
Evaluation of the classical hardware requirements
for large-scale quantum computations
Daan Camps, Ermal Rrapaj, Katherine Klymko, Brian Austin, Nicholas J. Wright

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
{dcamps,ermalrrapaj,kklymko,baustin,njwright}@lbl.gov

Abstract—We develop a new model to evaluate the neces-
sary classical computing and networking resources required to
support a large-scale fault-tolerant quantum computer based
on superconducting qubits and a surface code architecture.
We focus specifically on quantum error decoding, which is the
main classical computational task required to enable quantum
error correction during runtime. Our model reveals that the
quantum computer operates at a logical clock speed in the 100–
10,000 Hz range, using state-of-the-art quantum error decoders.
For a prototypical large-scale quantum chemistry computation,
this translates to an overall runtime on the order of months,
and this workload is estimated to generate syndrome data for
error correction at a rate of 2–500 Gbps depending on whether
data compression is used. We estimate the total computational
processing power required for online error syndrome decoding
equals about 1 petaflop. The results of our analysis show that
current computing and networking technology can meet the
requirements, in terms of bandwidth, latency, and compute,
to support large-scale quantum computation. However, major
technological challenges remain both for quantum and classical
hardware, including scalable fabrication of high-quality qubits,
scalable qubit control, and syndrome communication within a
limited power budget.

Index Terms—quantum computation, quantum resource anal-
ysis, syndrome decoding, hardware modeling, post-Moore tech-
nologies.

I. INTRODUCTION

The slowdown of Moore’s law forms a major challenge for
the future of high-performance computing. At the same time,
it provides new opportunities for innovative compute architec-
tures and novel paradigms to continue to deliver performance
gains beyond the exascale era [1].

Quantum computing in particular promises to provide expo-
nential performance gains for certain applications of interest
to the scientific computing community [2]. It is likely that
computational problems that are quantum mechanical in na-
ture, such as problems in materials science [3] and quantum
chemistry [4], stand to benefit most from the development of
quantum computing technologies. In addition, many physical
systems of interest to high-energy physics [5], [6], includ-
ing finite-density systems [7], chiral gauge theories [8], and
baryonic systems [9], require computational resources scaling

This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

exponentially with system size in order to overcome sign
problems, as complex path integrands cannot be treated as
probability distributions for Monte Carlo importance sampling.
Simulating four-dimensional lattice gauge theories is crucial
for comprehending phase transitions in heavy ion collisions
and the early universe, among other phenomena, yet these
simulations are currently impractical for classical computing
systems.

A number of technological platforms have emerged as
leading contenders in the race to build large-scale quantum
computers, including superconducting qubits [10], trapped-
ion devices [11], and neutral atom hardware [12]. Regardless
of the platform, the hardware implementing the qubit states
will be imperfect, and quantum error correction (QEC) [13]
is essential to protect the quantum information during large-
scale quantum computation from the combined effects of
decoherence and imperfect quantum gate and measurement
operations. This approach is known as fault-tolerant quantum
computing (FTQC) [14].

In this work, we evaluate the necessary classical computing
and networking resources required to support a fault-tolerant
quantum computer during runtime. We particularly focus on
the level of compute required for online error decoding, which
forms an integral component of FTQC [13]. In order to do so,
we assume that the quantum processing unit (QPU) is based on
superconducting qubit technology placed in a dilution refriger-
ator and equipped with a surface code QEC scheme [15], [16],
which is one of the most popular approaches for implementing
error correction. We focus on superconducting qubits as they
operate in the MHz to GHz range and are among the fastest
quantum technologies currently being studied and thus pose
the most stringent requirements on the classical hardware,
including the decoder.

The main contributions of our work are the following:
i. We provide a comprehensive model to evaluate the clas-

sical hardware requirements, in terms of network band-
width, network latency, and processor compute, to support
large-scale, universal fault tolerant quantum computations
on multiple logical qubits during runtime;

ii. We find that current networking technologies can meet the
bandwidth, latency and response requirements to support a
quintessentially difficult quantum chemistry computation
using a large-scale quantum computer during runtime.

Data rates are estimated to be in the gigabit/s to terabit/s
range;

iii. We show that online error decoding for quantum problems
up to 2,500 logical qubits and 109 T-gates (non-Clifford
gates that cannot be efficiently simulated classically and
that are necessary for creating a universal gate set), is
possible with 1 petaflop of computational power using
existing error decoders.

The remainder of this article is organized as follows. Sec-
tion II first provides an overview of related works that model
aspects of the quantum computational stack. Next, Section III
provides further background about the architectural design
of a quantum computer and some concepts from quantum
error correction with surface codes that we use throughout our
analysis. We develop our model in Section IV: Section IV-A
benchmarks and models the data rates generated by a quantum
computer during runtime, Section IV-B describes universal
quantum computation in a circuit model and estimates the
resources required to implement Clifford and non-Clifford
quantum operations, Section IV-C models the computational
resources required for online error decoding, and Section IV-D
concludes the methodology section by integration all previous
results in a single resource model. The results obtained with
this resource model are reported in Section V. We conclude
with a discussion of the results in Section VI.

II. RELATED WORK

Quantum resource analysis is concerned with quantifying
the computational resources required to solve large, clas-
sically intractable computational problems on future large-
scale quantum computers. Most analyses provide resources in
terms of number of qubits, which corresponds to the space or
storage complexity, and the non-Clifford circuit depth, which
is the dominant factor in the time complexity. The latter is
typically given in terms of the number of T-gates or Toffoli-
gates. Noteworthy results include estimates for the chemical
simulation of the biologically relevant enzyme cytochrome
P450 [17], and for early fault-tolerant simulations of the 2D
Hubbard model [18], which is relevant for materials sciences.
However, these works focus only on the required quantum
resources, mostly at the logical encoded level.

Modeling the requirements of quantum computer hardware
architectures forms another important research direction. In
this category, Beverland et al. [19] provide a quantum resource
estimation model that abstracts the layers of the quantum
hardware and software stack and argue that qubit technologies
should be controllable, fast, and small to scale to practical
quantum advantage. Tannu et al. [20] analyzes the quantum
instruction bandwidth requirements, while Hoefler et al. [21]
model the speed and performance of a fault-tolerant quan-
tum computer and compare these with classical computer
hardware. Holmes et al. [22] studies the architectural layout
of magic-state distillation factories, a way to build high-
quality T-states from a larger number of imperfect T-gates
and an important component of the QPU, in order to optimize
throughput by avoiding routing and congestion issues on the

QPU. However, none of these works model the architectural
requirements for the classical decoder hardware.

A different area of research is the development and per-
formance analysis of error decoders, both for software and
hardware implementations, which are required for online quan-
tum error correction of fault-tolerant quantum computations.
Highly optimized graph-based algorithms [23], [24] in com-
bination with parallelization techniques [25]–[27] are used
in state-of-the-art software approaches. The performance of
decoders has been modeled in recent work [28], [29], but
there is still need for an analysis of the resources required to
scale online decoding to classically intractable large quantum
computations.

