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Laboratoire Méthodes Formelles (LMF)
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Abstract—The Pauli matrices are 2-by-2 matrices that are very
useful in quantum computing. They can be used as elementary
gates in quantum circuits but also to decompose any matrix of
C2n×2n as a linear combination of tensor products of the Pauli
matrices. However, the computational cost of this decomposition
is potentially very expensive since it can be exponential in n. In
this paper, we propose an algorithm with a parallel implemen-
tation that optimizes this decomposition using a tree approach
to avoid redundancy in the computation while using a limited
memory footprint. We also explain how some particular matrix
structures can be exploited to reduce the number of operations.
We provide numerical experiments to evaluate the sequential and
parallel performance of our decomposition algorithm and we
illustrate how this algorithm can be applied to encode matrices
in a quantum memory.

Index Terms—Quantum computing, Matrix decomposition,
Pauli matrices, Tree exploration, Block-encoding

I. INTRODUCTION

The Pauli matrices [19, p. 65] are four 2-by-2 matrices
that are commonly used in quantum physics and quantum
computing. They constitute the so-called Pauli group and are
given below:

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
.

Namely, these matrices correspond respectively to the iden-
tity matrix, the NOT operator, and two rotations. Note that
in some textbooks, I is not included in the Pauli group. The
Pauli matrices form a basis of C2×2 and when we combine
them using n tensor products we obtain 4n matrices that we
will call Pauli operators in the remainder and which form a
basis of C2n×2n .

In quantum mechanics, these matrices are related to the
observables describing the spin of a spin- 12 particle [8]. When
combined using tensor products, the Pauli matrices can be
used to describe multi-qubit Hamiltonians [17] and in quantum
error-correcting codes [11]. The decomposition of matrices in
the Pauli operator basis has a wide range of applications. For
instance, it is used in the construction of several quantum al-
gorithms in physics, chemistry, or machine-learning problems
(for example in the Hamiltonian decomposition to describe
many-body spin glasses [13]). The Pauli decomposition is
performed on a classical computer and is part of so-called
hybrid quantum-classical algorithms. It can be for instance

used in variational algorithms [2], [25], to build observables
from arbitrary matrices in many simulation frameworks [7],
[20], [22] or to encode data in the quantum memory of a
quantum computer [10].

Due to the exponential cost in the number of qubits (for
generic matrices), it is necessary to reduce this cost to its mini-
mum. In this work, we propose an algorithm to decompose any
matrix of C2n×2n in the Pauli operator basis. This method, that
we name Pauli Tree Decomposition Routine (PTDR), exploits
the specific form of Pauli operators and uses a tree approach
to avoid redundancy in the computation of the decomposition.
We also take advantage of some specific structures of the input
matrices. We propose a parallel (multi-threaded) version of
our algorithm targeting one computational node and present
a strong scaling analysis. Due to the exponential cost in time
and memory, we also anticipate a future distributed multi-node
version by extrapolating scalability results on larger problems.

This paper is organized as follows: In Section II we recall
(and demonstrate) some results about the Pauli decomposition
and we present recent related work. Then in Section III we
describe our decomposition algorithm along with its complex-
ity analysis. In Section IV we adapt the algorithm to special
cases of matrix structures (diagonal, tridiagonal, . . . ) and we
explain how we can obtain a decomposition from existing
ones for several matrix combinations. In Section V we present
performance results where we compare our algorithm with
existing implementations and we propose a multi-threaded
version. Then in Section VI we present an application of this
decomposition to encode matrices in quantum computers via
the block-encoding technique. Finally, concluding remarks are
given in Section VII.

In the remainder we will use the following notations:
• We will work in complex Euclidean spaces with canonical

basis. On such vector spaces, the tensor product and the
Kronecker product coincide [18] and we use the term
tensor product (denoted as ⊗) throughout this paper.

• A∗ denotes the conjugate transpose of a matrix A.
• The notation for a bitstring in base 2 is illustrated by the

following example: 10102 = 10.
• For an array k and some indices a and b, k[a : b]

corresponds to the sub-array extracted from k between
indices a included and b not included.



II. BACKGROUND AND RELATED WORK

A. Pauli decomposition

a) Pauli operator basis: Let n ∈ N∗, the Pauli operator
basis of size n corresponds to the set

Pn =

{
n⊗

i=1

Mi, Mi ∈ {I,X, Y, Z}

}
,

where I,X, Y and Z are the Pauli matrices.

Theorem 1. Pn is a basis of C2n×2n .

Proof. Pn has 4n elements in a 4n-dimensional space then
we need to show that Pn is linearly independent. Let us
consider the standard inner product for matrices defined as
⟨A|B⟩ = Tr(A∗B). It can be easily verified that the 2-by-
2 Pauli matrices are mutually orthogonal with respect to this
inner product. If now we have two distinct Pauli operators
A,B ∈ Pn such that A = A1 ⊗ A2 ⊗ · · · ⊗ An and
B = B1 ⊗B2 ⊗ · · · ⊗Bn. Then

⟨A|B⟩ = Tr(A∗B) = Tr

(
n⊗

i=1

A∗
i

n⊗
i=1

Bi

)

= Tr

(
n⊗

i=1

A∗
iBi

)
=

n∏
i=1

Tr(A∗
iBi).

Since A ̸= B, there exists i such that Ai ̸= Bi and then
Tr(A∗

iBi) = 0 (because the Pauli matrices Ai and Bi are
orthogonal) and thus Tr(A∗B) = 0.

