
Programming Model Extensions
for General-Purpose Processing-In-Memory
Hyesun Hong∗, Lukas Sommer†, Bongjun Kim∗, Mikhail Kashkarov‡, Kumudha Narasimhan†

Ilya Veselov‡, Mehdi Goli†, Jaeyeon Kim∗, Ruyman Reyes Castro§, and Hanwoong Jung∗

Abstract—The performance of many applications is limited by
the available memory bandwidth. One approach to improve the
performance of such memory-bound applications is to move the
computation closer to the required data. Processing In Memory
(PIM) integrates computational units directly with the memory.
To enable PIM technology in widely used programming models,
we propose extensions to OpenMP and OpenACC, two examples
of directive-based programming models, as well as SYCL. The
extensions are designed to be portable across many existing and
future parallel computing devices and platforms, making PIM
technology widely available.

For the extensions, we propose an end-to-end compilation
framework based on several steps of abstraction and progressive
lowering. To achieve this goal, we formulate a new PIM IR
and conduct optimizations tailored to hardware characteristics.
By using AMD MI100 GPU with PIM-enabled HBM2 memory,
we observe a performance improvement of 1.2-2.1 times for
representative examples and a real high-performance computing
(HPC) application compared to the same GPU without PIM-
enabled memory.

Index Terms—Processing in memory, Programming model,
MLIR, Compiler directive

I. INTRODUCTION

The performance of processor-oriented systems such as
CPUs, GPUs, and accelerators is still increasing thanks to the
parallelization and specialization of applications, and architec-
tural improvements such as an increasing number of cores that
are positioned closer to one another. Yet, for the last decades,
memory bandwidth has not been growing at the same rate
and is severely limited by physical constraints. This makes it
even more important to not only consider compute latency and
throughput but also memory bandwidth and latency.

The typical architecture of most CPUs or GPUs requires
reading data from memory, performing calculations on it, and
then writing the results back to memory. A new approach,
however, where computation occurs where data resides, has
arisen to address memory bottlenecks. Processing In Memory
(PIM) integrates computational units directly with the memory
to improve the performance of bandwidth-intensive workloads
and to improve energy efficiency by reducing data movement
between computing and memory units. Therefore, it can ease
the burden of constrained memory bandwidth.

For this work, we are going to focus on architectures that
couple PIM with an existing accelerator. As an example,
the coupling of PIM-enabled high-bandwidth memory (HBM)

∗Samsung Advanced Institute of Technology, Korea, †Codeplay Software
Ltd, United Kingdom, ‡Samsung Electronics, Russia, §Intel, United Kingdom

Corresponding author: Hyesun Hong (hyesun.hong11280@gmail.com)

with GPUs allows to compute kernels executing on the GPU
to leverage PIM.

The productivity of developers is a key factor to consider
when designing new hardware architectures, and researchers
have presented many approaches, focusing mostly on two
areas (1) domain-specific libraries, such as BLAS [1], and (2)
general programming models for new architectures, such as
OpenACC [2], CUDA [3], and SYCL [4]. Hardware vendors
must offer a variety of options to developers, to address
the various requirements that they have for their domains if
they want to gain widespread adoption of their hardware.
Furthermore, open standard programming models help the
adoption of new architectures given they are known to the
developers already, and do not bind them to a specific vendor.

We identify the key requirements for a PIM programming
model based on the current state of the art in programming
models and developer ecosystem trends as follows:

R1) PIM operations should be integrated seamlessly into the
existing programming models to make them available to
users in an easy-to-use and comprehensible manner.

R2) The design of the programming model should be vendor-
agnostic rather than specific to one accelerator or soft-
ware development kit (SDK).

R3) A user without hardware expertise should be able to run
PIM operations and non-PIM kernels within the same
application. In addition, its programming model allows
a combination of regular non-PIM and PIM operations
in the same kernel to apply incremental development.

R4) PIM operations should be integrated into the existing
runtime, e.g., into SYCL’s dependency tracking.

R5) The underlying intermediate representation (IR) should
be designed to support existing optimization methods
and to facilitate the integration of new optimization
approaches.

The first three requirements are related to the extended
programming model, while the remaining two focus on its
implementation. To the best of our knowledge, the new PIM
technology does not yet have a standard programming model.
For instance, the user of UPMEM [5], which is one of the well-
known in-memory processing devices in academics, needs
to specify the application with UPMEM-specific features at
the task level. Moreover, the software stack of Samsung’s
FIMDRAM [6] is proprietary closed-source.

In this paper, we extend the existing heterogeneous pro-
gramming models to support PIM operations, to fulfill the
need for general workload support. In addition, we propose



Fig. 1. SAXPY example coded in (a) Fortran, (b) Fortran with OpenACC,
and (c) SYCL

an end-to-end compilation framework based on multi-level
intermediate representation (MLIR) [7].

By extending multiple existing high-level programming
models, we enable even non-expert users to leverage PIM
operations, allowing a wide range of workloads to benefit from
PIM. The design of the extensions as well as the architecture
of the underlying compiler infrastructure fulfill the above-
mentioned requirements.

The viability of the proposed methodology is validated with
experiments with two linear algebra and high-performance
computing (HPC) workloads as case studies. In particular, we
focus on how to specify the operation and the resultant inter-
mediate representation and have an effect on the performance
through optimization. To validate the productivity of software
development, we compare the number of lines to be modified
to utilize PIM hardware.

II. BACKGROUND

A. Programming Model

There are four approaches to specify a parallel program
by offloading the most computationally intensive part onto
accelerator devices. The first one is to use an internally
optimized library such as BLAS [1], MAGMA [8], or SLATE
[9]. While BLAS [1] and LAPACK [10] are a basic collection
of basic linear algebra operations, ScaLAPACK [11] is a
variant of LAPACK designed for distributed memory parallel
systems using domain decomposition techniques. More recent
developments such as MAGMA [8], or SLATE [9] aim to
extract the full performance potential and maximum scalability
from modern, many-node machines with large numbers of
cores and multiple hardware accelerators per node.

