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Abstract—In this work, we present MILQ, a quantum un-
related parallel machines scheduler and cutter. The setting of
unrelated parallel machines considers independent hardware
backends, each distinguished by differing setup and processing
times. MILQ optimizes the total execution time of a batch of
circuits scheduled on multiple quantum devices. It leverages state-
of-the-art circuit-cutting techniques to fit circuits onto the devices
and schedules them based on a mixed-integer linear program.
Our results show a total improvement of up to 26% compared
to a baseline approach.

Index Terms—Quantum Computing, High Performance Com-
puting, Scheduling

I. INTRODUCTION

Quantum computing promises exponential speedup com-
pared to classical computing for certain computational
tasks [1]. To realize such a quantum advantage with fault
tolerance, the estimated number of required qubits is roughly
108 [2], considerably more than the number provided by
currently available devices (for example, IBM Osprey with
433 qubits).

This is due to overhead introduced by error correction,
which is necessary because of the error-prone hardware re-
alizations of qubits. In the near term, only small, noisy
quantum devices are available, and their access is limited. Still,
many supercomputing centers have already started integrating
quantum devices on their premises. Multiple physical realiza-
tions of quantum computers exist (called modalities), such as
superconducting qubits [3], neutral atoms [4], or ion traps [5],
each with unique characteristics. To diversify their portfolio,
supercomputing centers prepare heterogeneous infrastructures
supporting multiple modalities. In this article, we propose
a multithreading scheme for such a platform to maximize
utilization. We also implement a prototype, available as a
repository on GitHub at https://github.com/qc-tum/milq.

II. MOTIVATION

In the noisy intermediate-scale quantum (NISQ) era, quan-
tum resources are still scarce. While the individual device
sizes keep growing, access remains limited. Unfortunately,
most circuits do not fit perfectly on a device. If the circuit
is too small, this leads to underutilization. If the circuit is
too large, it can be cut into fitting parts, but likely with
a remainder that underutilizes the quantum processing unit
(QPU). This is especially wasteful, considering that devices are
exclusively assigned to users. As an extreme example, running
a variational algorithm can block a device for a long time,
even if enough qubits are available to run other simulations.
MILQ solves this issue by considering all submitted circuits
before running them. It resizes circuits appropriately and uses
available resources in parallel. As a result, it is possible to
have multiple circuit instances running on one QPU, hence
the term “multithreading”.

Due to its modular nature, MILQ extends beyond NISQ.
One can integrate communication overhead as an additional
constraint when considering distributed quantum systems. It
is also relevant as a case study since many techniques ap-
ply to near-term integration scenarios. Many supercomputing
centers have started adopting QPUs as novel accelerators. In
this domain, scheduling is a common problem. MILQ is an
initial attempt at providing a runtime component that can be
expanded further.

III. BACKGROUND AND RELATED WORK

MILQ combines techniques from various application ar-
eas. In this section, we provide the necessary background
knowledge and investigate comparable solutions. The schedul-
ing component is based on a mixed-integer linear program
(MILP), hence the name MILQ.

The scheduling of quantum circuits is still an emerging
problem. No established tool exists; most existing schedulers



are based on simple first-in, first-out concepts. One can
consider scheduling as a part of the mapping problem if one
includes the mapping over distributed devices [6]. A quantum
circuit can be arbitrarily distributed, assuming gate telepor-
tation between devices is possible, which is not necessarily
true. Bhoumik et al. [7] consider the scheduling problem
regarding error mitigation by finding optimal mappings from
(cut) subcircuits to multiple QPUs. Their work is based on an
integer linear program, which optimizes for circuit fidelity.