As a result Pn is an orthogonal (and even orthonormal) set
and is linearly independent.

b) Decomposition in the Pauli operator basis: Following
Theorem 1, any matrix A ∈ C2n×2n can be decomposed in
the Pauli operator basis of size n (we can use a zero padding
to make any size of matrix fits this constraint) and then can
be expressed as

A =
∑

Pi∈Pn

αiPi, with αi ∈ C.

Theorem 2. If A is Hermitian (A∗ = A) then the αi’s in the
Pauli decomposition are real numbers.

Proof. Since A and the Pauli matrices are Hermitian we get

∑
Pi∈Pn

αiPi =

( ∑
Pi∈Pn

αiPi

)∗

=
∑

Pi∈Pn

(αiPi)
∗ =

∑
Pi∈Pn

ᾱiPi,

thus ∀i, αi = ᾱi and αi ∈ R.

c) Straightforward decomposition method: To decom-
pose A in the corresponding Pauli operator basis Pn the idea
is to compute each coefficient separately, similarly to [6].

For example, if A ∈ C4 × C4 then

A = αII(I ⊗ I) + αIX(I ⊗X) + αIY (I ⊗ Y ) + . . .

To compute a given coefficient αM1M2
, where M1,M2 ∈

{I,X, Y, Z} we use the fact that

αM1M2
=

1

4
Tr
(
(M1 ⊗M2)A

)
.

This can be generalized to a matrix A of size 2n × 2n where
we have

αM1M1...Mn
=

1

2n
Tr
(
(
⊗
i

Mi)A
)
.

Therefore, for each of the 4n coefficients we need to compute:

• the tensor product of n Pauli matrices,
• the trace of this product multiplied by the matrix A.

If these tasks are achieved without any consideration of the
matrix structure the total cost of the algorithm would be
O(24n) (complex flops) because of the computational cost of
the tensor product.

d) First optimization of the trace computation: The trace
computation can be easily optimized with three ideas:

• Pauli operator matrices only contain 1,−1, i,−i values
so the multiplications involved in the tensor product are
simpler.

• The Pauli operators Pi are sparse since they have only one
entry in each row and column. Consequently, computing
an element of the product between a Pauli operator and
a matrix A requires only one multiplication.

• To compute the trace, we only need to compute the
diagonal entries of the product between the Pauli operator
and A.

By using these three basic ideas, the trace computation can be
performed in O(2n) arithmetical operations instead of O(22n).
However, the cost of the tensor products mentioned above still
dominates the computation.

B. Related work

A technique is presented in [21] to decompose a square real
symmetric matrix H of any arbitrary size in the corresponding
Pauli basis. This technique relies on solving a linear system
of equations. A Python implementation is provided. However,
this method is not optimal because it relies on the straightfor-
ward generation of all the tensor products and their storage in
a dictionary. Therefore it is expensive in computational time.

We can also find decomposition routines in quantum simu-
lation tools like the open source software framework Penny-
Lane [20] (pauli decompose routine).

In a recent work [23], an algorithm called PauliComposer
is introduced to compute tensor products of Pauli matrices.
The authors use this algorithm to decompose a Hamiltonian
(Hermitian matrix) in the Pauli basis, which is an application
similar to the one described in Section VI. The algorithm
exploits the particular structure of the Pauli operators to avoid
a huge part of the computation. Below are more details about
this work.



a) PauliComposer - notations: Let P ∈ Pn such that
P = σn−1 ⊗ · · · ⊗ σ0 where ∀i, σi ∈ P1 = {I,X, Y, Z}. P
being a Pauli operator, for each row there will be only one
column with a non-zero element. Consequently, we can use
a sparse matrix structure to store the matrix with two arrays
k and m of size 2n. Given a row j, the column index of the
non-zero element is noted k[j], and its value is noted m[j].
Formulated differently, for each j, the j-th non-zero coefficient
of the P matrix is denoted

m[j] = Pj,k[j]

.
Another important thing to notice is that a Pauli operator

is either real (with values 0, +1, −1) or complex (with
values 0, +i, −i). Therefore we can switch from the set
P1 = {I,X, Y, Z} to P̃1 = {I,X, iY, Z} and construct

P̃ := σ̃n−1 ⊗ · · · ⊗ σ̃0
where ∀i, σ̃i ∈ P̃1. By counting the number of iY in P̃ ,
denoted nY , one can recover

P = (−i)nY mod4P̃ .

In the following, a diagonality function d is defined to track
the diagonality of a matrix M ∈ P1,

d(M) =

{
0 if M = I orM = Z,

1 if M = X orM = Y

b) PauliComposer - algorithm: The PauliComposer al-
gorithm is an iterative algorithm:

• For the first row (j = 0) the nonzero element can be
found in the column

k[j = 0] = d(σn−1) . . . d(σ0)2.

• For the following entries, when 2l elements have already
been computed, the next 2l elements can be found using
these entries. For the column indices, we have

k[j + 2l] = k[j] + (−1)d(σl)2l, j ∈ [[0, 2l − 1]],

and for the values of these nonzero elements we have

m[j + 2l] = Pj+2l,k[j+2l] = ζlPj,k[j], j ∈ [[0, 2l − 1]],

where ζl = 1 if σl ∈ {I,X} and ζl = −1 otherwise.
With the PauliComposer algorithm, if we consider the worst-
case scenarios, we need to perform O(2n) sums and O(2n)
changes of sign (see [23]). This algorithm improves the state
of the art in computing tensor products of Pauli matrices.
However, to compute a decomposition in the Pauli basis, the
authors just iterate over all the elements, without taking into
account the similarities between a Pauli operator to another. In
the next section, in which we aim to propose a faster algorithm,
we will keep the same notations as those used in describing
the PauliComposer algorithm.