For the second approach, the developers identify which
areas of code to accelerate by giving simple hints, known as
directives, to the compiler. Typical examples include OpenMP

[12] and OpenACC [2]. OpenMP started as a way to pro-
gram multi-core CPUs, the accelerator offload model was
later introduced in versions 4.0 and later. OpenACC started
as an alternative to OpenMP 3.0 and first introduced GPU
support. Both directives share the common goal of providing
programmers with a high-level approach to heterogeneous
programming [13]. To demonstrate the different programming
models, SAXPY (Single-precision A×X+Y ), a combination
of scalar multiplication and vector addition, is used as a
common example. The complete SAXPY code in Fortran is
given in Fig. 1(a). To perform on the GPU, the user needs to
add compiler directives for OpenACC in Fig. 1(b).

Third, the most commonly used approach for performance
optimization is developing custom parallel algorithms with
extended languages such as CUDA [3] and OpenCL [14].
Especially, state-of-the-art in high-performance artificial in-
telligence is driven by NVIDIA GPUs [15], so there are
translators available that can convert handwritten CUDA code
into HIP [16] or other languages.

Finally, developers have the option to utilize C++ template-
based high-level standard programming models such as SYCL
[4] and Kokkos [17]. Leveraging the expressive power of
modern C++, SYCL provides an easy-to-use single-source
programming model with a higher level of abstraction than
e.g. OpenCL, and can target a wide range of heterogeneous
platforms. Thanks to these features, an increasing number
of companies are starting to provide SYCL implementations,
some of which support a variety of acceleration API back-
ends. Fig. 1(c) shows a SAXPY code in SYCL to explain
SYCL features.

Similar to OpenCL [18], SYCL also allows vendors to
extend the programming model. While vendor extensions such
as [19] and [20] offer a lightweight process to create an
extension and are often focused on a vendor’s platform, official
Khronos (KHR) extensions follow a more formalized process
and require the participation of multiple vendors.

B. Multi-level Intermediate Representation (MLIR)

Multi-Level Intermediate Representation (MLIR) [7] is a
flexible and extensible compiler infrastructure, ranging from
backend code generation and orchestration of heterogeneous
systems to high-level language semantics of programming
languages and domain-specific frameworks. It serves as an
intermediate representation (IR) framework for optimizing and
transforming programs across various programming languages
and hardware targets. MLIR enables efficient and portable
code generation by providing a unified representation for
different dialects and allowing seamless integration with ex-
isting compiler tools. It offers a modular and hierarchical
approach, supporting high-level abstractions as well as low-
level hardware-specific optimizations.

Some MLIR dialects that we have utilized in our work are
provided below:

1) Affine dialect [21]: provides a set of operations and
transformations for working with loop nests and affine



functions. It enables loop optimizations and transforma-
tions such as loop tiling and loop fusion.

2) Linalg dialect [22]: is designed to represent and optimize
linear algebra operations. It provides a powerful tool for
advanced optimizations for loop vectorization, mapping
to parallel and reduction loops, and lowering to loops /
library calls / intrinsic.

3) GPU dialect [23]: provides middle-level abstractions for
launching GPU kernels following a programming model
similar to that of CUDA or OpenCL. Its goal is to
abstract away device- and driver-specific manipulations
to launch a GPU kernel and provide a simple path toward
GPU execution from MLIR. And it can be lowered to
specific target-specific dialects such as “amdgpu” for
AMD GPUs or “nvgpu” for NVIDIA GPUs.

4) ACC dialect [24] / OMP dialect [25]: model the con-
struct from the OpenACC 3.1 and OpenMP directive
language, respectively.

5) Transform dialect [26]: provides operations that can be
used to control transformations of the payload IR using
a different portion of the transform IR. Therefore, it
plays a crucial role in enabling efficient and scalable
code transformations within a compiler framework.

C. Processing-In-Memory (PIM)

Computer architects are adopting alternative system models,
such as processing near memory (PNM) and processing in
memory (PIM), to address challenges related to data move-
ment. This shift away from the traditional Von Neumann
architecture aims to improve overall system efficiency by
bringing processing capabilities closer to the memory, re-
ducing data transfer bottlenecks, and enabling more efficient
computation within the memory itself. While PIM integrates
computational units into the memory itself, PNM focuses on
placing processing units near the memory modules to improve
performance.

Extensive research has been conducted in the field of PIM.
UPMEM [27] provides products that enable researchers to
run real-world applications, allowing them to experiment and
evaluate the benefits of PIM. Additionally, Samsung [6] and
SK Hynix [28] have introduced specialized PIM designed
significantly for machine learning tasks. These systems utilize
HBM2 and GDDR6 DRAM standards, offering support for
high-performance operations in the range of TFLOPS [29].
Especially, in [6], the I/O boundary of a bank is equipped with
a PIM execution unit comprising SIMD floating-point units,
command register files (CRF), general register files (GRF),
and scalar register files (SRF). In addition, it supports both
standard DRAM and PIM modes for versatility. In DRAM
mode, it is the same as usual DRAM. However, in PIM mode,
PIM execution units across all the banks concurrently respond
to a standard DRAM column command such as read and write
command. Therefore, it executes one wide-SIMD operation
with deterministic latency in a lock-step manner.

Fig. 2. Overview of the our proposed software stack for PIM

III. OVERVIEW

The overall flow of the proposed software structure shown
in Fig. 2 can be understood as the framework from a directive-
based approach and a template-based approach to executable
binary. The application is written using SYCL extensions for
PIM support or PIM directive in Fortran/C. In this section,
we explain our extended models and proposed MLIR with a
simple element-wise addition example.