A. Scheduling

General scheduling is an optimization problem studied in
operations research and computer science. Using the Graham
α|β|γ classification scheme [8], the problem of interest in this
article can be described as R|res1|Cmax. It is a variant of the
unrelated parallel machine problem, which has been studied
extensively in literature [9]–[12]. R indicates m completely
independent machines (in our case the QPUs), which use
a single shared resource res1, namely qubits. The problem
is optimized for the makespan Cmax, the latest completion
time of any job. Unfortunately, it is NP-hard to solve this ex-
actly [12]. Hence, such problems are usually stated as a MILP
and solved using heuristic approaches. Given the resource
constraints, the goal is to provide a schedule where each job
is assigned to one machine, and the overall execution time is
minimized. Standard techniques involve Simulated Annealing,
Tabu Search, and genetic algorithms [13]. Depending on the
availability of the job information, algorithms either work
offline when all information is known ahead of time or online
when information is only accessible right before scheduling.
A variant of the online version considers batches of jobs that
are scheduled at the same time.

In computer science, scheduling is relevant in operating
systems and high performance computing (HPC). Users of an
HPC cluster submit jobs to the system, which are initially
queued. Then, they are assigned a portion of the available
resources for a fixed amount of time. Typically, the exact
resource assignment is not disclosed to the user. The requests
are usually handled by a resource management tool, most
commonly SLURM [14], which also provides diagnostics and
monitoring utilities. System utilization and overall runtime are
the relevant metrics.

B. High Performance Computing and Quantum Computing

Integrating quantum computing (QC) into HPC is an ongo-
ing process. Emerging microarchitectures and multiple integra-
tion scenarios are part of the challenges in this domain [15].
QC is transitioning out of the laboratories, and computing
centers are starting to integrate quantum hardware into their
premises. There is no established straightforward blueprint
for combining classical with quantum infrastructure. In this
state of uncertainty, the computing centers provide multiple
modalities with varying capabilities. Emerging standards for
common interfaces, like QIR [16], abstract the hardware
details from the user. Still, most algorithms are run on a
single device based on hardware availability. This leads to
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Fig. 1. Circuit knitting in two variants: gate and wire cuts are possible.

underutilization, as the entire device is reserved for the whole
duration of the algorithm. As a user, this is also frustrating; the
time-to-solution increases due to the longer queueing times.

C. Circuit Knitting

In the NISQ era, hardware is physically limited, restricting
the possible circuits in two ways. First, the width of a circuit is
restricted by the number of available qubits; second, the depth
of a circuit is limited by the decoherence times of the qubits.
Circuit Knitting (also called Circuit Cutting) is a method to
resize circuits in both dimensions. This comes at the cost of
additional sampling overhead and classical computation.

Wire cuts reduce circuit depth by cutting wires in a cir-
cuit and executing the resulting partial circuits at different
times [17]. Gate cuts, on the other hand, reduce circuit width
by decomposing (multi-qubit) gates [18]. Both techniques
reconstruct the expectation value of the original circuit by
sampling from a quasi-probability distribution from the re-
sulting sub-circuits. The procedures are depicted in Fig. 1 in
a simplified manner. Recent works [19], [20] keep improving
sampling overhead with advanced techniques.

IV. PROPOSAL

MILQ is a standalone project built on the infrastructure
of the popular quantum software framework Qiskit [21]. The
intended workflow is summarized in Fig. 2. Users build their
circuits with Qiskit and specify multiple hardware backends.
For example, two jobs A and B are submitted to a system that
combines the two fictional devices QPU 1 and QPU 2. The
circuits are compiled individually before being submitted to
the system; any compilation is treated as a black box. After
compilation, the circuits are submitted as a job to a joint
interface. The system greedily resizes circuits using knitting
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Fig. 2. Simplified overview of the intended workflow.

techniques to fit the available hardware and keeps track of ex-
ecution for reconstruction during postprocessing. The cutting
component supports only gate-cutting for the moment. Only
necessary cuts are selected based on the size of the QPUs;
the optimality conditions to reduce the sampling overhead are
not considered yet. In this scenario, multiple two-qubit gates
could be cut simultaneously by one black box cut [22]. In
certain cases, one joint cut suffices, which is advantageous
compared to individual cuts. We will discuss the selection
of the cuts in Section IV-B. For scheduling, MILQ solves a
linear programming task, which we describe in Section V in
more detail. The goal of the optimization is to minimize the
overall execution time. Once the hardware is determined, a
hardware-specific compilation procedure prepares the circuits
for execution. After obtaining the results, MILQ reconstructs
the measurement data and assigns it to the correct circuits.

