
was 75 W on average, almost the same as DGEMM. While
power demand has increased from Cori to Perlmutter, energy
efficiency has increased as well.

VI. DOMAIN AND WORKLOAD ANALYSIS FOR CAPABILITY
JOBS

Fig. 6: Node power consumption as fraction of TDP for
capability jobs for various domains of science. For the Cori
KNL nodes, the TDP is 300 W and for the Perlmutter GPU
nodes it is 2.34 kW.

NERSC’s workload is extremely diverse, with contributions
from more than 9,000 active users and over 11 million

application runs for the year 2023. In this section, we broaden
our scope by analyzing the production workload. We focus on
long-running large jobs as defined in the previous section. Jobs
at this scale are particularly relevant for power management.
On Cori they have the greatest potential to modulate the total
system power on practical time-scales [9] and on Perlmutter
they can have rather large power variation. As in previous
section, the results in this section are focused on the KNL
partition on Cori and GPU partition on Perlmutter.

Figures 6 and 7 show the average power consumption per
node as fraction of the TDP, as measured using Cray PM coun-
ters, for different science domains and also for the most used
production applications, respectively. The power consumed by
the GPU node on Perlmutter is a lower fraction of TDP than
the KNL node on Cori. However, applications on Perlmutter
nodes consistently require more raw power due to the high
compute capabilities of the four GPUs.

In Figure 6a, these jobs are classified by science domain and
ordered in increasing power on Cori. As part of the NERSC
allocation request process, every project must self-select a
science domain. Columns represent the average over jobs
within each domain and the error bars represent one standard
deviation from the mean. In horizontal dotted lines we show
the power draw from STREAM and in dashed lines the power
draw from DGEMM applications from the previous section
for comparison. The majority of the codes on Cori require less
power draw then these microbenchmarks, while on Perlmutter
many applications’ power needs are much closer to STREAM.
As the figure shows, the power variation within a domain is
generally less than the differences between domains, but the
jobs within the same domain of science can also have high
variation; about 30% for Atsrophysics on Cori and 39% for
Chemistry on Perlmutter. On Cori, Fusion codes seem to be the
most power-hungry, as they consume about 70% of the TDP on
average, while on Perlmutter the highest power consumption
is about 59%, reached by Geoscience. In figure 6b we plot
the average values of the measured power for the domains
of science for Cori versus Perlmutter. Then, we proceed to
perform linear fits to see how strong correlations can be.
The offsets differ by less than 9% from value obtained by
subtracting the idle power measurements from figure 5. The
slope is rather small at around 0.31, an indication of small
correlation between the power draw from domains of science
at the two supercomputers.

Application names identify workloads more specifically
than science domains and should be more reliable predictors
of power use. In Figure 7a we focus on a few of the most
heavily used applications of the jobs from Figure 6a. The
range of power measurements is comparable to that of science
domain classification, but the variation is lower. There are
variations in power consumption across multiple invocations of
the same code (the error bars show standard deviation). Likely
explanations for these differences include running at different
scales, performance variation due to interactions with the
network, the storage subsystem and/or thermal/manufacturing
variability between nodes. Apart from the machine attributes,

7



many codes contain more than one algorithm with different
power profiles selected via different inputs leading to the
variations in power. A few applications, notably VASP, show
significantly more power variation across runs than others;
likely because the power draw of these codes is more strongly
dependent on their input options and data sets. Overall, we
observe a higher power variation of workloads on Cori as
can be seen from the error bars in Figure 7a. As this plot
suggests, applications do not stress the floating point units
of the CPU/GPU as much as the DGEMM and Firestarter
micro-benchmarks. In figure 7b we plot the average values
of the measured power for the selected workloads for Cori
versus Perlmutter and perform a linear fit to study correlations
between the two systems. The offsets differs by less 5% from
value obtained be subtracting the idle power measurements
from figure 5. The slope is even smaller then the previous
case at 0.26, primarily due to the similar average power draw
from the workloads on Perlmutter. Further disentangling the

Fig. 7: Node power consumption as fraction of TDP for
capability jobs for various workloads. For the Cori KNL nodes,
the TDP is 300 kW and for the Perlmutter GPU nodes it is
2.34 kW.

sources of variation will require further data collection for the
workload which delves deeper into the compute and bandwidth
requirements, in addition to power. In future research we plan
to include a series of experiments to better understand the
roots of variation and expand the data collection.

VII. CONCLUSIONS & FUTURE WORK

Our study of the power usage of the Cori and Perlmutter
supercomputers over the course of six consecutive months on
each system explored the reasons for the anecdotal observa-
tions that supercomputers’ power draws are often significantly
less than their TDPs. Not only did we confirm such anecdotal
reports with empirical data, but we also note an increased
divide between the maximal and practical power draw values.
This gap, coupled with the high capital cost of electrical
infrastructure, suggests that future HPC systems might be
deployed more economically if the infrastructure was sized
according to estimates of the systems’ operational power
draw rather than their TDPs. However, in this scenario, more
emphasis would need to be placed on power aware scheduling
and power capping to avoid power consumption instances that
exceed the infrastructure capabilities.

Our analysis shows that the overall power draw of the
machine can be understood by considering the total num-
ber of nodes in use and the types of applications running
on those nodes. Categorizing jobs by their science domains
or application names provides rudimentary power estimates
that could allow for example, a very simple power capping
scheduling algorithm to be implemented on the time-scale of
job durations. However, our post-hoc analysis of the system
power timeline revealed that more than half of Perlmutter’s
power variation occured on faster time-scales. As machine
learning workloads become more common, we expect the
intra-job variation to increase due to the compute idle time
between training epochs [71]. Further analysis of fine-grained
power measurements is clearly needed in order to explain the
application behaviors that contribute to their power use.

Near-term future work calls for detailed analysis of the data
set to further understand the dependency of the power draw
upon science domain and application, potentially involving
more sophisticated statistical analysis techniques such as ma-
chine learning. In the longer term we plan to develop methods
to simulate the ability of the scheduler to cap the overall
power draw of the system through the use of application and
user dependent power signatures to deploy such techniques in
production. In addition, TDP greatly affects hardware procure-
ment, but is not representative of workload applications, and
we plan to conduct further analysis to devise a more suitable
metric.
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