As shown in Fig. 3(a), the user selects a SYCL device
supporting PIM operations via pim_selector. To facilitate
standardization as a vendor-neutral design, we extend the
transform function from standard C++. It applies the binary
operation (plus) to each pair of elements in in1 and in2,
and stores the results (out), preserving the original order
of elements. To express the same behavior, there are sev-
eral options, such as explicit vector operation or automatic
inference of PIM operations from scalar user code. However,
explicit vectorization with a fixed vector width would hinder
the portability of applications and automatic inference would
place a huge burden on compiler implementation. Fig. 3(b)
illustrates the Fortran code with the PIM directive. It allows
the user to maintain existing sequential code and to annotate
to expose parallelism.

The applications for PIM go through various levels of
optimization by generating MLIR or related header files inside
the compiler. For SYCL, while implementation details may
diverge, our approach allows the SYCL runtime to directly
invoke the PIM library for host-initiated PIM operations. For
Fortran code with PIM directive, Flang parses and produces
a series of MLIR, which is the mixture of FIR, PIM IR, and
ACC IR [30]. Our Flang is based on Flacc to support the
existing directive together to satisfy requirement R3.

Fig. 3(c) depicts PIM IR which is aware of the set of opera-
tors supported by PIM. It is a bridge between the programming



Fig. 3. Code snippet of (a) SYCL extensions, (b) PIM-directive and (c) PIM
dialect for element-wise addition example

model and actual PIM instruction set architecture (ISA). Mul-
tiple levels of IR for each operation are provided, which can
be adjusted based on different optimizations provided by the
hardware backend. For instance, PIM IR can be transformed
into the corresponding IR for the PIM SDK library based
on the specific backend. Alternatively, it can undergo partial
lowering into PIM IR for generating PIM kernels and the
dialect of the underlying device like a GPU. Furthermore,
by incorporating hardware characteristics as parameters, the
IR can be regenerated, enabling compatibility with various
backend devices. This approach also fulfills requirement R5.
After additional analysis and rewriting passes, it emits LLVM
IR dialect which declares operations related to the existing
runtime functions. Finally, the LLVM IR is compiled and
linked with the runtime libraries.

A. Related Work

In the field of compiler research, there have been studies
focusing on MLIR that aim to expand its functionality for
effortless integration of new devices. Additionally, there are re-
search efforts aimed at enhancing the expressiveness of MLIR,
enabling a broader range of optimizations to be explored.

To enhance the expressiveness of new devices, CINM
[29] proposed a general end-to-end compilation infrastructure
for heterogeneous computing-in-memory (CIM) and compute-

near-memory (CNM) devices. Similar to our design, it uses
MLIR rewriting and introduces reusable abstractions and
components. However, it begins with the Linalg dialect as
a starting point and then represents the common aspects of
CIM and CNM as separate dialects. It also further abstracts
the specific characteristics of CIM and CNM into CIM dialect
and CNM dialect, respectively. Subsequently, it establishes the
connection between these dialects and the vendor-specific in-
trinsics. This enables users to effectively integrate the intrinsic
operations provided by different vendors, allowing for more
flexible and efficient code generation in the context of CIM and
CNM. We have comparable goals for these reasons, however
CINM pipeline differs from ours in that CINM pursues the
lowering process from only AI applications. In addition, we
assume PIM needs to be linked and operated with other device.
For example, a PIM coupled with a GPU requires operating
the PIM at the GPU’s warp level.

To achieve high-performance GPU code generation, [31]
extended the existing GPU dialect to support the utilization
of tensor cores and performed optimization techniques to
maximize the reuse at different levels of the memory hierarchy.
It includes considerations such as creating and placing fast
memory buffers, applying loop tiling, enabling vectorization,
detecting parallel loops, and determining the placement of
synchronization barriers.

Graphene [32] also introduced an IR specifically designed
for efficient tensor computations on GPUs. It serves as a
low-level target language for tensor compilers. In Graphene,
tensors and threads can be decomposed hierarchically into
tiles, enabling optimized tensor computations to be expressed
as mappings between data and thread tiles. In particular, tensor
computations are represented using specs, which are self-
contained blocks of computation. The gradual lowering of
operations in the PIM dialect is analogous to this feature.

SYCLops [33] is a converter that can translate SYCL-
specific LLVM IR to MLIR. It provides the capability to per-
form both target and application-specific optimizations within
the same compilation pipeline. This study differs from our
proposed approach where the goal is to directly go from the
programming model to MLIR.

SYCL-MLIR [34] recently introduced an overview of the
architecture for a SYCL compiler based on MLIR. It demon-
strates how MLIR can be leveraged for better optimization of
SYCL code during compilation.

In summary, there has been a lack of research that integrates
general-purpose programming models to compilers for PIM.

IV. PROPOSED PROGRAMMING MODEL

To fulfill the need for general workload support and for
accelerating PIM, two approaches, one for a directive-based
approach and the other for a template-based approach, are
devised to make it easy for application or library developers
to use. In this section, we investigate both approaches which
extend the existing heterogeneous programming models to
support PIM operation.



Fig. 4. SYCL extension for specific PIM hardware

A. SYCL Extension

For the first attempt at a SYCL extension for PIM, we
follow the rather lightweight process for vendor extensions.
Its design is currently bound to a specific device and SDK
to enable experimentation with actual hardware. To overcome
these limitations in the future, we propose the extensions in
two stages. First, the extension bound to specific hardware
is elaborated in Fig. 4, and then a more general method is
proposed in Fig. 3(a).

The user should be able to select a SYCL device that
supports PIM operation, analog to general SYCL applications.
As the memory on the device is partitioned between regular
memory and PIM-enabled memory, PIM is modeled as a
separate SYCL device. In this case, modeling PIM and the
PIM-connected GPU as a single device would violate the
SYCL platform model, as part of the memory is not accessible
to the PIM computation units. Line 1 creates an SYCL queue
for a PIM device selected by the specialized device selector
that uses the pim device aspect to select a PIM device.