A very recent algorithm called Tensorized Pauli Decompo-
sition [12] has been proposed for Pauli decomposition, faster
than previously existing sequential solutions. This algorithm

(with Python sequential implementation) uses matrix parti-
tioning to accelerate the computation. We will also compare
our sequential code with this algorithm in the numerical
experiments.

III. PAULI TREE DECOMPOSITION

A. Description of the algorithm
Our algorithm referred to as Pauli Tree Decomposition

Routine is given in Algorithm 1. It uses a tree exploration
to reduce significantly the number of elementary operations
needed to perform the decomposition in the Pauli basis of
a given matrix in C2n×2n . We exploit the redundancy of
information from one Pauli operator to another. For instance,
I and X contain the same values but not in the same locations.
On the contrary, considering X and iY , the non-zero values
are at the same place in both matrices but the values are
different.

The tree depicted in Figure 1 (that we call Pauli tree)
represents all the possible Pauli operators for a given depth
equal to the size of the operators. In this example, the path
in red corresponds to all the Pauli operators ending with
· · · ⊗ X ⊗ I . The tree starts with a root associated with no
Pauli matrix then each node of the tree has 4 children, one for
each matrix I,X, Y and Z until the depth of n is obtained,
then the final nodes I,X, Y and Z are just becoming leaves.
To iterate over all elements of the Pauli basis Pn we use an

root

I

I X Y Z

X Y Z

Fig. 1. Example of Pauli tree.

in-order tree exploration as shown in Figure 2.

Fig. 2. Inorder walk through a tree. The walk starts from A and follows the
arrows from 1 to 8. The node exploration is the following: ABCBDBAEA

The tree has its own arrays k and m that respectively track
the column indices and non-zero values. In addition, we save



memory space by not storing the array j because we already
know that j = [[0, 2n−1]]. Arrays k and m are initialized with
0 except for their first elements.

• k[0] = d(xn − 1) . . . d(x0)2,
• m[0] = 1.

Then these arrays are updated through the tree exploration
(see Algorithm 4) to get at any time the current sparse matrix
representation. The update rules to get from one node to
another are simple, at depth l ̸= 0 (l = 0 being the root,
l = n being the leaves):

• The current node is I: we only need to copy the 2l top
elements in the bottom part by shifting them to 2l to the
right. Therefore, we update both k and m
◦ k[2l : 2l+1] = k[0 : 2l] + 2l

◦ m[2l : 2l+1] = m[0 : 2l]

• The current node is X: we already have computed the
tree update for I but know we want to get X . The values
are going to be the same however we need to shift the
element’s position so we only update in place k
◦ k[2l : 2l+1] = k[2l : 2l+1]− 2l+1

• The current node is Y : similarly, by comparing X we
already have and iY we want, we notice that the positions
are the same but the values are changing, so we only
update in place m
◦ m[2l : 2l+1] = −m[2l : 2l+1]

• The current node is Z: by comparing iY we already have
and Z, we notice that this time the values are the same
but the positions are changing, so we only update in place
k

◦ k[2l : 2l+1] = k[2l : 2l+1] + 2l+1

These rules are used in Algorithm 3 to update the tree en-
vironment. Moreover, if l = n then it means we have reached
the leaves, therefore we have all the information needed to
immediately compute the coefficient of the decomposition of
our matrix related to the current Pauli operator in the tree
using Algorithm 2. When we have explored the whole tree all
the coefficients have been computed and stored.

Algorithm 1 Pauli Tree Decomposition Routine

Input: matrix in C2n × C2n

tree← Pauli tree of depth n
explore node(tree.root, tree)

Algorithm 2 compute coeff
Input: tree with arrays k and m, current number of Y nY
and matrix A ∈ C2n × C2n

coeff ← 0
for j in 0 . . . 2n − 1 do

coeff ← coeff + (−i)nY mod 4m[j]×A[ k[j] 545][j]
end for
add coeff in the list of coefficients of the decomposition

Algorithm 3 update tree
Input: current node ∈ {I,X, Y, Z}, tree with arrays k and
m

l← tree.depth− current node.depth− 1
if current node is I then

k[2l : 2l+1]← k[0 : 2l] + 2l

m[2l : 2l+1]← m[0 : 2l]
else if current node is X then

k[2l : 2l+1]← k[2l : 2l+1]− 2l+1

else if current node is Y then
m[2l : 2l+1]← −m[2l : 2l+1]

else if current node is Z then
k[2l : 2l+1]← k[2l : 2l+1] + 2l+1

end if
if current node.depth = 0 then

tree.compute coefficient
end if

Algorithm 4 explore node
Input: current node ∈ {I,X, Y, Z}, tree

update tree(current node, tree)
if current node.depth > 0 then

explore node(current node.childI, tree)
explore node(current node.childX, tree)
explore node(current node.childY, tree)
explore node(current node.childZ, tree)

end if

B. Complexity analysis

Here we are going to compare the number of operations
needed to iterate over all the Pauli basis elements to perform
a decomposition in this basis, if we use or not a tree approach.

a) Without the tree approach: Without the tree approach,
we need to compute each of the 4n elements of the Pauli basis
Pn using [23]. This task requires filling 2 arrays of size 2n

using elementary operations like addition, multiplication, and
memory copy, so 2×2n elementary operations. So considering
all the 4n possible Pauli operators to compute we have a count
of elementary operations of

Cnotree = 2× 8n.

b) With the tree approach: With the tree approach, we
compute the coefficients step by step, using the redundancy
of information. With this approach, we drastically reduce the
number of elementary operations needed for the tensor product
part of the computation. The number of elementary operations
performed at depth l ̸= 0 for a “sibling” group of nodes is
5× 2l−1. At each depth l ̸= 0, the number of “sibling” group
of nodes is 4l−1. Consequently, we have a total of

Ctree = 2 +

n∑
l=1

(5× 2l−1)4l−1 =
9

7
+

5

7
8n

operations. Thus for this task, we improve the complexity by
a factor 14

5 , in comparision with PauliComposer.