In this work, we fill these gaps and develop a novel model
to estimate the classical computational resources required to
support online quantum error decoding at scale. Our model
allows us to estimate the runtime, logical clock speed, decod-
ing latency and bandwidth, and decoding compute intensity
for relevant quantum computations.

III. BACKGROUND

In this section, we first discuss the most important compo-
nents that make up the quantum computer stack for supercon-
ducting qubits, and then provide an overview of the surface
code architecture, which is the quantum error correcting code
we consider in our paper.

Fig. 1 shows a high-level block diagram of the most impor-
tant components of the quantum stack we consider. The stack
consists of QPU control hardware placed at room temperature,
and integrated with a HPC system that handles quantum
compilation tasks and online error decoding. This is connected
to a dilution refrigerator that contains the QPU kept at near
absolute zero (mK) temperatures and additional cryogenic
control, error compression and pre-decoding hardware [29]–
[31], that can reduce the I/O requirements between room
temperature compute and the cryogenic environment to meet
stringent cooling power budget constraints [20].

The stack in Fig. 1, from the QPU to compiler, control,
and decoder hardware, is assumed to encode and process the
quantum information using a specific QEC code, the surface
code [13], [16], [32]. We choose the surface code as it is
(i) well understood (all components required for universal
quantum computation on surface code logical qubits have been
studied), (ii) it forms a good proxy for many other QEC
codes, including color codes [33] and toric codes [34], and
(iii) it only requires local qubit connectivity in a 2D planar
topology. This 2D connectivity is less challenging to realize
experimentally than codes that require long-range connectivity,
such as quantum low-depth parity check (qLDPC) codes [35]–
[39]. In demonstration of this, a recent experimental break-
through showed a logical qubit encoded with a distance-3 and
5 surface code on a superconducting QPU demonstrated error
suppression [40].

The blueprint for a distance-7 surface code logical qubit
is shown in Fig. 2. The code distance is denoted as d and
corresponds to the smallest chain of errors on physical qubits

Room temperature. O(300K)

HPC System

Compilation

Parallel Window
Decoder [25]–[27]

QPU Control

Dilution refrigerator.

Cryogenic Control

Syndrome Compression [29]

Pre-decoding [30], [31]

O(4K)

QPU O(10mK)

High Bandwidth,
Low Latency
Interconnect

Fig. 1. Block diagram of a quantum computer architecture based on
superconducting qubits: classical control hardware at room temperature is
interfaced through a high bandwidth, low latency interconnect with different
layers in a cryogenic environment, including control, QEC, and the QPU. The
QPU and controllers outside the dilution refrigerator are interconnected with
an HPC system that compiles the quantum program and supports the online
decoding using a parallel window decoder. In this work, we focus on the
colored components in the stack to model error decoding at scale.

that cannot be protected. The logical qubit is made up of two
nested square lattices of physical qubits that are respectively
the d2 data qubits (black dots), which store the logical
quantum information, and d2 − 1 ancilla qubits (blue dots),
which are used to perform stabilizer measurements through
parity checks. Each ancilla qubit that is used, is part of a
plaquette (dashed lines in Fig. 2) and is connected to the data
qubits located on the vertices of the plaquette. The plaquettes
come in two different kinds as indicated by their white and
blue colors in Fig. 2, and measure respectively Z- and X-
parity checks to detect phase- and bit-flip errors. These are also
known as the Z- and X-stabilizer measurements and project
the encoded logical qubit back into a valid code subspace, also
known as the Pauli frame. The stabilizer measurements are
constructed in a way to not measure the encoded logical qubit
state (and therefore destroy the quantum information through
state collapse), only information about the error syndrome is
extracted. A surprising result in QEC is that it suffices to
protect against phase- and bit-flip errors even though physical
quantum errors happen in a continuum [2].

The error syndrome, i.e., the parity check measurements,
can be analyzed to determine the Pauli frame of the logical
qubit. This process is known as error syndrome decoding and
is the main computational problem that the classical support

Qubit: data ancilla

Plaquette: X-stabilizer Z-stabilizer

Fig. 2. Distance d = 7 rotated surface code logical qubit |ψ⟩ consisting of
d2 data qubits (black dots), ancilla qubits (blue dots), X-stabilizers (colored
plaquettes), and Z-stabilizers (white plaquettes) [41].

hardware in Fig. 1 has to solve. Provided that every physical
error mechanism that appears in the hardware flips at most two
parity check detectors, the error syndrome maps to a graph-
like error model. This assumption agrees well with common
noise models assumed for surface codes and we adopt it for the
remainder of this paper as an underlying premise. Graph-like
error syndromes can be analyzed as minimum-weight perfect
matching (MWPM) problems [16], and can be solved using a
variant of the blossom algorithm [42]. Naive implementations
of the blossom algorithm scale quadratically in the number
of vertices of the underlying graph; recent optimized imple-
mentations in Sparse Blossom [23] and Fusion Blossom [24]
achieve a scaling that is closer to linear. In Sections IV and V,
we benchmark and model MWPM decoders to estimate the
compute intensity required to support large-scale FTQC.

The logical qubit in Fig. 2 encodes the quantum information
in d2 data qubits and the ancilla qubits are used to measure
d2−1 stabilizers, which leaves one logical degree of freedom
|ψ⟩. This redundant encoding of the logical information leads
to an exponential suppression of the error provided that the
physical error rates in the system are low enough. A logical
error only occurs if there is a chain of single-qubit physical
errors in the lattice that is equivalent to a logical operator,
typically a chain of errors that crosses the lattice either
horizontally (logical-Z error) or vertically (logical-X error).
The minimal length of such an error chain is d. These type of
events are undetectable and lead to a code failure. When the
physical error rate rate is small enough, increasing d reduces
the likelihood of an error chain spreading across the lattice,
leading to an exponential suppression of the logical error. A
common heuristic for the logical error rate eℓ of a surface
code qubit that we use as a model throughout our analysis

is [43],
eℓ(ep, d) = 0.1 (100 · ep)

(d+1)/2, (1)

where ep is the physical error rate in the system and d the
code distance.

IV. METHODS

This section describes our methodology to model the data
generation rate, run times, and computational complexity of
error decoding.

A. Syndrome data generation rates

The effectiveness of the error suppression in Eq. (1) relies
on continuously repeated measurement of the X- and Z-
stabilizers in order to remove entropy from the data qubits and
avoid accumulation of physical errors. The whole procedure of
syndrome extraction is expected to operate in the MHz range
for superconducting qubits. We will assume throughout our
analysis that each code cycle, or round of syndrome extraction,
takes tcycle = 1µs [10].