A. Components

MILQ comprises three main components: a QPU wrapper,
a scheduler, and a compilation pipeline. The QPU wrapper is
an abstraction layer, imitating the behavior of a single QPU.
This minimizes the necessary code changes when switching
hardware providers. Still, MILQ can use the available hard-
ware information when producing a schedule, and hardware
of different modalities is supported.

We assume that there exists a modular compilation pipeline.
Modularity provides the possibility of running compilation
steps at different times. While we treat most of the compilation
as a black box, MILQ assumes that compilation can be split
up over several phases: offline compilation, which is hardware
agnostic, and online compilation, which can use hardware
information. This mimics the workflow of an HPC application,
where jobs are fully compiled before submission. The knitting
module in MILQ (based on [23]) requires n-qubit gates to be
decomposed first. This can be achieved offline, using synthesis
tools or the built-in functionality from Qiskit [21]. Hiding
implementation details is one benefit of the abstraction layer.
For example, hardware-specific optimizations and necessary
modifications, such as mapping, are abstracted.

During the scheduling process, MILQ analyzes a batch of
circuits and provides an optimal schedule based on a MILP
(see Section V). The scheduler assumes that circuits already
fit the available hardware. The system queries the backends
for each circuit’s estimated processing and setup times. We
use dummy data based on the circuit depth as accurate data
from the hardware interface is unavailable. The scheduler
supports two modes of operation: simplified and extended. In
the simplified variant, we assume that the setup times depend
only on the current job independent of its predecessor, which
relaxes the constraints resulting from Equation (1).

B. Cutting Considerations

There are three main criteria when selecting a cut: The
resulting circuit sizes, classical communication, and sampling
overhead. Some circuit-cutting techniques require classical
communication, using gate [24] or state [25] teleportation tech-
niques to improve sampling overhead. Based on the commu-
nication patterns, this requires some form of synchronization
on the quantum devices. Such dependencies can be considered
during the scheduling but drastically increase the complexity.
Due to the technical infeasibility of real-time communication,
we do not consider this scenario. Wire-cutting also introduces
precedence relationships to the schedule and depends on
preparation operations, which have yet to be widely available
in hardware. Once this becomes more commonplace, including
wire cuts will be valuable for scheduling as they allow the
circuit execution to be preempted and continued later.

Cutting gates generates multiple circuit instances with slight
differences, reflecting the components of the initial circuit.
When reconstructing the original probability distribution, more
Monte-Carlo samples from the created circuits are necessary,
which induces sampling overhead. The number of samples
scales with the number of cut gates, the type of gates, and the
cutting technique. In the worst case, cutting n gates Ui will
generate an overhead of

∏n
i κ

2
i , where κi is the one-norm of

the coefficients of the quasiprobability decomposition of the
gate Ui [25]. Overhead can be reduced depending on the gate
type and by cutting gates in parallel [26]. The selection of
cuts can be implemented as a constraint set but would require
knowledge about the gates. Due to the already high complexity



of the model and nonexistent implementations, we only encode
sampling overhead as part of the execution time of circuits.

An additional consideration is increased noise by running
circuits in parallel. Due to the various sources of noise,
especially crosstalk, placing the circuits on neighboring qubits
affects the overall quality. Even allowing for spacing and
selecting the least noisy qubits increases noise [27]. When
choosing the cuts, this is an additional criterion to acknowl-
edge. The notion of noise could also be implemented as part of
the scheduling but would require enforcing connectivity con-
straints. Also, this would need an estimate of which hardware
is most suitable for a given circuit. From a hardware point
of view, it might be possible to physically separate the qubits
according to their circuit in some modalities. Such physical
partitions could significantly lower the chance of unwanted
interactions.

Our greedy cut selection targets circuit size. One limiting
factor for running quantum experiments is the number of
available qubits. By selecting cuts such that the circuits will
be guaranteed to fit the hardware, we hope for the near-term
usability of our tool.