For PIM execution, we provide two options: A vendor-
specific extension for host-initiated PIM, extending SYCL
handlers and accessors, and a more generic approach that
proposes new group functions.

For the first approach, to make existing SYCL memory ob-
jects such as buffers available for PIM execution, the dedicated
pim_accessor is introduced. Similar to the regular SYCL
accessor, the pim_accessor fulfills two roles: It requests
access to the buffer for device execution, in this case on
the PIM device. It also declares a data dependency on that
buffer, integrating into the existing automatic directed acyclic
dependency graph execution of SYCL. As PIM operations
in this design are host-initiated and the pim_accessor is
therefore only used in host code, its implementation is more
lightweight than the regular SYCL accessor. The API for host-
initiated PIM operations is inspired by existing functions for
explicit memory operations (e.g., fill or copy) in the SYCL
handler.

In addition, we propose a separate pim_handler to pro-
vide additional PIM operations and to highlight the semantic
difference in sending commands to the attached PIM blocks.
The highlighted section (line 10-14) in Fig. 4 represents the
part that we have newly extended. It can be observed that its
handler can directly perform element-wise addition operations
as memory request operations.

However, the first approach has four limitations; 1) when
different manufacturers provide numerous different operations,
it becomes challenging to extend in a consistent manner. 2) If
the entire memory of the device is composed of PIM, it is not
natural to create a separate queue for execution. 3) Because
GPU and PIM are treated as separate devices, mixing PIM
and regular GPU computation in the same device kernel is
currently not possible. As a result, this approach leads to the
problem of forming too many command groups for compli-
cated applications. 4) The concept of unified shared memory
supported by SYCL has not been taken into consideration.
Therefore, this simple approach is only valuable as a vendor
extension.

As a more general extension approach, we propose to
specify PIM operations using new group functions, as shown
in Fig. 3(a). Since the SYCL specification already defines
several group functions, adding additional group functions
only requires minimal learning effort for users. Additionally,
they can easily be combined with other device codes in
the same kernel, matching R3 in the above-mentioned key
requirements. For example, when GPU contains PIM, this
approach allows to integrate PIM operations directly into GPU
kernels. Therefore, no host-GPU round-trip would be required
to switch between GPU and PIM execution.

To enable simple addition and multiplication operations in
memory blocks, a proposal can be devised using a group
function called joint_transform, which is similar to
utilizing the transform function in C++ syntax. Addition-
ally, similar to the inner_product function in C++,
we introduce joint_inner_product to express inner
products intuitively. For reduction operations, the existing
joint_reduce in SYCL can be utilized. Although the
example in Fig. 3(a) (line 16-17) use only a group function in
a command group, these group functions can be expressed
alongside other computation operations within a command
group, allowing for more efficient specifications. Lastly, group
functions can include accessors as arguments, but they can also
accommodate unified shared memory as an argument. It makes
them suitable for a broader memory model.

Vector operations included in the SYCL specification
seemed like a natural fit because the PIM block internally uses
SIMD execution. However, the SYCL specification defines
horizontal operations for vectors, which are challenging to
implement efficiently in distributed compute units in PIM.
Also, the vector size explicitly stated in the code would need
to match the alignment requirement, restricting the portability
of code between different PIM implementations. In addition,
vector operations do not provide a convergence guarantee for
threads, which is likely to be necessary for PIM. Therefore,
group functions are more suitable than intuitive vectors for
PIM execution.

Moreover, group functions allow users to focus on express-
ing functionality without bothering about specific details of
the PIM hardware. On the other hand, group functions might
make it difficult to express if a user wants to use special
features supported by a particular PIM hardware. In such



cases, additionally offering access to lower-level, specialized
functions might be required.

For portability of the SYCL extension, execution of PIM
operations could fall back to GPU (or even host) execution,
if no PIM capabilities are available in the system. Note that
all operations in the SYCL extensions have clearly defined
semantics and could therefore also be computed on non-
PIM hardware. The group functions in particular aid with the
portability of the code using this extension, as other mappings
on different hardware are also conceivable. For example, the
group functions could also be mapped to high-performance
vector instructions instead of PIM if the hardware has such
capabilities.

B. PIM Directive

The PIM directive allows developers to maintain existing
sequential code while gradually adding directives to expose
parallelism for verification. To take advantage of its benefit,
we introduce a PIM directive that is similar to the existing
directives. It is directive agnostic to be compatible with
existing directives such as OpenMP and OpenACC.

As can be seen in Fig. 3(b), the directive starting with pim
has compute constructs and loop constructs similar to other
directives. In addition, the data construct allows for copying
data to be used in PIM memory and transferring data back
to the host after computation. Furthermore, a requires
directive is added to ensure support for unified shared memory.

V. PROPOSED COMPILER FRAMEWORK

A. PIM Dialect

The use of a common intermediate representation (IR)
within the compiler, which can accommodate inputs from
diverse programming models, offers great reusability in terms
of employing identical optimizations and lowering. Conse-
quently, we aim to present an MLIR-based PIM dialect to
address this aspect.

There are three main difficulties in presenting the PIM
dialect; 1) if it remains too high-level for PIM, it would lack
the necessary level of detailed information. Most of the high-
level dialects are similar to programming models. For example,
dialects such as ACC dialect [24] and OMP dialect [25] closely
align with their corresponding programming models, almost
on a one-to-one basis. 2) Unlike accelerators such as GPUs,
PIM integrates processing units within the memory, which
requires rearrangement of memory layout to align with PIM’s
characteristics. Incorrect layouts can lead to performance
degradation or non-execution. Consequently, additional layout
conversion becomes imperative. 3) The hardware configuration
of PIM may frequently change in the future. Therefore, relying
on fixed optimizations can result in the need to modify the
compiler whenever new hardware is introduced.