IV. SPECIAL CASES

A. Diagonal and band matrices

1) Diagonal matrices: Let D be a diagonal matrix in
C2n×2n . Let us consider the subset PIZ

n of Pn defined as

PIZ
n =

{
n⊗

i=1

Mi|Mi ∈ {I, Z}

}
,

where only I and Z matrices are allowed in the tensor
products. Then D admits a unique decomposition in PIZ

n .

Proof. Let us consider a diagonal matrix D ∈ C2n×2n . We
know that D admits a decomposition in Pn

D =
∑

Pi∈Pn

αiPi,

where αi’s are complex numbers. Pn is a basis of C2n×2n so
no diagonal Pi can be obtained with a linear combination of
non-diagonal Pi, so non-diagonal Pi leads to non-diagonality
in the final result. The Pi that are diagonal are only composed
of I and Z.

Therefore we can adapt the algorithm if we have a diagonal
matrix by just removing the X and Y children in the tree. This
results in only tracking the values in m because we necessarily
have k = [[0, 2n − 1]]. Moreover, by removing the Y matrix
the vector m can only contains 1 and −1, we can store using
only booleans (0 for 1 and 1 for −1).

For this adaptation of the algorithm, the complexity of the
tensor product part using the tree decomposition routine is

Cdiagonal
tree = 2 +

n∑
l=1

(2× 2l−1)2l−1 =
4

3
+

2

3
4n.

Remark 1. For anti-diagonal matrices, we can get a similar
result by replacing I and Z with X and Y . This idea is also
relevant in the following.

2) Tridiagonal matrices: Let A be a tridiagonal matrix in
C2n×2n (i.e. if i < j − 1 or i > j + 1 then ai,j = 0). This
special structure of matrices leads to some constraints on the
decomposition in the Pauli basis and these constraints can be
exploited to reduce the total complexity of the algorithm. We
can remove some branches of the tree because they lead to
incompatible paths.

In the decomposition are allowed only the terms that:
• either fit the tridiagonal structure; so diagonal or tridiag-

onal themselves,
• or there exist several other terms that can cancel with each

other on the extra terms out of the tridiagonal structure.

Theorem 3. Let A be a tridiagonal matrix in C2n×2n then
there are at most (n + 1)2n non-zero terms in its Pauli
decomposition.

Proof. Given n ∈ N∗, let us consider the subsets of Pn, PIZ
n

and

PXY
n =

{
n⊗

i=1

Mi|Mi ∈ {X,Y }

}
.

Let A ∈ C2n×2n be a matrix such that

A =
∑
j

αjPj ,

where Pj ∈ Pn. Then let us consider the following subset of
Pn

Γn =

{
m⊗
i=1

Vi

n⊗
i=m+1

Wi|m ∈ [[1, n]], Vi ∈ {I, Z},Wi ∈ {X,Y }

}

Let us show that ∀n ∈ N∗,∃i ∈ [[1, 2n]], αi ̸= 0, Pi /∈ Γn =⇒
A is not tridiagonal. In other words, only the elements of Γn

are allowed in the decomposition of a tridiagonal matrix of
size 2n × 2n.

For n = 1, Γ1 = {I,X, Y, Z} = P1, so the property is true.
Now we suppose (recurrence hypothesis) that for n >

0,∃i ∈ [[1, 2n]], αi ̸= 0, Pi /∈ Γn =⇒ A is not tridiagonal.
Let us show by recurrence that for n + 1 we also have this
property. Let us take a matrix A ∈ C2n+1×2n+1

, then A can
be decomposed in the Pauli basis as

A =

4n+1∑
i=1

αiPi,

where Pi ∈ Pn+1. This sum can be split

A =

4n∑
i=1

αI
i I⊗Qi+

4n∑
i=1

αX
i X⊗Qi+

4n∑
i=1

αY
i Y ⊗Qi+

4n∑
i=1

αZ
i Z⊗Qi,

where Qi ∈ Pn. For the sums about I and Z, the correspond-
ing matrices structure is [

. 0

0 .

]
,

thus the matrices are tridiagonal if and only if their blocks
are tridiagonal so we refer to the recurrence hypothesis. For
the sums about X and Y the structure of the matrix is the
following [

0 .

. 0

]
,

Here the blocks need to be zero except for respectively the
bottom left and top right parts. If A is tridiagonal then in the
sum

4n∑
i=1

αX
i X ⊗Qi +

4n∑
i=1

αY
i Y ⊗Qi

for all Qi ∈ Pn \ PXY
n , αY

i = 0 and αX
i = 0. In other words,

it means that we only keep the elements Qi that are built with
X and Y only (because with a non-zero value only on the
bottom left and top right corners). Consequently for n+1,∃i ∈
[[1, 2n+1]], αi ̸= 0, Pi /∈ Γn =⇒ A is not tridiagonal. Thus
the property is also true for n+ 1.

Thus for all n > 0, the compatible elements are only the
ones in Γn, so we have a maximum of (n + 1)2n non-zero
terms in the decomposition.

To compute the complexity of our algorithm adapted to the
tridiagonal case we notice that it corresponds to the diagonal



case for the n − 1 first levels of the trees and the last one is
the same as in the general case. For the n− 1 first levels the
complexity is 4

3 +
2
34

n−1. Then for the last one, the number of
flops is 5×2n−1×2n−1. Therefore, the complexity generated
by the tensor products is

Ctridiagonal
tree =

4

3
+

17

12
4n.