V. PROBLEM STATEMENT

We formulate the scheduling of circuits as an (offline)
MILP. The problem is a more constrained variant of the
well-studied unrelated parallel machines problem discussed in
Section III-A. Each job (quantum circuit) can be assigned
to one machine (QPU) in this model. Depending on this
machine, each job has a unique processing time. Each job has
a machine- and sequence-dependent setup time. This mimics,
for example, the reconfiguration of the arbitrary waveform
generators (AWGs) between experiments. To model qubit
numbers, each machine has a fixed capacity, which cannot
be exceeded at any time. The notation is summarized in
Table I. M and Tmax have to be tuned following the magnitude
of the input parameters pim and sijm. One key difference
compared to existing models is the relaxation of the succession
constraints. Typically, each job has one predecessor and up
to one successor. In our scenario, however, multiple jobs can
run in parallel on one machine, meaning one job can have
multiple successors. Hence, we use the following definition
for the successor relation (cf. Table I):

yijm = 1⇐⇒ ci < cj ∧ ∄k ∈ J : ci < ck < bj ∧ γijm ∧ γikm
(1)

Paraphrased, a job j is the successor of job i on machine m
when no other job k was completed in between. To allow for
more than one successor, we also relax the completion time
constraint (C5) such that having multiple predecessors does
not add a penalty by having to set up twice. With this, we
implicitly assume that the setup time for multiple circuits can
be combined. Otherwise, mapping all possible combinations
of circuits to the MILP would exponentially increase the
complexity of the problem.

A. MILP Formulation

The notation in Table I and problem formulation are derived
from Al-harkan and Qamhan [11]. The optimization problem
is formulated as follows:

min(cmax) (OBJ)
Subject to:
cj ≤ cmax ∀j ∈ J (C1)
c0 = 0 (C2)∑
m∈M

xjm = 1 ∀j ∈ J (C3)∑
m∈M

zjmt ≤ 1 ∀j ∈ J, ∀t ∈ T (C4)

cj ≥ bj +
∑
m∈M

pjm · xjm +
∑

i∈J∪{0}

∑
m∈M

sijm · yijm

∀j ∈ J (C5)

bj ≥ ci +M ·
(∑

m∈M

yijm − 1

)
∀j ∈ J, ∀i ∈ J ∪ {0} (C6)∑
m∈M

∑
t∈T

zjmt = cj − bj + 1 ∀j ∈ J (C7)∑
t∈T

zjmt ≤M · xjm ∀j ∈ J, ∀m ∈M (C8)

cj ≥ t ·
∑
m∈M

zjmt ∀j ∈ J, ∀t ∈ T (C9)

sj ≤ t ·
∑
m∈M

zjmt +M ·
(
1−

∑
m∈M

zjmt

)
∀j ∈ J, ∀t ∈ T (C10)∑
j∈J

qj · zjmt ≤ Qm ∀m ∈M,∀t ∈ T (C11)

1 ≤
∑

i∈J∪{0}

∑
m∈M

yijm ∀j ∈ J (C12)

M · xjm ≥
∑

i∈J∪{0}

yijm ∀j ∈ J, ∀m ∈M (C13)

M · xjm ≥
∑

i∈J∪{0}

yjim ∀j ∈ J, ∀m ∈M (C14)

zjm0 = y0jm ∀j ∈ J∀k ∈M (C15)
M · αij ≥ bj − ci ∀i, j ∈ J, i ̸= j (C16)
M · βij ≥ cj − ci ∀i, j ∈ J, i ̸= j (C17)
γijm ≥ xim + xjm − 1 ∀i, j ∈ J, i ̸= j,∀m ∈M (C18)
δijkm ≥ αkj + βij + γijm + γikm − 3

∀i, j, k ∈ J, i ̸= j,∀m ∈M (C19)

yijm ≥ αij + (1−
∑
k∈J

δijkm) + γijm − 2

∀i, j ∈ J, ∀m ∈M (C20)

The overall goal, formulated in the objective function (OBJ),



TABLE I
MILP NOTATION

Metavariables
M A big number
Tmax A large number of time slots
0 Dummy job

Input Parameters
J Set of jobs (circuits)
M Set of machines (QPUs)
pim Processing time of job i on machine m
sijm Setup time of job j after job i on machine m
qi Required resources (qubits) of job i
Qm Available resources (qubits) of machine m