To address these issues, the proposed dialect has three
distinctive features. Firstly, like other dialects lower from the
programming model, our dialect may exhibit similarities to the
input programming model. However, there is a significant gap
between the programming model and actual PIM instruction

Fig. 5. Hierarchical operation lowering in PIM dialect

set architecture (ISA). Therefore, we introduce hierarchical
PIM operation support. That means while PIM SDK defines
the operation as a basic unit, we introduce multiple levels of
software-defined operations to express the defined instructions
in an optimized manner. In Fig. 5, the dialect derived from
the programming model is represented in a simplified manner,
often exhibiting a one-to-one mapping with constructs such as
compute constructs, data-related constructs, loop constructs,
and executable directives. Fig. 3(c) is an illustrative exam-
ple of the PIM dialect, which closely aligns with the PIM
programming model. If the level provided by the PIM SDK
is at the library level, the compiler can generate code to
invoke the corresponding libraries by raising the appropriate
calls. If the intrinsics provided by the PIM backend operate
at a lower level, such as group or thread, the PIM dialect
transforms into low-level operations. In addition, this can
be consistently utilized even as the hardware configuration
changes. Secondly, through the lowering phase, we can exploit
diverse optimization possibilities. For instance, when certain
parts of an application are executed on the GPU initially
and then transition to PIM in a recurring pattern, we can
incorporate necessary layout conversions and perform kernel
fusion to combine them with existing kernels. A more detailed
explanation will be provided in the subsequent section. Lastly,
we aim to apply transform IR to adapt to configurations. For
example, if the number of channels, PIM blocks, or bank
groups change, or if specific channels or banks are selectively
used, we can modify the arguments in the transform IR
rather than rewriting the entire pass each time. This approach
allows us to apply the existing IR as a payload IR, providing
substantial benefits in terms of scalability.

B. Lowering Passes

To generate executable binaries for the device, the dialect
undergoes a lowering process, establishing a connection with
the PIM intrinsic, ISA, or SDK libraries in the PIM backend.
The lowering stage can also include common optimization
processes used in the existing MLIR framework, such as



Fig. 6. Lowering example for GEMV operation

loop tiling, memory padding, and loop conversion, to target
accelerators. This section presents four major optimizations
in the lowering stage and explains the process of integrating
them with the specific device back-ends.

Among the four key optimizations, the first one is alleviating
redundancy. When using PIM, there is a need to synchro-
nize the cache data from the underlying device to memory,
which can be a costly operation. To improve performance,
reducing the frequency of synchronization barriers is crucial.
In addition, for general matrix-vector multiplication (GEMV)
operations in PIM, it is necessary to rearrange the matrix data
to facilitate efficient bank access. By employing techniques
such as affine index transformation or kernel fusion, it is
possible to eliminate the need for this rearrangement, thereby
minimizing unnecessary computational overhead.

Fig. 6 illustrates an instance of lowering within the context
of performing a GEMV operation. It shows the preloading
rearrangement of matrix data, enabling immediate execution.
Consequently, GEMV operations can be performed without re-
quiring additional rearrangement adjustments. This facilitates
the potential for kernel fusion opportunities based on mapping.

The second optimization involves hierarchical PIM opera-
tions for lowering. It entails transforming operations like data
copy into lower-level operations such as vector copy and scalar
copy. It can map them to the intrinsic functions supported by
the backend. In Fig. 6, the ”gemv” operation is separated into
two lower-level operations: matrix reorder and GEMV compu-
tation. The matrix reorder operation, in conjunction with the
”load” operation, undergoes fusion to become ”reorder load”.
And, both the ”load” and ”update” operations are lowered
into ”memcpy” operations. The ”pim.launch” operation will
undergo lowering based on the underlying device. If GPU
contains PIM, ”pim.launch” is transformed into ”gpu.launch”.
This lowering involves performing cache flush and necessary
mode conversions from DRAM mode to PIM mode before pim
computations. Our hierarchical lowering closely resembles the
existing notion of specs in Graphene [32].

Besides, a reduction operation might incur extra operations
based on the PIM implementation. If the PIM supports hori-
zontal operations, the reduction can be performed completely
in PIM blocks. However, if the PIM doesn’t support horizontal
operations, the reduction can partially be performed in PIM
blocks, and then the host/device should finalize the reduction.

The third optimization strategy aims to maximize locality

Fig. 7. Kernel fusion when mapped consecutively to PIM devices

and parallelism, primarily through the exploitation of data
reuse. Similar to traditional GPUs that leverage global memory
and shared memory for memory hierarchy, PIM also benefits
from such utilization. In PIM, it is crucial to map different
thread blocks to channels and PIM blocks at the 1st level. Also,
exploiting reuse by efficiently utilizing general register files,
scalar register files, and banks is essential. It involves careful
mapping and utilization of shared memory banks to fully
leverage their capabilities and enhance overall performance.

Lastly, there is the concept of kernel fusion. In PIM exe-
cution, there can be non-negligible overhead associated with
switching between different modes, such as cache flush or
loading PIM programs. However, if a sequence of operations
needs to be executed consecutively in the PIM, it is possible
to reduce conversion overhead by employing techniques like
chaining or inner repetition, as shown in Fig. 7. This approach
allows for processing multiple commands within the same
mode, minimizing mode switching and enhancing overall
efficiency. In cases where PIM and underlying device, like a
GPU, are mapped consecutively, the performance greatly relies
on data placement and alignment. Moreover, as the dimensions
of the threads may differ, it might be necessary to introduce
kernel modifications to achieve coalesced memory access and
facilitate fusion.