3) Band-diagonal matrices: We can generalize the previous
case to band diagonal matrices of width (2s + 1). Let A be
a matrix in C2n×2n . A is a band diagonal matrices of width
(2s+ 1) if i < j − s or i > j + s implies that ai,j = 0

Theorem 4. Let s > 0. Let A be a band diagonal matrix of
width (2s+1) in C2n×2n . Then the Pauli decomposition of A
contains at most

(sn− c(s)) 2n,

where

c(s) = s (⌊log2(s)⌋+ 1)− 2⌊log2(s)⌋+1.

Proof. The proof is similar to the tridiagonal, case except we
take

Γn =

{ m⊗
i=1

Vi

n−M−1⊗
i=m+1

Wi

n⊗
i=n−M

Ui

∣∣∣∣ 1 ≤ m < n−m,

Vi ∈ {I, Z},Wi ∈ {X,Y }, Ui ∈ {I,X, Y, Z}
}
,

where M = ⌊log2(s)⌋ + 1. The cardinal of this set is
(sn− c(s)) 2n.

To compute the complexity of our algorithm adapted to
the band-diagonal case we notice that it corresponds to the
diagonal case for the n− s first levels of the tree and the last
s ones are the same as in the general case. For the n− s first
levels the complexity is 4

3 + 2
34

n−s. Then for the last ones,
the number of flops for the depth l is 5×4l×2n−s×2l−s+n.
By summing these terms from i = 0 to i = s − 1 we get
the complexity for the last levels and the total complexity
generated by the tensor products is

Cband−diagonal
tree =

4

3
+

5

7

(
8s − 1

15

)
4n−s.

Note that for s = 1 we retrieve the same complexity as for
the tridiagonal case.

Regarding the storage, our algorithm requires two arrays of
size 2n, one of unsigned integers (the location, k) and one
containing the +1 and −1, that can be encoded as boolean
(the values, m). Moreover, we need of a dictionary storing
the different Pauli string, of length n, associated to their
coefficients in the decomposition. We have at most 4n pairs
to store.

4) Summary: For the general and special cases given pre-
viously, we summarize in Table I the maximum number of
terms in the Pauli decomposition and the computational cost to
compute it. Note that all flops involved for the tensor product
are in real arithmetic. To be consistent in our formulas, the
complex flops required for the Trace computation have been
converted into real flops. We have removed the constants from
the formulas given previously.

TABLE I
NUMBER OF TERMS AND FLOPS FOR PAULI DECOMPOSITION.

Max term count Complexity (flops)

general 4n O(8n)

diagonal 2n O(4n)

tridiagonal (n+ 1)2n O(n4n)

band-diagonal (sn− c(s))2n O(sn4n)

B. Combinations of matrices

Because of the computational cost of the decomposition in
the Pauli basis, it could be useful, when the matrix to decom-
pose is a combination of other matrices, to take advantage of
existing Pauli decompositions of these matrices if available.
In this section, we express the decomposition resulting from
some matrix operations on existing Pauli decompositions.

1) Direct sum: Let A,B ∈ C2n×2n , we recall that the direct
sum of A and B is

A⊕B =

[
A 0

0 B

]
.

Suppose we have the Pauli decompositions

A =
∑
j

αjPj , and B =
∑
j

βjPj ,

then the decomposition of C = A⊕B is

C = I ⊗
∑
j

αj + βj
2

Pj + Z ⊗
∑
j

αj − βj
2

Pj.

Proof.

C =

[
A 0

0 B

]
= I ⊗ A+B

2
+ Z ⊗ A−B

2
,

we have

C = I ⊗
∑
j

αj + βj
2

Pj + Z ⊗
∑
j

αj − βj
2

Pj .



2) Block-diagonal matrices: Given m, k > 0, let us con-
sider N = 2m matrices Ai ∈ C2k×2k (it is always possible to
use zero padding to reach a compatible amount of matrices).
Let us consider the block diagonal matrix

AN =


A1

. . .
AN

 .
If we already know the Pauli decomposition of the Ai’s, then
it is possible to construct the decomposition of AN using
several times the decomposition of a direct sum (see above)
by grouping the Ai matrices two by two recursively. This is
an example for N = 8:

AN =
(
(A1⊕A2)⊕ (A3⊕A4)

)
⊕
(
(A5⊕A6)⊕ (A7⊕A8)

)
3) Linear combination: Let A,B ∈ C2n×2n and µ ∈ C. If

A =
∑
j

αjPj , and B =
∑
j

βjPj ,

then the Pauli decomposition of C = µA+B is trivially

C =
∑
j

(µαj + βj)Pj .

4) Multiplication: Let A,B ∈ C2n×2n with

A =
∑
j

αjPj , and B =
∑
j

βjPj ,

then the decomposition of C = A × B can be directly
deduced from these decompositions, instead of performing the
multiplication A×B and then decomposing it. The resulting
decomposition is

C =
∑
j,k

αjβq(Pj × Pq),

where Pj × Pq =
⊗n

i=1M
j
i ×

⊗n
i=1M

q
i =⊗n

i=1

(
M j

i ×M
q
i

)
, with M j

i and Mq
i being Pauli matrices.

The product of Pauli matrices always results in a Pauli matrix
(multiplied or not by a complex factor) so one can avoid the
computation and just refer to a computation table.

5) Hermitian matrix augmentation: Let A ∈ C2n×2n with
Pauli decomposition

A =
∑

Pj∈Pn

αjPj .