Each code cycle generates O(d2) raw bits of information
and the raw data generation thus scales quadratically in
the code distance d with a prefactor of t−1

cycle ∝ O(106).
Fig. 3 illustrates the quadratic scaling of the data generation
rates for a single logical qubit encoded in a rotated surface
code simulated with Stim [44], a fast simulator for quantum
stabilizer circuits. Data is shown for the complete syndrome
(◦-marks, blue), as well as the rate of non-trivial, nonzero
events at three different physical error rates of 10−2 (+-
marks), 10−3 (△-marks) and 10−4 (×-marks). We observe
that the data rate of the non-trivial detection events exhibits a
linear dependence on the physical error rates ep. This allows
for syndrome compression schemes to reduce the bandwidth
requirements [29]. We capture this dependence by modeling
the data rate (in bps) by,

Rℓ(ep, d) =

{
d2 · t−1

cycle,

4 · ep · d2 · t−1
cycle,

(2)

where the first formula is the uncompressed syndrome data
rate, and the second formula gives the rate of nonzero events.
These models are shown with full and dotted black lines
in Fig. 3.

The main takeaway from Fig. 3 is that a single logical qubit
generates Mbps to Gbps of uncompressed syndrome data, and
kbps to Mbps of non-zero events.

B. Modeling universal fault-tolerant quantum computation

In this section, we introduce our model of universal quantum
computation in quantum computer based on a surface code.
We will use this model to estimate the requirements on the
classical support hardware.

The gate set (or instruction set) for universal quantum
computation that we make use of is known as the Clifford+T
gates, and consists of the H-, S-, CX-, and T-gates. Every

3 7 11 15 19 23 27 31 35 39 43 47 51

Code Distance (d)

10−4

10−2

100

102

104

D
at

a
R

at
e

[M
b

p
s]

d2 · t−1
cycle

4 · ep · d2 · t−1
cycle

Fig. 3. Raw syndrome (◦, blue) and compressed detector graph data
generation rates as a function of code distance d for a rotated surface code
quantum memory shown in Fig. 2. The raw data generation rates are shown
in dashed lines, and the number of non-trivial events are shown in the dotted
lines for physical error rates of 10−2 (+, red), 10−3 (△, orange), and 10−4

(×, purple). One sigma intervals are shown as shaded bars for 10,000 shots.
The models of Eq. (2) are shown in black. Data generated with Stim [44].

logical circuit on Qℓ qubits can be written in the Clifford+T
gate set as,

Qℓ∏
j=1

D∏
i=1

H Sai T (CXj,c(j,i))
bi , (3)

where D is the circuit depth, the parameters ai, bi ∈ {0, 1},
and c(j, i) returns the control (or target) qubit for the ith CX
gate on the jth qubit. The total number of T-gates in Eq. (3) is
nT = Qℓ ·D. Logical measurements are not included explicitly
in Eq. (3), but are assumed to be supported both mid-circuit
during runtime and at the end.

The implementation of the Clifford gates (H, S, CX), which
can be efficiently simulated classically [45], and the logical
qubit measurements require significantly fewer resources than
implementing non-Clifford T-gates. The latter requires the
availability of resource states known as magic states, online
error decoding, and feed forward. We discuss both the imple-
mentation of the Clifford gates and non-Clifford gate in more
detail over the next two sections.

1) Complexity of Clifford gates: The single-qubit Clifford
H- and S-gates each require O(2 · d) surface code cycles to
implement. A logical measurement in the Z-basis requires
O(d) cycles. The two-qubit CX Clifford gate is more difficult
to implement in a surface code quantum computer than a
single-qubit Clifford gate because the logical qubits (Fig. 2)
are typically expected to be laid out in a 2D grid on the
QPU and can only interact along their edges, see also Fig. 6.
The standard algorithm for a CX-gate that maps to a 2D grid
is based on a procedure known as lattice surgery [41]. The
process is summarized in Fig. 4. It first prepares an ancilla in
the |+⟩-state, which is merged with the control qubit |c⟩ using

a Z⊗Z-parity check measurement (mZZ), requiring O(2 · d)
cycles of error correction. Next, the ancilla is merged with the
target qubit |t⟩ using an X ⊗ X-parity check measurement
(mXX) and then split again. This again requires O(2 · d)
error correction cycles. Finally, the ancilla is measured in the
computational basis (m+) using another O(d) cycles.

mZZ

mXX mZ

|c⟩ |c⟩ Z

= |+⟩ Z X

|t⟩ |t⟩ X

Fig. 4. Circuit to implement a CX-gate between control |c⟩ and target |t⟩
using lattice surgery and an ancilla qubit initialized in the |+⟩ state [41], [46].

The complete CX-gate using lattice surgery thus requires at
most O(5 · d) code cycles. At the end of the circuit in Fig. 4,
the Pauli frame of |c⟩ is updated with a phase flip if mXX ̸=
0, while the Pauli frame of |t⟩ is updated with a bit flip if
mZZ ⊕mZ ̸= 0. Clifford gates map Pauli frames onto Pauli
frames and thus these Clifford corrections do not have to be
implemented on the QPU, but can be tracked classically. If
the circuit consists of only Clifford operations, this correction
be done offline after the full circuit has been executed. As we
will see in the next section, this is no longer possible when
non-Clifford operations, i.e. T gates, are included in the circuit.

In conclusion, the time complexity of an HSCX-sequence
with logical measurement scales as O(10 ·d) code cycles, i.e.,

∆HSCX = 10 · d · tcycle. (4)

2) Complexity of T-gates: The fault-tolerant implementa-
tion of the T-gates in the circuit of Eq. (3) forms the main
challenge and potential bottleneck of implementing logical
operations. In this section, we analyze the steps required to
do so and model their time complexity.

T-gates are typically implemented using a two-step process.
First, a high-fidelity |T ⟩-state is prepared from a collection
of noisy, low-fidelity |T ⟩-states through a process known as
magic state distillation (MSD) [47]. The time complexity of
MSD scales as,

tMSD = tdist · d · tcycle, (5)

where tdist is the relevant distillation timescale which de-
pends on the specific configuration of the magic state factory.
Throughout this paper, we use the fast surface code configu-
ration introduced in [32]. This configuration uses 15-to-1 state
distillation factories that produce one magic state |T ⟩ every d
code cycles, i.e., tdist = 1. Their implementation requires 132
surface code patches, where a patch corresponds to a distance-
d logical qubit (cfr. Fig. 2).

Next, the |T ⟩-state has to be routed to and injected into the
logical data qubit |ψ⟩ in order to apply the the T-gate to the
logical qubit state. This is achieved using the circuit shown
in Fig. 5 which includes a logical measurement of the ancilla

carrying the |T ⟩-state and a feed-forward, corrective S-gate
that depends on the result of the logical measurement. The
S-gate has to be explicitly implemented on the QPU before
proceeding with the computation and in order to do so, we
need to decode the historical error syndrome data in order to
know the result of the logical measurements. In other words,
the application of the T-gate poses a stop to the subsequent
operations on a particular data qubit until the measurement
outcome is resolved.

tinj,|T ⟩

mT

tdec,|T ⟩

|ψ⟩ S T |ψ⟩

|T ⟩

Fig. 5. Circuit for |T ⟩-state injection highlighting the two main causes for
a delay in our model of quantum computation: the time tinj,|T ⟩ it takes to
route the |T ⟩-state to the data qubit |ψ⟩ and inject it using the CX-gate, and
the time tdec,|T ⟩ it takes to decode the syndrome of the |T ⟩-state to decide
if the S-gate has to be applied to the logical qubit |ψ⟩.