PIM dialect determines the dialect lowering stage based on
the level of the backend. In this paper, we provide an example
where the backend is specified at the library level. Its func-
tionality is often at a similar or higher level than the dialect,
which may require raising when necessary. In our implemented
environment, the dialect is raised to a level where it can invoke



Fig. 8. LLVM IR with PIM library call

Fig. 9. SYCL Execution Flow

Fig. 10. Code snippets of the PIM runtime library and tools [35]

the PIM library, followed by the generation of LLVM IR using
LLVM IR builder. This process allows for seamless integration
of the dialect with the library and facilitates the generations
of LLVM IR, which can be further optimized and compiled
using the LLVM compiler backend tools. Fig. 8 presents the
LLVM IR code that includes the initialization and invocation
of the element-wise addition function from the PIM library.
This code demonstrates how the PIM library is integrated
into the LLVM IR, enabling the utilization of PIM-specific
operations and computations in the program.

In the case of SYCL, it has a software stack depicted in Fig.
9. We add support for PIM through the plugin interface. While
PIM may have its standalone runtime, it is often extended to
be supported by the underlying device’s runtime as well.

VI. EXPERIMENT

To demonstrate the viability of the proposed programming
model and compiler framework, experiments are conducted

with three scenarios. We compare the execution time between
SYCL extensions and the portBLAS library with GEMV
operation. Furthermore, we conduct performance comparisons
for element-wise addition and general matrix-matrix multipli-
cation (GEMM) using Fortran code annotated with PIM direc-
tives, considering various optimization techniques. Moreover,
we apply our approach to the spin hall conductivity (SHC)
code, an in-house code used in the HPC field, to evaluate
its effectiveness. We have implemented these optimizations
manually instead of relying on automatic compiler handling,
leaving the potential for automatic as future work.

A. Experimental Setup

We evaluate the performance of PIM applications which
are written in SYCL and PIM directive on a GPU computing
platform that contains dual AMD EPYC 7002 Series pro-
cessors and AMD Instinct MI100 GPUs with infinity fabric.
The operating system is Ubuntu 18.04.6 LTS. For functional
verification, we compare the results obtained from the PIM
simulator with the results calculated directly on the CPU to
verify the correctness of the actual results. On the other hand,
for performance evaluation, we employ the MI100 with PIM
[36] installed on the high bandwidth memory (HBM2 DRAM
– peak throughput is 1.2 TFlops for FP16 operations, 307
GB/s bandwidth per cube), as a test version. We utilize the
PIM runtime library and tools [35] to execute computations
on PIM hardware, providing functions for basic operations
such as element-wise addition, multiplication, and GEMV.
Additionally, it offers functions for buffer memory allocation
and deallocation. Fig. 10 shows the GEMV code in [35]
requires explicit data rearrangement.

We extend our compiler based on the SYCL compiler with
HIP support built from the most recent release at the time of
the study, which is the oneAPI DPC++ Compiler [37]. We
also compare the results of the SYCL PIM application and
portBLAS application [38]. In the performance measurement,
we exclude the first iteration to warm up the driver.

To support the PIM directive, we extend the Flang compiler
[39] by branching from the master and continuously rebasing
to incorporate upstream changes. The integration of the PIM
directive with the Clang compiler [40] opens up opportunities
for its utilization in a wider range of applications, which is
considered future work to be explored.

B. SYCL Experiment: SYCL PIM vs portBLAS

PortBLAS [38] is a SYCL-based open-source implementa-
tion of BLAS co-routines, designed for performance portabil-
ity across a wide range of accelerators. To optimize for the
memory-bound routines in BLAS level 1 and level 2, port-
BLAS uses an expression tree design. Through the expression
tree, multiple operations can be fused into a single kernel,
which increases the computational intensity and significantly
improves performance.

Fig. 11 shows the two code snippets to execute the GEMV
operation. Fig. 11(a) calls the GEMV function from the
portBLAS library, while Fig. 11(b) calls it from the PIM



Fig. 11. Code snippets of GEMV operation

Fig. 12. Execution time comparison of the GEMV operation itself between
portBLAS and SYCL PIM

extension. When using portBLAS [38], the queue is created
using the GPU selector, and the GEMV function in the
blas library is called by passing several arguments. However,
in the SYCL PIM extension, the queue is generated using
pim_selector. And through the pim_accessor, the
user can access the data in a buffer for a PIM operation before
finally calling the GEMV operation.

We also compared the performance between GPU and PIM
using both portBLAS and PIM extension. This serves two
purposes; First, it allows one to evaluate the speedup provided
by PIM operations against execution on the GPU device.
Second, portBLAS is also implemented in SYCL and therefore
both configurations in this comparison use the same SYCL
runtime for memory and execution management. This allows
one to mostly eliminate the impact of the SYCL runtime on
performance [41][42] and allows for a more direct comparison
between GPU execution and PIM acceleration. Consequently,
we did not compare it with the widely used library such as
OpenBLAS and cuBLAS.

The graph depicted in Fig. 12 shows the comparison of
the execution time of the GEMV operation itself, disregarding
the time needed for data transfer. The left Y axis is time in
microseconds, and the right Y axis is speedup over portBLAS.
And the X axis indicates the size of the matrix for that
particular experiment. The figure shows the raw execution time
in microseconds, increasing proportionally to the number of

Fig. 13. Execution time comparison of the GEMV application between
portBLAS and SYCL PIM

Fig. 14. Performance comparison of element-wise addition example between
the base version and the optimized version

elements in the input matrix for both implementations. The
absolute difference ranges between 20 and 80 microseconds.
This means that the acceleration with PIM can provide a
speedup between 1.2x and 1.7x over the highly optimized
portBLAS library executing on the GPU.