Let now consider the Hermitian augmented matrix

Ã =

[
0 A∗

A 0

]
.

Then the decomposition of Ã in Pn+1 can be directly obtained
from the decomposition of A in Pn

Ã = X ⊗
∑

Pj∈Pn

ajPj + Y ⊗
∑

Pj∈Pn

bjPj ,

where aj and bj are the real and imaginary part of αj ,
respectively.

Proof.

Ã =

[
0 A∗

A 0

]
=


0

∑
Pj∈Pn

αjPj∑
Pj∈Pn

αjPj 0



=


0

∑
Pj∈Pn

ajPj∑
Pj∈Pn

ajPj 0

+


0 −i

∑
Pj∈Pn

bjPj

i
∑

Pj∈Pn

bjPj


= X ⊗

∑
Pj∈Pn

ajPj + Y ⊗
∑

Pj∈Pn

bjPj .

This result is interesting because it means we do not need
to compute the decomposition of Ã if we already know the
decomposition of A. This is advantageous because the decom-
position algorithm has an exponential behavior. Moreover, the
number of nonzero terms in the decomposition of Ã is at most
twice that of A.

V. NUMERICAL EXPERIMENTS

The experiments have been carried out on one node of
the QLM (Quantum Learning Machine) located at EVI-
DEN/BULL. This node is a 16-core (32 threads with hyper-
threading) Intel(R) Xeon(R) Platinum 8153 processor at 2.00
GHz. In the following, we consider the decomposition in the
Pauli basis of a generic matrix, with no specific structure.

A. Sequential code
We plot in Figure 3 the execution time for computing the

decomposition in the Pauli basis using the existing Python
implementations H2zixy [21], PennyLane [20], PauliCom-
poser [23] and Tensorized Pauli Decomposition [12] and
our tree-based code implemented in Python and C++. Our
algorithm enables to address, in the same amount of time,
one more qubit in the decomposition than PauliComposer
(for n ≥ 2) and outperforms the H2zixy and Pennylane
implementations. Because of the exponential complexity in
n, this improvement is significant in terms of execution time.
However, for higher number of qubits the Tensorized Pauli
Decomposition is faster because it scales better in time than
all the other algorithms. Note that for these sequential codes,
the plots have been limited to 30 minutes of execution time
and n = 12 (which corresponds to dense matrices of size
4096×4096 in complex arithmetic) because the time increases
exponentially with n.

To be able to address larger problems we have also im-
plemented a C++ version of the algorithm for parallelization
purpose. By comparing our Python version to the sequential
C++ one, we observe at least a two-qubit advantage, which
enables us to work with larger qubit systems. We observe in
this graph that this advantage is significantly increased with
the muti-threaded version.



Fig. 3. Execution time for computing the decomposition in the Pauli basis
using the serial codes H2zixy, Pennylane, PauliComposer (PCPD), Tensorized
Pauli Decomposition (TPD) and the serial and multi-threaded code Pauli Tree
Decomposition Routine (PTDR).

B. Multi-threaded code

We have also developed a multi-threaded version of our
algorithm to accelerate the Pauli decomposition and address
more qubits. In our algorithm, we split the Pauli tree into
a forest of several Pauli trees by cutting all the branches at
a certain level. Each tree of the forest is then executed on
one thread independently from the others. This parallelization
does not introduce any additional error and approximation.
Each thread handles an independent subpart of the tree and
all results are independent. Therefore we can use the same
algorithm as for the whole tree for each sub-tree and the
accuracy is not impacted. Moreover, there is no need to store
the input matrix. If it is possible to guess the value for each
entry (for example from a function) then it is still possible
to perform the decomposition. The overhead will only depend
on the cost of the function, as compared to a memory access.
Therefore this method is still compatible with huge matrices
that we do not want to store in memory. Figure 4 evaluates

Fig. 4. Execution time and Gflop/s, depending on the number of threads (15
qubits).

the strong scaling of the multi-threaded C++ version of our

algorithm. We observe that the speed grows linearly with
the number of threads (the dotted lines correspond to an
ideal speedup equal to the number of threads). For these
experiments, the number of qubits is n = 15 (i.e., dense
matrices of size 32768× 32768 in complex arithmetic) to be
able to achieve the computation on a single node, and the
number of Pauli trees in the forest is 44 = 256. Note that to
our knowledge there are no existing parallel version for the
other algorithms mentioned in Figure 3.

C. Comments on memory and possible multi-node version

1) Memory footprint analysis: After numerical experi-
ments, TPD execution time seems to scale in O(4n) while
our algorithm is still in O(8n). However, it is interesting to
study how TPD and PTDR behave in term of memory needed.
In the following we do not take into account the memory
needed to store the input matrix and the output results (which
are equivalent for both algorithms) and we only focus on the
memory needed to compute the decomposition of a matrix of
size 2n × 2n.

a) Pauli Tree Decomposition Routine (PTDR): In the
PTDR algorithm the computation is performed in place with
two arrays of both size 2n, as explained in Section III.
Therefore the memory needed to perform the decomposition
using PTDR is O(2n). Note that in practice, one of this array
contains integers while the other one contains booleans.

b) Tensorized Pauli Decomposition (TPD): To our
knowledge the computation is performed by working recur-
sively on submatrices defined from the input matrix. This leads
to use O(22n) = O(4n) memory-space (see code provided
in [12]). Note that in practice all the elements are double
complex.

2) Theoretical extrapolation in a multi-node environment:
In this paragraph we extrapolate the behavior of the PTDR
and TPD algorithms using several nodes with the following
hypotheses:

• we suppose that we have a cluster with a fixed RAM per
node (64 Go, 128Go, 256Go) and 128 threads per node.