We estimate the routing time troute,|T ⟩ of the |T ⟩-state by
modeling the design of the QPU, for instance using the fast
surface code QPU layout [32] which is depicted in simplified
format in Fig. 6. Each square patch in Fig. 6 corresponds to a
d×d surface code qubit and the color of the square indicates its
purpose: yellow patches are used for distilling and storing the
|T ⟩-states, gray patches are ancillary patches used for lattice
surgery, and purple patches are the data qubits in the processor.
The number of patches in the QPU scales as [32],

npatch = 2Qℓ +
√
8Qℓ + 132. (6)

The number of physical qubits in the QPU scales as,

Qp = 2 · d2 · npatch, (7)

which includes both the data qubits and ancilla qubits that
make up the logical qubit in Fig. 2.

The number of steps required to route the |T ⟩-state from the
distillation zone to a data qubit scales on average as the radius
of the QPU, O(

√
npatch). Each step uses patch deformations

that take O(d) code cycles. Throughout our analysis, we
however assume that the |T ⟩-state routing does not congest
the QPU [22] network. As long as this condition is satisfied,
the true routing time can be hidden during the computation
and does not form a bottleneck. In our model, we allow for
a constant effective routing time of troute,|T ⟩ = 2 · d · tcycle
time, independent of the QPU size. The |T ⟩-state is assumed
to be available at the data qubit within this effective routing
time. The injection time combines the effective routing time
with the application of the logical CX-gate and measurement
in Fig. 5 and scales as,

tinj,|T ⟩ = 7 · d · tcycle. (8)

In the next section we discuss how to estimate the decoding
time, tdec,|T ⟩.

Patch: |T ⟩-Distillation & Storage Ancilla Data

Fig. 6. Simplified quantum processor layout based on the fast surface code
configuration of [32]. The processor is partitioned into patches that handle
magic state distillation, ancillary patches, and patches storing the data qubits.
Each patch is a distance-d surface code logical qubit.

C. Modeling the decoder

In this section, we start by motivating the need for online
decoding of T-gates, discuss the potential backlog problem this
may cause, and review (parallel) window decoding as a way
to overcome this. We then benchmark the performance of an
(interrupted) MWPM decoder and use the previous results to
develop a model to estimate the overall decoding time tdec,|T ⟩
and computational complexity.

1) Online decoding with a parallel window decoder: We
need a decoder that is both fast and accurate enough to reliably
process the feed forward step required in the T-gate circuit in a
timely manner. The speed of the decoder is important for two
reasons: (i) we do not want to drastically slow down the logical
clock speed at which the circuit in Equation (3) is executed
so we can retain the theoretical quantum speedups, and (ii)
we need to avoid the backlog problem [13] that can grind the
computation to a halt. Sufficiently high decoding accuracy is
desirable as to not increase the logical error rate Eq. (1) by too
much. Online, or real-time, decoding is a syndrome decoder
that meets these stringent requirements and is necessary for
useful quantum computations.

We remark that for the state injection circuit in Fig. 5, it
suffices to have confidence in the mT -measurement in order to
apply the S-gate even in the presence of a delay tdec,|T ⟩. The
Pauli frame of the data qubit |ψ⟩ might have changed during
the delay, but this does not affect the application of the S-gate
and can be decoded in the next cycle.

A decoder that can realize a decoding time tdec,|T ⟩ that
does not (significantly) grow with the amount of syndrome
data to be processed is essential for online decoding. Since
the time complexity of MWPM grows at best near-linear in
the graph size, this type of scaling cannot be realized by a
MWPM decoder processing the full syndrome history, which

is growing linearly with time.
Sliding window decoding [16] mitigates this issue by: (i)

splitting up the syndrome history into overlapping windows of
size d, (ii) decoding the syndrome data inside the first window
with an inner decoding algorithm (for example MWPM), (iii)
committing the Pauli frame corrections in the first half of the
window, i.e., the first (d + 1)/2 cycles, the other half of the
window is the buffer zone, and (iv) sliding the window forward
in time by (d+1)/2 cycles to repeat the process for the next
window. The sliding window decoder processes O(d3) data at
each step and the computational complexity per step thus does
not necessarily grow with time. It is however still essential for
the sliding window decoder to not be too slow: as long as the
decoder can process O(d3) syndrome data within one code
cycle the pace of the sliding window will keep up in real-time
with the syndrome generation rate. Since the window size and
thus the decoding time complexity still grows with d, there
exists a value for d beyond which the sliding window decoder
cannot keep up with this rate.

Parallel window decoding [25]–[27] is a recent extension
of sliding window decoding that can tolerate an inner decoder
that processes syndrome data in theory at an arbitrary rate and
as such fully overcomes the backlog problem. The parallel
window algorithm is illustrated for distance d = 5 in Fig. 7.
It consists of two steps. First, the syndrome data is partitioned
in non-overlapping windows of size 3d code cycles, with d
code cycles separating the windowns (round A). All windows
can be decoded completely independently using MWPM. The
outer d cycles on the left and right serve as a buffer zone and
only the results for the middle d cycles are committed. Next,
in round B, the windows of size 3d, which lie in between the
committed zones from round A, are decoded with MWPM and
stitched together with the committed windows from round A
to decode the full history. The number of windows in both
round A and B scales as,

nwindow(t) =

⌈⌈
t

tcycle

⌉ /
4d

⌉
=

⌈
ncycle(t)

4d

⌉
. (9)

If we assume the availability of sufficient computational re-
sources, perfect parallel scaling, and ignore the communication
overhead, then parallel window decoding can process any
amount of syndrome history in a time complexity independent
of the amount of syndrome data. Under these conditions, we
can achieve online decoding.

We remark that both the sliding and parallel window ap-
proaches can match the accuracy of a decoder with access
to the full syndrome history. The probability of a syndrome
measurement outside the buffer zone impacting the results in
the commit zones decreases exponentially with the size of
the buffer zone. The setup in Fig. 7 achieves high decoding
accuracy in practice [26].

Fig. 8 reports timings for PyMatching to decode windows
of syndrome data of size 3d. The syndrome data is generated
by Stim assuming a physical error rate of 10−3. Timings are

syndrome history
round A
round B

d cycles

Fig. 7. Setup for parallel window decoding for code distance d = 5 in two parallelizable decoding rounds. The middle d cycles of the blue windows are
committed in round A, with the outer d cycles on the left and right acting as a buffer zone. In round B the intermediate windows are decoded and stitched
together with the committed windows of round A to recover the full syndrome history [26].