Indices
i, j, k Index of jobs, i, j, k ∈ J
m Index of machines, m ∈ M
t Timesteps, t ∈ T = {0, 1, 2, . . . ,Tmax}

Binary Decision Variables
xim 1 if job i is scheduled on machine m
yijm 1 if job j is is a successor of job i on machine m
zimt 1 if job i is scheduled on machine m at timestep t

Binary Helper Variables
αij 1 if job i completes before job j starts
βij 1 if job i completes before job j completes
γijm 1 if jobs i, j are scheduled on machine m

δijkm
1 if job k completes after i completes

but before j starts on m
Real Decision Variables

cj Completion time of job j
cmax Makespan
bj Start time of job j

is to minimize the makespan. The constraints (C1) bound it on
the maximal completion time of any job. Constraints (C3) and
(C4) ensure that a job is executed on one machine at a time.
(C5) calculate the completion time, and (C6) ensures that all
predecessors of a job are done before starting it. Constraints
(C7) ensure entire processing of a job; (C8) align the time-
dependent execution variables such that they match the chosen
machine. (C9) and (C10) fix the execution between start end
completion. (C11) constrain the resource usage. The previous
constraints could easily be adapted to time-dependent resource
availability to model erroneous qubits or partial recalibration
procedures. The constraints (C12)–(C19) ensure the validity of
the successor relationship. Each regular job has a predecessor
(C12), which is on the same machine ((C13) and (C14)).
Jobs running at t = 0 are constrained to use the dummy job
with (C15). (C16)–(C19) set up the helper variables, and the
successor is finally set in the constraint (C20).

B. Example Assignment

As a simple example, we look at integer processing and
setup times. This drastically reduces the number of necessary
time-step variables. In this example, we revisit the setting
in Fig. 2 for the circuits and QPUs. Initially, circuit A does
not fit on any available device. By performing a greedy cut
on A, MILQ generates four five-qubit jobs and four two-
qubit jobs. Together with the three-qubit job B, these jobs
are subsequently distributed across two five-qubit devices.

We generate synthetic processing times by randomly ap-
plying uniformly sampled variations to the circuit size. In
reality, the difference in execution time between single-circuit

Fig. 3. Schedule of the sample problem obtained by the simple schedule.

executions is negligible. Still, this can accumulate signifi-
cantly when considering the high number of shots in NISQ
experiments. Setup times are generated pairwise, depending
on the size of both circuits. In reality, MILQ could query this
information during scheduling if the backends can estimate
this accurately. Also, the setup time would depend on all
combinations between predecessors and successors. For this
example, we use the maximum of the possible setup times.

The resulting MILP comprises 3188 (1208) variables and
3272 (1355) constraints for the extended (simple) algorithm.
We run the example using the Gurobi [28] solver on a single
80-way Intel Ice Lake node. The resulting simple schedule
is depicted in Fig. 3 and takes approximately 4 minutes
to be generated. Due to resource limitations, we stop the
extended model when the gap between the upper bound and
the incumbent falls below 20%, which still takes 8.6 hours.
As parameters, we choose M = 1000 and Tmax = 64.

VI. RESULTS

To validate MILQ, we benchmark multiple batches of
random circuits. We compare the resulting schedule of MILQ
with a baseline implementation of a simplified algorithm. The
system under test is the scheduling component of MILQ. Every
other component is fixed, especially the circuit knitting and
mapping components. Our primary focus lies on the overall
makespan, but we also provide insight into the real-time
performance of the algorithms.

A. Hardware Analysis

Unfortunately, setup and processing times are often not
directly available from vendors, even less so preliminary
estimates of those numbers for a given job. Hence, we fall back
to using dummy values. We argue, however, that modeling
setup and processing times as machine- and job-specific and,
in the first case, additionally as sequence-dependent values is
a reasonable choice. On the one hand, gate times between
different hardware implementations can vary by orders of
magnitude. For instance, gate times on superconducting plat-
forms can range from 10 nanoseconds up to microseconds [3].