• we suppose that we have a parallel distributed version
of PTDR (presently multi-threaded in C++) and TPD
(presently sequential in Python).

Note that we do not consider the communication cost but
the smaller data structures handled by PTDR (see the section
before) should provide an advantage on this side.

The purpose of this analysis is to see in which constrained
HPC environments PTDR outperform TPD, and vice-versa.
The first constraint is a time budget (where TPD scales better)
and the second constraint is the number of nodes accessible
(PTDR scales better in memory footprint). We display the
result for 64Go, 128Go and 256Go per node (with 128 threads
per node) in Figure 5.

In Figure 5 the blue zone corresponds to the situation where
PTDR is advantageous and can compute the decomposition for
higher number of qubits than TPD. The red zone corresponds
to the opposite statement. TPD scales better for short amount
of time. However, the PTDR algorithm scales better in terms of



Fig. 5. Difference in the maximum number of qubits n manageable under time
and number of nodes constraints for PTDR and TPD. The blue and the red
regions correspond to the constraints where PTDR and TPD are advantageous,
respectively.

memory footprint and thus can better exploit the multi-node
architecture to outperform TPD in longer tasks. We remind
that, the plot provided in Figure 5 does not take into account
the communication cost, which should be higher for TPD
because of the amount of data transferred.
To summarize, the PTDR algorithm seems to be adapted to
HPC using multi-node systems thanks to low cost in memory
and communication while TPD could prevail for smaller cases
because of a smaller time complexity.

VI. APPLICATION TO QUANTUM COMPUTING

A. Preliminary notions

In quantum computing, we handle qubits instead of bits
so that we can exploit the properties of quantum systems
(superposition, entanglement,. . . ). A 1-qubit quantum state |ψ⟩
(using the Dirac notation) is a unit vector of C2 that can be
expressed as

|ψ⟩ = α

(
1

0

)
+ β

(
0

1

)
= α |0⟩+ β |1⟩ ,

with α, β ∈ C and |α|2 + |β|2 = 1.
Here, the quantum state |ψ⟩ corresponds to the superposition

of the two basis states |0⟩ and |1⟩ of respective amplitude α
and β. We can combine single qubits using tensor products
to create an n-qubit quantum state which is a unit vector of
(C2)⊗n = C2n [19].

All operations performed on qubits are unitary (and then
linear, norm-preserving, and reversible), except for the opera-
tion of measurement that projects the quantum state on a basis
state. These operations can be represented as quantum gates
in a quantum circuit. There exist 1-qubit gates (acting on one
qubit only) such as the Pauli X,Y and Z but also rotation
gates like the rotation Z gate (rotation through angle θ around
the z-axis).

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
.

There are also multi-qubit gates, such as the controlled-NOT
gate (CNOT) which creates entanglement between two qubits.
In the CNOT gate, the second qubit is “controlled” by the first
one in the sense that we apply a bit-flip (X gate) on the second
qubit if the first one is |1⟩ and remains unchanged otherwise.
This notion can be generalized to a controlled-U operation
where U is an operator acting on a given number of qubits,
as we will see in Section VI-D.

The quantum gates can be combined to create quantum
circuits acting on one or several qubits. In Figure 6 is given an
example of a quantum circuit acting on two qubits. The wires
correspond to the different qubits. The time evolves from the
left to the right. The first qubit undergoes an X gate then a
Rz(θ). Finally, a CNOT gate acts on both qubits, the first
qubit (with the dark circle) controls the application of a NOT
operation (the large crossed circle) on the second one. Such
quantum circuits can be used to create more complex quantum
algorithms.

X Rz(θ) • ≡ (CNOT )(Rz(θ)⊗ I)(X ⊗ I)

Fig. 6. Example of a 2-qubit quantum circuit.

B. Quantum block-encoding

Manipulating dense or sparse matrices in quantum algo-
rithms is essential to address practical applications. However



quantum computers handle only unitary matrices and thus en-
coding techniques must be provided. The block-encoding [10]
technique enables us to load matrices into the quantum mem-
ory by embedding a non-unitary matrix into a unitary one
to call it in a quantum circuit. Namely, a general matrix
A ∈ CN×N (with N = 2n) is encoded in a unitary matrix
UA as

UA =

[
A ·
· ·

]
, (1)

When we apply UA to |0⟩a |ψ⟩d (as a common notation, we
omit the tensor product operator between |0⟩a and |ψ⟩d),
where |0⟩a corresponds to the ancilla (auxiliary) qubits and
|ψ⟩d corresponds to the data qubits. Then we get

UA (|0⟩a |ψ⟩d) = |0⟩aA |ψ⟩d + · · · . (2)

So if when we measure the ancilla qubits we obtain |0⟩a
then we have applied the matrix A to the data state |ψ⟩d.
On the contrary, if something else is measured, then we do
not have applied A to the data qubits, so we need to perform
the quantum circuit again. There also exists a definition of
an approximate block-encoding. Given an n-qubit matrix A
(with N = 2n), if we can find α, ϵ ∈ R+ and an (m + n)-
qubit unitary matrix UA so that

∥A− α (⟨0m| ⊗ IN ) UA (|0m⟩ ⊗ IN )∥2 ≤ ϵ, (3)

then UA is called an (α,m, ϵ)-block-encoding of A. When
ϵ = 0 the block encoding is exact and UA is called an (α,m)-
block-encoding of A. The value m corresponds to the number
of ancilla qubits needed to block encode A. Note that a unitary
matrix is a (1,0,0)-block encoding of itself [3].