On the other hand, the graph shown in Fig. 13 demonstrates
the overall application performance of GEMV. It includes the
creation of necessary buffer objects and data transfer between
host and device. The left Y axis is time in milliseconds, and
the right Y axis is speedup over portBLAS. And the X axis
indicates the size of the matrix for that particular experiment.
This result confirms the potential of PIM, delivering speedup
up to 2.1 times for a memory-bound core BLAS operation like
GEMV. Therefore, these two graphs provide evidence that the
integration of PIM operations into the SYCL programming
model does not lead to excessive overheads, since SYCL PIM
achieves 89-95% of the theoretical peak performance on PIM.
With larger application sizes as often encountered in real-life
applications, this overhead can be better amortized.

C. PIM Directive Experiment 1: Basic examples

The compiler performed lowering on the code in Fig. 3(b) to
enable PIM library calls. Additionally, we applied an optimiza-
tion technique of synchronization elimination, and compared
differences in execution time. PIM operation is managed
through read and write commands, and synchronization is
typically achieved using barriers to guarantee the calculation.
However, for one-dimensional tensors, synchronization may
not be necessary and can be safely omitted.

In Fig. 14, the performance of the HIP kernel running
element-wise addition on an AMD GPU is represented by a
thick black line. A block dotted line represents the PIM kernel
on an AMD GPU with PIM, and a red line is the optimized



Fig. 15. Execution time comparison of GEMM operation between the base
version and the optimized version

version with eliminated barriers. The below graph shows
speedup over the GPU kernel. The optimized kernel demon-
strates a significant speedup, achieving up to 1.7 times faster
performance compared to equivalent GPU implementations
when processing large tensors. This remarkable improvement
indicates that our compiler surpasses the GPU in terms of
efficiency for element-wise kernels.

Another optimization technique that can be applied is data
rearrangement through fusion. In the case of GEMV operations
in PIM, it is necessary to reorder the matrix data to meet the
bank access limitations. However, by employing techniques
such as affine index transformation and kernel fusion, it is
possible to eliminate the need for data rearrangement and
consequently reduce the execution time, as shown in Fig. 6.

Fig. 15 illustrates the result of performing a GEMM opera-
tion using the GEMV operation. The non-optimized version is
represented in orange, while the optimized version is shown
in blue. The pointed shape in the non-optimized version
indicates a higher number of memory movement instructions.
Therefore, it can be observed that the optimized GEMV
operation achieves an average speedup of over 2x compared
to the non-optimized version.

As an indirect measure of effectiveness and productivity im-
provement of the proposed programming model, we compare
the lines of code for the simple GEMV application. If a user
writes GEMV using the PIM runtime library as shown in Fig.
10, about 23 lines of code are required. However, if the PIM
directive is used, it is possible to add just one line of directive
to the existing GEMV code of eight lines, written for CPU.
In the case of SYCL, only modifying six lines out of the 14-
line code can enable the usage of PIM. Considering that the
average development period is proportional to the number of
lines [43], the result indicates that the productivity is higher
than when implementing using the PIM SDK API directly.

D. PIM Directive Experiment 2: Real example in HPC

We experimented with applying the PIM directive to the
SHC code, an in-house HPC code, by reducing the precision
due to the constraints of the PIM hardware. The most time-
consuming part of the SHC code involves complex operations
in the form of Ax + By + z. To support this operation,
we extended the PIM library to handle complex numbers

Fig. 16. Performance comparison on real example in HPC, where the x-axis
is the size of the vector length, and y-axis is the speedup over GPU kernel

and evaluated its performance. However, we observed that
the performance was not as expected, as the synchronization
overhead between memory access instructions was too high,
resulting in slower execution, illustrated in Fig. 16(a). To ad-
dress this issue, we optimized the synchronizations, resulting
in approximately 1.2x performance improvement for larger
examples exceeding the cache size, as shown in Fig. 16(b).

The utilization of the PIM directive in the Fortran code
enables to achieve performance acceleration. The performance
improvements are limited to specific applications because the
PIM hardware we used supports only fp16 and performs better
performance in specific operations. However, it is expected
that the range of HBM PIM applications can be expanded as
a result of applying multiple optimization techniques in the
compiler and the potential relaxation of hardware constraints.

VII. CONCLUSION

In this paper, we have presented an end-to-end compilation
infrastructure that enables targeting Processor In Memory tech-
nology from standard programming models with minimal user
intervention. We demonstrate its feasibility by implementing
said extensions onto open-source production toolchains and
provide experiments to highlight the performance benefits of
using PIM on real HPC workloads. Since the compilation
pipeline is based on MLIR, we leverage the effort from the
community and expand it to novel architectures. The pro-
gressive lowering of MLIR enables us to optimize high-level
programming models using different techniques at different
levels of abstraction.

We released our PIM SYCL extension as a vendor exten-
sion1 in SYCL, and we are currently preparing to promote
it to the Khronos extension. Furthermore, it is expected that
combining multiple optimization techniques will lead to fur-
ther performance improvements. Future work will focus on the
automatic optimization in PIM IR and applying our proposal
to a wider range of applications.

1Vendor extension in SYCL: https://github.com/SAITPublic/SYCL-
Extension-Document.git (master branch)



REFERENCES

[1] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley,
J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al.,
“An updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[2] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc—first
experiences with real-world applications,” in Euro-Par 2012 Parallel
Processing: 18th International Conference, Euro-Par 2012, Rhodes
Island, Greece, August 27-31, 2012. Proceedings 18. Springer, 2012,
pp. 859–870.

[3] NVIDIA. (2007) Parallel programming and computing platform.
[Online]. Available: https://developer.nvidia.com/cuda-zone

[4] R. Reyes and V. Lomüller, “Sycl: Single-source c++ accelerator pro-
gramming,” in Parallel Computing: On the Road to Exascale. IOS
Press, 2016, pp. 673–682.

[5] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: An experimental
analysis of a real processing-in-memory architecture,” arXiv preprint
arXiv:2105.03814, 2021.

[6] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin et al., “Hardware architecture and software stack
for pim based on commercial dram technology: Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 43–56.