3 7 15 31 51

Code Distance (d)

10−6

10−5

10−4

10−3

10−2

10−1

D
ec

o
d

in
g

T
im

e
(s

)

6.1 · 10−9 × d4.3

3 7 15 31 51

Code Distance (d)

104

105

106

107

108

109

E
st

im
at

ed
E

q
u

iv
al

en
t

F
L

O
P

34× d4.3

Fig. 8. Results from benchmarking the MWPM decoder as implemented in PyMatching [48] on an AMD EPYC 7763 CPU. Left: Decoding time per window
of size 3d in function of code distance d. Error syndromes are generated by Stim [44] for a physical error rate of 10−3. Timings are averaged over 500
windows. Right: Estimated equivalent operations to decode a window of size 3d as a function of code distance d.

shown on the left panel and averaged over 500 shots. We
observe that the average time to decode a window scales as,

twindow(d) = 6.1 · 10−9 × d4.3. (10)

The right panel of Fig. 8 reports the estimated equivalent
operations (FLOPEE) computed by assuming that PyMatching
achieves 10% of peak performance, i.e.,

FLOPEE
window(d) = 0.1 · Ppeak · twindow(d) = 34× d4.3, (11)

using Ppeak = 3.58TFLOP/s for the 64 core AMD EPYC
7763 CPU.

2) Probabilistic model for interrupted inner decoder: The
decoding time depends on the specific realization of the
syndrome. To capture this behavior and extend the model
of Eq. (10), we adapt the probabilistic model introduced
in [28]. We review and extend this model next.

Let Ω denote the sample space of all possible error syn-
dromes. The decoding time then is a discrete random variable
Xdec : Ω → N, where for each syndrome s ∈ Ω, Xdec(s) is the
decoding time k ∈ N, given as number of surface code cycles
tcycle. We denote Prdec(k) = Pr(Xdec = k) as the probability
that the decoding takes k cycles, and use a simple binomial
distribution as a model for the decoding time,

Prdec(k) =

(
N

k

)
pk(1− p)N−k, (12)

where N ∈ N, p ∈ [0, 1], and k ∈ {0, . . . , N}. The maximum
number of cycles to decode any syndrome in Ω is kmax

dec = N
and the average decoding time is given by E(Xdec) = Np.

In order to find appropriate parameters N, p for this model,
we run another benchmark, reported in Fig. 9, to measure the
distribution of the decoding time as a function of code dis-
tance. We model the data shown in red in Fig. 9 with Eq. (12)
and the parameters,

N = 6.1 · d4.3, p = ep, (13)

where ep = 10−3. The average runtime of this probabilistic
model matches Eq. (10), while the worst case complexity
scales as kmax

dec = 6.1 · d4.3.
Since the decoding time is upper bounded by the worst case

time complexity, we allow the decoder to stop prematurely
after some time M ≤ kmax

dec . The runtime distribution of an
interrupted decoder is given by [28], [29],

Pr[M]
dec (k) =

{
0 if k > M ,

Prdec(k)
Prdec(k≤M) otherwise.

(14)

An interrupted decoder fails whenever it encounters a syn-
drome s for which the decoding time is longer than M . We
assume that the logical error rate for an interrupted decoder
is equal to the weighted linear combination of the logical and

7 11 15 19 23 27 31 35 39 43 47 51
Code Distance (d)

10−5

10−4

10−3

10−2

10−1

D
ec

o
d

in
g

T
im

e
(s

)

PyMatching Timing

Model Eqs. (12), (13)

Fig. 9. Distributions of runtimes of the PyMatching decoder on windows
of size 3d as a function of code distance d (blue). Results are shown for a
physical error rate of 10−3 and 2,500 shots. The probabilistic models of the
decoder obtained from Eqs. (12) and (13) are shown in red.

physical error rates with weights respectively given by the
decoding success and failure probabilities, i.e.,

e
[M]
ℓ = eℓ · Prdec(k ≤M) + ep · Prdec(k > M). (15)

We remark that this is a different criteria than assumed in [28].
We can now summarize our analysis by the following

estimate of the decoding time,

tdec,|T ⟩ = 2 ·M · tcycle, (16)

where the factor two originates from the two rounds of
parallel window decoding, the factor M ·tcycle is the maximum
decoding time in seconds, and we use tcycle = 1µs.

D. Complete model

In this section, we formulate the complete model that we use
to estimate the computational resources required for a large-
scale quantum computation.

The key input parameters for the model are: (i) the number
of logical qubits (Qℓ), (ii) the number of T-gates (nT) required
for the computation, and (iii) the error budget ε which is the
probability that the computation is succesful.

Based on this, we minimize the runtime of the application
by minimizing the decoder interruption time M and surface
code distance d. The runtime can then be used to estimate the
equivalent operations required for the decoder.

1) Optimizing application runtime: The application run-
time of the circuit in Eq. (3) is equal to,

trun = nT · (∆HSCX +∆T) = nT ·∆HSTCX, (17)

where ∆HSCX is given in Eq. (4) and ∆T is the runtime for
a single T-gate. ∆T is estimated as the sum of Eqs. (5), (8)
and (16) and the network latency ℓ, i.e.,

∆T = tMSD + tinj,|T ⟩ + tdec,|T ⟩ + ℓ,

= (8d+ 2M) · tcycle + ℓ.
(18)

We introduced the network latency to model the delay in
transmitting the syndrome from the QPU to the decoder and
transmitting the decision about the S-gate back to the QPU.
Plugging this into Eq. (17), we get that the application runtime
trun scales as

trun = nT · ((18d+ 2M) · tcycle + ℓ) . (19)

We need to choose a code distance d and interruption time
M to ensure that the logical error rate e

[M]
ℓ is low enough

to meet the error budget. Specifically, the logical quantum
computation in Eq. (3) succeeds with probability 1−ε provided
that,

e
[M]
ℓ · npatch · trun ≤ ε, (20)

i.e., the product of the logical error rate, Eq. (15), the number
of patches to be decoded, Eq. (6), and the runtime of the
circuit, Eq. (19), should be within the error budget ε. In the
numerical experiments presented in the next section, we use
a greedy approach to minimize M and d (in that order) to
satisfy Eq. (20), given a input circuit and error budget.

2) Computational complexity and bandwidth: The total
computational power, in FLOP/s, required for online decoding
of the quantum computation can be estimated as,

C = 10 · 2 · nwindow(∆HSTCX) · npatch · FLOPEE(d)

M · tcycle
. (21)

The numerator estimates the total number of floating oper-
ations for decoding a single HSTCX-cycle using a depth-2
parallel window decoder to decode npatch surface code logical
qubits that each produce nwindow(∆HSTCX) syndrome windows.
Here we assume that we provide sufficient decoding power to
continuously process the data of all npatch patches such that
it is guaranteed that the size of syndrome data to be decoded
when a T-gate is applied remains constant. The denominator
is the time window (in seconds) during which the computation
needs to be performed. The prefactor 10 is the inverse of the
10% fraction of peak performance assumed for PyMatching.