The processing time of a circuit mainly depends on its depth
and the number of shots. On the other hand, we justify
sequence-dependent setup times by platform-specific hardware
configurations. For instance, platforms utilizing neutral atoms
can reconfigure the layout of atom traps as part of their
experimental setup. This reconfiguration allows for three-
dimensional topologies and scales according to the number
of layers in the mapping [29]. Although current commercial
compilers do not yet support such functionalities, it is a
plausible feature for the future, making it an ideal scenario
for testing MILQ.

B. Benchmarks

As a benchmark, we look at randomly selected circuits
of various sizes using the MQT Bench [30] tool. We gen-
erate ten batches of seven circuits with the maximum size
restricted to the largest available device. This mimics the
situation after resizing the circuits. From the MQT Bench,
we select the “random” option with optimization level zero.
We compare two scenarios, one with the same configuration
as in Section V-B (two QPUs with capacity 5) and the
second scenario with three QPUs with the sizes (5, 6, 20).
For both scenarios, the two models simple and extended are
evaluated against a baseline algorithm (see Section VI-C). We
randomly generate processing and sequence-dependent setup
times in both scenarios based on the hardware estimations
for superconducting platforms. Additionally, we run a set of
trials with real-valued times and an independent set of integer-
valued times. The simplified model assumes only machine-
dependent setup times, which we generate by taking the
maximum sjm = maxi∈J sijm∀j ∈ J . After generating the
schedules, we recalculate the makespan based on the original
setup times, using the successor relation from Equation (1).

C. Baseline

As a baseline algorithm, we use an adapted version of
first-fit decreasing bin packing [31]. This uses the simplified
assumption that processing and setup times are independent of
jobs and machines and are equally long. Each bin represents
a QPU, and copies thereof model the simplified succession
of jobs. Algorithm 1 summarizes the procedure; a copy of
all instances is added instead of opening a single bin to
ensure equal distribution over all devices. This provides a
naive approach while still allowing multithreading. Compared
to sequential schedules for each device, this is already an
improvement.

D. Simulation Results

Fig. 4 shows the results of the makespan optimization. The
full data is available in the code repository.

The extended model consistently outperforms the simple
and baseline algorithms. The difference is more noticeable
when we can parallelize multiple circuits. In the setting with
two QPUs, circuits are similarly sized, and the makespan can
be reduced by around 25% by the extended model for real
and integer inputs. Due to the size imbalance, the second

Input : J := set of jobs, B := list of bins
Output: Bins filled with jobs
J ′ ← sorted(J, qubit count descending);
open← B;
closed← ∅;
foreach job ∈ J ′ do

bin← FindFirstFitting(job, open);
if bin is none then

new ← B;
bin← FindFirstFitting(job, new);
extend open with new;

end
add job to bin;
if bin is full then

remove bin from open;
add bin to closed;

end
end
add all open to closed;
return closed;

Algorithm 1: Scheduling with first-fit decreasing bin
packing.

setting has potentially sequential circuits on the largest device,
reducing the gain to 12% on average; for the real-valued input,
the extended model performs slightly better. This also explains
the outliers for the simple model, where the setup times are
potentially assumed to be worse for one device, which is then
avoided entirely. As a result, sequential execution decreases
the performance, but a reduction of 11% on average can still
be achieved. In the worst-case setting (two devices with real-
valued inputs), the baseline is faster than the simple approach.

Besides usability, the time to solution is also an essential
factor. Due to the exponential overhead, the simple model is
roughly four magnitudes slower, and the extended model is
six magnitudes slower than the baseline. Especially in the
desired scenarios with considerable parallelization potential,
the extended model needs to evaluate multiple solutions. A
bottleneck is the configuration and invocation of Gurobi, which
we call through a Python interface using the default param-
eters. An approximation would likely suffice in a production
environment, which we plan to implement in future iterations
of MILQ.