[7] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-
aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2021, pp. 2–14.

[8] A. Fortenberry and S. Tomov, “Extending magma portability with
oneapi,” in 2022 Workshop on Accelerator Programming Using Direc-
tives (WACCPD), 2022, pp. 22–31.

[9] A. Abdelfattah, H. Anzt, A. Bouteiller, A. Danalis, J. Dongarra,
M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov et al., “Roadmap
for the development of a linear algebra library for exascale computing:
Slate: Software for linear algebra targeting exascale,” SLATE Working
Note 1, Innovative Computing Laboratory, University of Tennessee,
Tech. Rep., 2017.

[10] LAPACK community. (1992) Lapack — linear algebra package.
[Online]. Available: https://www.netlib.org/lapack/

[11] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “Scalapack:
A scalable linear algebra library for distributed memory concurrent
computers,” in The Fourth Symposium on the Frontiers of Massively
Parallel Computation. IEEE Computer Society, 1992, pp. 120–121.

[12] R. Chandra, Parallel programming in OpenMP. Morgan kaufmann,
2001.

[13] J. Lambert, S. Lee, J. S. Vetter, and A. D. Malony, “Ccamp: an integrated
translation and optimization framework for openacc and openmp,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–14.

[14] Khronos Group. (2010) The open standard for parallel
programming of heterogeneous systems. [Online]. Available:
https://www.khronos.org/opencl/

[15] R. Han, B. Tine, J. Lee, J. Sim, and H. Kim, “Supporting cuda for
an extended risc-v gpu architecture,” arXiv preprint arXiv:2109.00673,
2021.

[16] AMD. (2016) Hipify; tools to translate cuda into portable hip c++.
[Online]. Available: https://github.com/ROCm-Developer-Tools/HIPIFY

[17] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez et al., “Kokkos 3:
Programming model extensions for the exascale era,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2021.

[18] H. Wang and B. Calidas, “An overview of opencl vendor extensions
supported in qualcomm adreno gpus,” in International Workshop on
OpenCL, 2022, pp. 1–1.

[19] Intel. Sycl joint matrix extension. [Online]. Available:
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental

[20] OpenSYCL Researchers. Sycl exten-
sions in open sycl. [Online]. Available:
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/extensions.md

[21] MLIR Community. Affine dialect in mlir. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/Affine/

[22] ——. Linalg dialect in mlir. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/Linalg/

[23] ——. Gpu dialect in mlir. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/GPU/

[24] ——. acc dialect in mlir. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/OpenACCDialect/

[25] ——. omp dialect in mlir. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/OpenMPDialect/

[26] ——. Transform dialect in mlir. [Online]. Available:
https://mlir.llvm.org/docs/Dialects/Transform/

[27] F. Devaux, “The true processing in memory accelerator,” in IEEE HCS,
2019.

[28] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho,
I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun,
and J. Cho, “A 1ynm 1.25v 8gb, 16gb/s/pin gddr6-based accelerator-
in-memory supporting 1tflops mac operation and various activation
functions for deep-learning applications,” in 2022 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[29] A. A. Khan, H. Farzaneh, K. F. Friebel, C. Fournier, L. Chelini, and
J. Castrillon, “Cinm (cinnamon): A compilation infrastructure for het-
erogeneous compute in-memory and compute near-memory paradigms,”
arXiv preprint arXiv:2301.07486, 2022.

[30] F. Hedman and A. Laaksonen, “Large scale parallel molecular dynamics
simulations,” in Theoretical and Computational Chemistry. Elsevier,
1999, vol. 7, pp. 231–280.

[31] N. Katel, V. Khandelwal, and U. Bondhugula, “High performance gpu
code generation for matrix-matrix multiplication using mlir: some early
results,” arXiv preprint arXiv:2108.13191, 2021.

[32] B. Hagedorn, B. Fan, H. Chen, C. Cecka, M. Garland, and V. Grover,
“Graphene: An ir for optimized tensor computations on gpus,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2023, pp. 302–313.

[33] A. Singer, F. Gao, and K.-T. A. Wang, “Syclops: A sycl specific llvm to
mlir converter,” in International Workshop on OpenCL, 2022, pp. 1–8.

[34] E. Tiotto, V. Pérez, W. Tsang, L. Sommer, J. Oppermann, V. Lomüller,
M. Goli, and J. Brodman, “Experiences building an mlir-based sycl com-
piler,” in 2024 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 2024, pp. 399–410.

[35] Samsung Electronics. Pim runtime library and tools. [Online]. Available:
https://github.com/SAITPublic/PIMLibrary

[36] ——. Hbm-pim: Cutting-edge memory technology
to accelerate next-generation ai. [Online]. Avail-
able: https://semiconductor.samsung.com/news-events/tech-blog/hbm-
pim-cutting-edge-memory-technology-to-accelerate-next-generation-ai/

[37] Intel. oneapi dpc++ compiler. [Online]. Available:
https://github.com/intel/llvm (commit:8edb62e)

[38] Codeplay Software LTD. portblas implementation. [Online]. Available:
https://github.com/codeplaysoftware/sycl-blas

[39] Flang Community. Flang: Fortran compiler targeting llvm. [Online].
Available: https://github.com/flang-compiler/flang

[40] LLVM Community. Clang: C-like language compiler targeting llvm.
[Online]. Available: https://github.com/llvm/llvm-project

[41] J. Lawson, M. Goli, D. McBain, D. Soutar, and L. Sugy, “Cross-platform
performance portability using highly parametrized sycl kernels,” arXiv
preprint arXiv:1904.05347, 2019.

[42] T. Sabino and M. Goli, “Toward performance portability of highly
parametrizable trsm algorithm using sycl,” in International Workshop
on OpenCL, 2021, pp. 1–10.

[43] R. E. Kmetovicz, New product development: design and analysis. John
Wiley & Sons, 1992.