The total bandwidth required to send the syndrome data
out of the dilution refrigerator to the decoder simply scales as
the product of the data rate of a single logical qubit and the
number of patches involved in the computation, i.e.,

B = Rℓ · npatch. (22)

V. RESULTS

In this section, we illustrate the results obtained with the
model that we developed throughout Section IV and evaluate
the quantum and classical resources required for large-scale
quantum computations over a broad range of parameters.

Consistent with our previous choices and aligned with
common results and assumptions found in the literature, we
choose a code cycle time of tcycle = 1µs and a physical error
error rate of 10−3. Furthermore, we assume that the decoder
hardware and quantum computer are interconnected with a
return latency of ℓ = 250ns, a value representative of modern
network latencies. The error budget for all considered quantum
computations is set at ε = 0.5.

1000 2000
Q`

105

107

109

n
T

1000 2000
Q`

105

107

109

n
T

500 1000 1500 2000 2500
Q`

105

106

107

108

109

1010

n
T

100 TFLOP/s

1 PFLOP/s

1000 2000
Q`

105

107

109

n
T

1000 2000
Q`

105

107

109

n
T

minute

hour

day

week
month

year

5

7

9

11

13

15

17

19

21

C
o
d

e
D

is
ta

n
ce

(d
)

3

10

30

100

300

1000

3000

10000

In
te

rr
u

p
ti

on
T

im
e

(M
)

[µ
s]

0

1500

3000

4500

6000

7500

9000

10500

12000

N
u

m
b

er
of

W
in

d
ow

s

101

102

103

104

105

106

107

108

R
u

n
T

im
e

[s
]

4.6× 1013

1.0× 1014

2.1× 1014

4.6× 1014

1.0× 1015

2.1× 1015

E
st

im
at

ed
E

q
u

iv
al

en
t

F
L

O
P

/s
(C

)

Fig. 10. Overview of the five key numerical results obtained from the model introduced in Section IV in function of the number of logical qubits Qℓ ∈
[10, 2500] and T-depth nT ∈ [105, 1010]. At each coordinate (Qℓ, nT), the interruption time M and the code distance d are minimized in a greedy fashion
to satsify Eq. (20) with ε = 0.5. The +-, △-, and ×-markers respectively indicate the coordinates (100, 106), (1000, 106), and (1000, 109) which are
representative for the computational complexity of applications in materials sciences [18] and biochemistry [17] that are described in the main text. Top left:
Minimized decoder interruption time M (in µs), Top middle: Minimized surface code distance d, Bottom left: Number of decoding windows required to
process the HSTCX-sequence, Bottom middle: Total application runtime, and Right: Estimated total compute intensity C in FLOP/s required for online
decoding.

Figure 10 reports 5 key metrics, computed by the model
introduced in Section IV, for quantum problems that require
10 to 2, 500 logical qubits and 105 to 1010 T-gates. At each
coordinate (Qℓ, nT), we minimize M and d to satisfy Eq. (20).
The top left and middle panels in Fig. 10 respectively show
the minimized interruption times M and code distances d.
We observe that the decoding time varies between 10−4 and
3 · 10−3 seconds for most of the parameter range, while code
distances range from 5 to 21. The bottom left panel shows the
number of decoding windows required to process the HSTCX-
sequence data over the whole processor in a timely manner.
This number is computed as npatch · nwindow(∆HSTCX), and
ranges from around 1,000 to just over 10,000 windows. The
bottom middle panel shows the complete application runtime,
which uses Eq. (19). The runtime starts below 1 minute and in-
creases to over 1 year over the range of considered parameters.
Finally, the right panel reports the arithmetic compute intensity
C as estimated by Eq. (21). The required compute intensity
for online decoding is less than 2.1 PFLOP/s over the full
parameter range. We observe that, over the parameter range,
the compute intensity has a relatively stronger dependence on
the T-depth and a relatively weaker dependence on the number
of logical qubits.

The red +-, △-, and ×-markers in Fig. 10 respectively indi-
cate the coordinates (100, 106), (1000, 106), and (1000, 109).
These values approximately correspond to the quantum com-
putational resources required for computing the ground state
energy of the 8×8 (+) and 20×20 (△) 2D square lattice Hub-
bard model [18], and the chemical simulation of cytochrome
P450 (×), a pharmaceutically relevant molecule [17]. We

observe that the Hubbard model computations each require
less than 1 hour of runtime and less than 210 TFLOP/s of
computational power for the decoding. The larger simulation
of P450 requires more than 1 month of runtime and a sustained
1 PFLOP/s for decoding.

Figure 11 reports on the average speed per HSTCX-cycle
and the syndrome data generation rates. Specifically, the left
panel breaks down the duration of a full HSTCX-sequence
in terms of: (i) the duration of the Clifford HSCX-sequence
∆HSCX in blue (Eq. (4)), (ii) the duration of magic state distil-
lation in red (Eq. (5)), (iii) the combined time of routing, CX-
gate, and logical measurement for magic state injection tinj,|T ⟩
in orange, (iv) the average syndrome decoding time tdec,|T ⟩
in purple, and (v) the constant network latency ℓ = 250ns in
green. We observe that the growth in average decoding time
of the inner decoder according to Eq. (10) starts to dominate
at relatively low code distances. At all code distances, the
full time complexity of the T-gate dominates over the Clifford
gates. The contribution of the network latency is negligible
and cannot be visually distinguished in the figure.

The middle panel in Fig. 11 which shows the logical clock
speed at which HSTCX-cycles are processed, i.e., ∆−1

HSTCX.
The logical clock speed starts at 10 kHz at distance 5, but
slows down to just over 100 Hz at distance 21. This is a
dramatic slowdown from the physical QPU clock speed of 1
Mhz.

The right panel in Fig. 11 shows the raw and compressed
(see Eq. (2)) syndrome data generation rates for 1,000 logical
qubits in function of the code distance. We observe that at
distance d = 19, which is the predicted optimal distance for

5 9 13 17 21

Code Distance (d)

10−4

10−3

t
[s

]
Logical operation time

HSCX

MSD

Route

Decode

Latency

5 9 13 17 21

Code Distance (d)

102

103

104

C
lo

ck
sp

ee
d

[H
z]

Logical clock speed

5 9 13 17 21

Code Distance (d)

103

104

105

106

D
at

a
R

at
e

[M
b

p
s]

Data generation rate

Raw Syndrome

Compressed Syndrome

Fig. 11. Left: breakdown of the logical operation time of processing a single HSTCX-sequence in function of code distance d. Middle: Logical clock speed
of the quantum computer in function of code distance d. Right: Raw and compressed syndrome data generation rates in Mbps in function of code distance
d for Qℓ = 1, 000 logical qubits.

the cytochrome P450 computation [17] (see Fig. 10), either
about 2 Gbps of compressed syndrome data or about 500 Gbps
raw syndrome data has to be sent from the QPU to the decoder.