VII. FUTURE WORK

The current state of MILQ primarily serves as a proof
of concept rather than a full-fledged implementation. There
are several potential avenues for improvement. Initially, the
scheduling functionality is limited to a batched or offline en-
vironment. Real systems with continuous job submissions reg-
ularly trigger rescheduling based on a previous schedule. Such
updates, as well as considering other criteria like preemption
and priority, are necessary improvements. Integrating circuit
knitting with the scheduler, rather than keeping them separate
components, could enhance efficiency, especially in optimizing



Fig. 4. Makespan results for the three configurations baseline, simple and extended in two different settings.

cutting decisions for available hardware. The exact solving
of MILP poses limitations when handling larger problems,
suggesting the potential integration of heuristics for quicker
solutions.

Expanding MILQ’s scope beyond isolated QPUs is a future
goal, with plans for interprocess communication, exemplified
by upcoming technologies like the IBM Flamingo chip [32].
To accommodate such advancements, substituting the knitting
module with a distribution component becomes necessary.
Additionally, as hardware sizes increase, MILQ could schedule
(partial) operations on error-corrected qubits instead of entire
circuits. However, it is important to note that within MILQ’s
current scope, there is no notion of logical circuits that cannot
be cut or distributed over multiple devices.

MILQ’s optimization ideally relies on accurate processing
and setup time estimates. Unfortunately, such precise data is
largely unavailable for most systems. A standardized interface
for QPUs would greatly aid in leveraging real-time data to
influence optimal scheduling decisions. This interface could
also provide live fidelity information, which could be used
during the mapping and cutting steps.

VIII. CONCLUSION

In this article, we present MILQ, a software tool that can
address multiple quantum hardware backends at the same
time. It automatically distributes batches of circuits over the
available hardware, which are not necessarily the same type.
We formulate a MILP to solve the scheduling problem, which
arises when the circuits are resized to fit the hardware. We
prioritize minimizing the overall execution time and, therefore,
emphasize hardware utilization. In a set of benchmarks, we
show an average makespan improvement of 20% compared
to a baseline algorithm. MILQ works as an end-to-end tool
but can easily be integrated into existing infrastructures.
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[6] M. Bandic, L. Prielinger, J. Nüßlein, A. Ovide, S. Rodrigo, S. Abadal,
H. van Someren, G. Vardoyan, E. Alarcon, C. G. Almudever, and
S. Feld, “Mapping quantum circuits to modular architectures with
qubo,” in 2023 IEEE International Conference on Quantum Computing
and Engineering (QCE), vol. 01, 2023, pp. 790–801. [Online].
Available: https://doi.org/10.48550/arXiv.2305.06687

[7] D. Bhoumik, R. Majumdar, A. Saha, and S. Sur-Kolay, “Distributed
scheduling of quantum circuits with noise and time optimization,”
2023, unpublished. [Online]. Available: https://doi.org/10.48550/arXiv.
2309.06005

[8] R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization and
approximation in deterministic sequencing and scheduling: a survey,”
in Discrete Optimization II, ser. Annals of Discrete Mathematics,
P. Hammer, E. Johnson, and B. Korte, Eds. Elsevier, 1979, vol. 5, pp.
287–326. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S016750600870356X

[9] L. Fanjul-Peyro and R. Ruiz, “Size-reduction heuristics for the
unrelated parallel machines scheduling problem,” Comput. Oper.
Res., vol. 38, no. 1, p. 301–309, jan 2011. [Online]. Available:
https://doi.org/10.1016/j.cor.2010.05.005

[10] F. J. Rodriguez, M. Lozano, C. Blum, and C. Garcı́a-Martı́nez, “An
iterated greedy algorithm for the large-scale unrelated parallel machines
scheduling problem,” Comput. Oper. Res., vol. 40, no. 7, p. 1829–1841,
jul 2013. [Online]. Available: https://doi.org/10.1016/j.cor.2013.01.018

[11] I. M. Al-harkan and A. A. Qamhan, “Optimize unrelated parallel
machines scheduling problems with multiple limited additional
resources, sequence-dependent setup times and release date constraints,”
IEEE Access, vol. 7, pp. 171 533–171 547, 2019. [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2955975

[12] J. K. Lenstra, D. B. Shmoys, and É. Tardos, “Approximation
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