C. Block-encoding using Pauli decomposition

In the remainder, we assume that A is Hermitian since we
can always obtain a Hermitian matrix using the augmented
matrix

Ã =

[
0 A∗

A 0

]
.

The goal is to get a quantum block-encoding of the matrix A.
We use the method given in [1], [5], [10] for implementing lin-
ear combinations of unitary operators on a quantum computer.
With this method, we create a block-encoding of A from its
Pauli decomposition, given that Pauli operators are all unitary.

Let us consider a Hermitian matrix A ∈ C2n×2n decom-
posed in M = 2m Pauli operators

A =

M−1∑
i=0

αiVi

where Vi ∈ Pn and the αi’s are non-zero real numbers
(since H is Hermitian). This task is performed on a classical
computer using our PTDR algorithm.
To apply the matrix A to the n-qubit input quantum state

|ψ⟩d, we need to:

1) allocate m ancilla qubits and prepare the state

|α⟩a =
1√∑
i |αi|

∑
i

√
|αi| |i⟩a

as a superposition of the basis states |i⟩a of C2m ,
2) apply Vi to the data state |ψ⟩d, controlled by the ancilla

qubits in state |i⟩a,

|i⟩a |ψ⟩d → |i⟩a Vi |ψ⟩d ,

3) unprepare step 1.

Proof. Let us prove that the previous instructions lead to a
block-encoding of the matrix A =

∑M−1
i=0 αiVi, where here

we consider without loss of generality that αi > 0 (as the sign
of the coefficient αi can be absorbed by the unitary Vi [4]).
For this purpose, we are going to split the computation into
two parts: on one side we will look at steps 1 and 2 together,
and on the other side step 3, and the projection on ⟨0|a.

• After the data and ancilla registers have been initialized,
we have the (n+m)-qubit state

1√∑
i αi

∑
i

√
αi |i⟩a |ψ⟩d .

At the end of step 2, we get

1√∑
i αi

∑
i

√
αi |i⟩a Vi |ψ⟩d .

• Projecting the ancilla preparation inverse on ⟨0|a corre-
sponds to

1√∑
i αi

∑
i

√
αi ⟨i|a .

Now, if we combine both previous results we get:(
1√∑
i αi

∑
i

√
αi ⟨i|a

)(
1√∑
i αi

∑
i

√
αi |i⟩a Vi |ψ⟩d

)
=

A∑
i αi

|ψ⟩d ,

therefore we have block-encoded A.

D. Quantum circuit and complexity

In Figure 7 is given an example of the quantum circuit that
block-encodes a matrix when we have 4 terms in its Pauli
decomposition (m=2). The top wire corresponds to the data
qubits already initialized in quantum state |ψ⟩. The two other
wires correspond to the ancilla qubits used for the encoding.
First, the state |α⟩a is prepared on the ancilla qubits. Then the
application of the Pauli operators V00, V01, V10 and V11 on the
data qubits is controlled by the value of the ancilla qubits. A
white circle means we control with |0⟩ while the black one
means we control with |1⟩. In the end, the state preparation
on the ancilla qubits is undone.

Currently, quantum computing is in its noisy intermediate-
scale quantum (NISQ) era. NISQ quantum processors are
characterized by a qubit count that does not exceed thousands,
coupled with a low tolerance to errors. In such a context, the



|0⟩
Prep |α⟩a

• •
UnPrep |α⟩a|0⟩ • •

|ψ⟩ V00 V01 V10 V11

Fig. 7. Quantum circuit for the block-encoding (m=2).

previously introduced block-encoding algorithm is compatible
in terms of number of qubits used as it scales logarithmically
with the data size. However, it does not align in terms of circuit
depth, leading to a low fidelity because of successive errors
[26], [27].

Consequently, it seems more relevant to consider such
a quantum algorithm from a Large Scale Quantum (LSQ)
perspective, where quantum processors operate with error-
corrected qubits. In this context, the complexity of the quan-
tum circuit depends mainly on the number of T gates (because
the Clifford gates are considered as having no cost on these
devices [9], [14]).

By using the Kerenidis-Prakash tree techniques [16] as a
state preparation, and pattern-rewriting in Clifford+T circuits
[15], [19], [24], this algorithm has a complexity in T-count
of O (2m(nm+ polylog(1/ϵ)), to block-encode a matrix of
size 2n × 2n, where we have 2m non-zero terms and an ϵ-
approximation of the rotations gates. The time complexity of
the execution of the block encoding on an LSQ device would
be proportional to the T-gate complexity. If we compare the
T-gate complexity (O (2m(nm+ polylog(1/ϵ))) of this block-
encoding technique with the complexity of the decomposition
in the Pauli basis (O(8n)), we expect the most expensive task
to be the Pauli decomposition on large problem instances.
Therefore, reducing the cost of the Pauli decomposition is
essential to make this block encoding technique affordable.
Our algorithm enables us to block-encode larger matrices in a
reasonable amount of time compared to the state-of-the-art.

VII. CONCLUSION

We have proposed a new algorithm for decomposing a
generic matrix into Pauli operators (which are tensor products
of Pauli matrices). This algorithm uses a tree-based approach
to reduce the number of arithmetical operations. We have
developed a scalable multi-threaded C++ code that enables
us to address moderate size problems (15 qubits, i.e., dense
matrices of size 32768 × 32768 in complex arithmetic) on a
single node using a limited memory footprint. We have also
explained in a theoretical scaling analysis that our algorithm
is a promising basis for a future multi-node version. As an
application, we have described how this decomposition can be
used to encode a Hermitian matrix into a quantum memory.
In this situation our Pauli decomposition routine is used as a
preprocessing phase for the quantum algorithm involving this
matrix.
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