VI. DISCUSSION AND CONCLUSION

In this paper, we have developed a novel and comprehensive
model that significantly extends previous work [28] and allows
us to estimate the minimal required classical computational
resources, including runtime, flops, and network bandwidth,
to support large-scale quantum computations on a supercon-
ducting QPU equipped with a surface code. Additionally, we
estimate the quantum resources required in terms of code dis-
tance and runtime, and quantify the time scales that determine
the logical quantum clock speed.

The results of our study are summarized in Figs. 10 and 11
and show that at most a few PFLOP/s of classical compute
power is required for online parallel window decoding over a
wide range of problem sizes. This is a significant amount of
computational power, but not insurmountable in comparison
to the capabilities of modern HPC systems that are breaking
the exascale barrier. The I/O bandwidth for online decoding is
estimated to lie in the Gbit/s to Tbit/s range. By itself, this is
a feasible target in light of current networking technologies.
However, it has to be realized in a cryogenic environment
under very limited power budgets.

As shown in the left and middle panel of Fig. 11 the
overhead of quantum error correction and decoding slows
down the MHz physical clock speed of superconducting QPUs
to a logical clock speed of a few hundred to a few thousand Hz
depending on the code distance. This is considerably slower
than classical computers that can run logical operations at GHz
frequencies. This gap in clock speed forms the main reason
that quantum algorithmic speedups likely need to be super-
quadratic to offer practical advantages [21]. Ongoing research
into more efficient quantum error correction schemes [35]–
[39], new qubit modalities with higher degrees of connectiv-
ity [49], and classical decoding hardware designed specifically
for fast error decoding [50] are some of the most promising
ways to overcome this challenge in the future.

We necessarily had to make a series of assumptions for
our analysis that lead to certain limitations. We assume that
parallel window decoding has perfect parallel scaling provided
that sufficient resources are available. Stitching the syndrome
data in round B with the committed data from round A does
require communication between the processors. Further work
is required to investigate how exactly this impacts the parallel
scaling. Furthermore, we stick to the commonly used assump-
tion that all T-gates are executed sequentially. This keeps the
overhead for magic state distillation constant and simplifies the
conceptual layout of the QPU [32]. Further work is required
to investigate what impact parallel T-gates would have on
our analysis. Finally, we assume a fixed logical error rate
and graph-like error syndromes. This assumption is founded
on theoretical error models relevant for surface code logical
qubits [16]. However, experimental implementations can lead
to more complicated physical error mechanisms that MWPM
cannot reliably decode and instead requires computationally
more intensive maximum likelihood decoders [40].

Future research avenues include extending our current
framework to qLDPC codes. While the surface code can be re-
garded as a topological qLDPC code formed by the hypergraph
product of the classical repetition code, expander qLDPC
codes lead to much more efficient encoding schemes [35],
[38], [39]. However, several important caveats have to be
considered in such future work. First, the configuration space
of expander qLDPC codes is extensive and further research
is required to determine which codes meet all important key
metrics such as high encoding efficiency, support for universal
quantum computation, compatibility with resource state gener-
ation, and a feasible path to experimental realization given the
multitude of non-local parity checks involved. Additionally the
decoding algorithm is a central component of our framework
and while belief propagation with ordered statistics shows
promise as a decoding algorithm for qLDPC codes [51], it
remains less well studied than MWPM.

Furthermore, it would be valuable to model the impact
of other qubit hardware modalities, such as trapped ion and
neutral atom qubits. On one hand their slower gate times

suggest that, compared to the left panel in Fig. 11, real-time
decoding would become a less important component of the
logical HSTCX-cycle. The estimated bandwidth and compute
intensity would also decrease, while the application run time
might increase. On the other hand, physical error rates of the
best available trapped ion qubits are currently lower than for
superconducting qubits. This implies a potential reduction in
code distances and physical qubits to reach similar logical
error rates. Finally, trapped ion and neutral atom systems might
admit more efficient logical gate implementations, for example
using transversal logical CNOT gates [49], that are enabled by
their dynamic qubit connectivity. A detailed further analysis
is needed to make a comparison across hardware modalities.

DATA AVAILABILITY

Code and data artifacts are available at https://zenodo.org/
records/10818960.

REFERENCES

[1] J. Shalf, “The future of computing beyond Moore’s law,” Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 378, no. 2166, p. 20190061, Jan. 2020.

[2] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum
information. Cambridge university press, 2010.

[3] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, “Quantum algorithms
for quantum chemistry and quantum materials science,” Chemical Re-
views, vol. 120, no. 22, pp. 12 685–12 717, 2020.

[4] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson,
M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya
et al., “Quantum chemistry in the age of quantum computing,” Chemical
reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019.

[5] A. Di Meglio et al., “Quantum Computing for High-Energy Physics:
State of the Art and Challenges. Summary of the QC4HEP Working
Group,” 7 2023.

[6] T. S. Humble et al., “Snowmass White Paper: Quantum Computing
Systems and Software for High-energy Physics Research,” in Snowmass
2021, 3 2022.

[7] O. Philipsen, “Constraining the phase diagram of qcd at finite temper-
ature and density,” in Proceedings of 37th International Symposium on
Lattice Field Theory — PoS(LATTICE2019), ser. LATTICE2019. Sissa
Medialab, Jan. 2020.

[8] E. Poppitz and Y. Shang, “Chiral lattice gauge theories via mir-
ror–fermion decoupling: A mission (im)possible?” International Journal
of Modern Physics A, vol. 25, no. 14, pp. 2761–2813, 2010.

[9] M. L. Wagman and M. J. Savage, “Statistics of baryon correlation
functions in lattice qcd,” Phys. Rev. D, vol. 96, p. 114508, Dec 2017.

[10] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang,
S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state
of play,” Annual Review of Condensed Matter Physics, vol. 11, no. 1,
pp. 369–395, 2020.

[11] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, 2019.

[12] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya,
P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert,
J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Bal-
lance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers,
T. Noel, and M. Saffman, “Multi-qubit entanglement and algorithms
on a neutral-atom quantum computer,” Nature, vol. 604, no. 7906, p.
457–462, Apr. 2022.

[13] B. M. Terhal, “Quantum error correction for quantum memories,” Rev.
Mod. Phys., vol. 87, pp. 307–346, Apr 2015.

[14] P. Shor, “Fault-tolerant quantum computation,” in Proceedings of 37th
Conference on Foundations of Computer Science, 1996, pp. 56–65.

[15] S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with
boundary,” 1998.

[16] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum
memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–
4505, 08 2002.

[17] J. J. Goings, A. White, J. Lee, C. S. Tautermann, M. Degroote, C. Gid-
ney, T. Shiozaki, R. Babbush, and N. C. Rubin, “Reliably assessing the
electronic structure of cytochrome p450 on today’s classical computers
and tomorrow’s quantum computers,” Proceedings of the National
Academy of Sciences, vol. 119, no. 38, p. e2203533119, 2022.

[18] E. T. Campbell, “Early fault-tolerant simulations of the hubbard model,”
Quantum Science and Technology, vol. 7, no. 1, p. 015007, Nov. 2021.

[19] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore, T. Hoefler,
V. Kliuchnikov, G. H. Low, M. Soeken, A. Sundaram, and A. Vaschillo,
“Assessing requirements to scale to practical quantum advantage,” 2022.

[20] S. S. Tannu, Z. A. Myers, P. J. Nair, D. M. Carmean, and M. K.
Qureshi, “Taming the instruction bandwidth of quantum computers via
hardware-managed error correction,” in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2017, pp. 679–
691.

[21] T. Hoefler, T. Häner, and M. Troyer, “Disentangling hype from practi-
cality: On realistically achieving quantum advantage,” Communications
of the ACM, vol. 66, no. 5, p. 82–87, Apr. 2023.

[22] A. Holmes, Y. Ding, A. Javadi-Abhari, D. Franklin, M. Martonosi, and
F. T. Chong, “Resource optimized quantum architectures for surface
code implementations of magic-state distillation,” Microprocessors and
Microsystems, vol. 67, pp. 56–70, 2019.

[23] O. Higgott and C. Gidney, “Sparse blossom: correcting a million errors
per core second with minimum-weight matching,” 2023.

[24] Y. Wu and L. Zhong, “Fusion blossom: Fast MWPM decoders for qec,”
2023.

[25] X. Tan, F. Zhang, R. Chao, Y. Shi, and J. Chen, “Scalable surface code
decoders with parallelization in time,” 2022.

[26] L. Skoric, D. E. Browne, K. M. Barnes, N. I. Gillespie, and E. T.
Campbell, “Parallel window decoding enables scalable fault tolerant
quantum computation,” Nature Communications, vol. 14, no. 1, Nov.
2023.

[27] H. Bombı́n, C. Dawson, Y.-H. Liu, N. Nickerson, F. Pastawski, and
S. Roberts, “Modular decoding: parallelizable real-time decoding for
quantum computers,” 2023.

[28] N. Delfosse, A. Paz, A. Vaschillo, and K. M. Svore, “How to choose a
decoder for a fault-tolerant quantum computer? The speed vs accuracy
trade-off,” 2023.

[29] P. Das, C. A. Pattison, S. Manne, D. M. Carmean, K. M. Svore,
M. Qureshi, and N. Delfosse, “Afs: Accurate, fast, and scalable error-
decoding for fault-tolerant quantum computers,” in 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
2022, pp. 259–273.

[30] N. Delfosse, “Hierarchical decoding to reduce hardware requirements
for quantum computing,” 2020.

[31] S. C. Smith, B. J. Brown, and S. D. Bartlett, “Local predecoder to
reduce the bandwidth and latency of quantum error correction,” Phys.
Rev. Appl., vol. 19, p. 034050, Mar 2023.

[32] D. Litinski, “A Game of Surface Codes: Large-Scale Quantum Comput-
ing with Lattice Surgery,” Quantum, vol. 3, p. 128, Mar. 2019.

[33] H. Bombin and M. A. Martin-Delgado, “Topological quantum distilla-
tion,” Physical review letters, vol. 97, no. 18, p. 180501, 2006.

[34] A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals
of physics, vol. 303, no. 1, pp. 2–30, 2003.

[35] P. Panteleev and G. Kalachev, “Asymptotically good quantum and
locally testable classical ldpc codes,” in Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, ser. STOC 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
375–388.

[36] A. Strikis and L. Berent, “Quantum low-density parity-check codes for
modular architectures,” PRX Quantum, vol. 4, p. 020321, May 2023.

[37] N. Breuckmann and J. Eberhardt, “Balanced product quantum codes,”
IEEE Transactions on Information Theory, vol. 67, no. 10, pp. 6653 –
6674, Jul. 2021.

[38] J.-P. Tillich and G. Zémor, “Quantum LDPC codes with positive rate and
minimum distance proportional to the square root of the blocklength,”
IEEE Transactions on Information Theory, vol. 60, no. 2, pp. 1193–
1202, 2014.

[39] A. Leverrier, J.-P. Tillich, and G. Zémor, “Quantum expander codes,”
in 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, 2015, pp. 810–824.

[40] G. Q. A. Team, “Suppressing quantum errors by scaling a surface code
logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, Feb. 2023.

[41] D. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, “Surface code
quantum computing by lattice surgery,” New Journal of Physics, vol. 14,
no. 12, p. 123011, Dec. 2012.

[42] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of Mathe-
matics, vol. 17, p. 449–467, 1965.

[43] A. G. Fowler and C. Gidney, “Low overhead quantum computation using
lattice surgery,” arXiv preprint arXiv:1808.06709, 2018.

[44] C. Gidney, “Stim: a fast stabilizer circuit simulator,” Quantum, vol. 5,
p. 497, Jul. 2021.

[45] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer
circuits,” Phys. Rev. A, vol. 70, p. 052328, Nov 2004.

[46] D. Litinski and F. v. Oppen, “Lattice Surgery with a Twist: Simplifying
Clifford Gates of Surface Codes,” Quantum, vol. 2, p. 62, May 2018.

[47] S. Bravyi and A. Kitaev, “Universal quantum computation with ideal
Clifford gates and noisy ancillas,” Phys. Rev. A, vol. 71, p. 022316, Feb
2005.

[48] O. Higgott, “Pymatching: A python package for decoding quantum
codes with minimum-weight perfect matching,” ACM Transactions on
Quantum Computing, vol. 3, no. 3, jun 2022.

[49] D. Bluvstein, S. J. Evered, A. A. Geim, S. H. Li, H. Zhou, T. Manovitz,
S. Ebadi, M. Cain, M. Kalinowski, D. Hangleiter, J. P. B. Ataides,
N. Maskara, I. Cong, X. Gao, P. S. Rodriguez, T. Karolyshyn, G. Se-
meghini, M. J. Gullans, M. Greiner, V. Vuletić, and M. D. Lukin,
“Logical quantum processor based on reconfigurable atom arrays,”
Nature, Dec. 2023.

[50] B. Barber, K. M. Barnes, T. Bialas, O. Buğdaycı, E. T. Campbell, N. I.
Gillespie, K. Johar, R. Rajan, A. W. Richardson, L. Skoric, C. Topal,
M. L. Turner, and A. B. Ziad, “A real-time, scalable, fast and highly
resource efficient decoder for a quantum computer,” 2023.

[51] J. Roffe, D. R. White, S. Burton, and E. Campbell, “Decoding across
the quantum low-density parity-check code landscape,” Phys. Rev. Res.,
vol. 2, p. 043423, Dec 2020.

