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Abstract—With the end of Dennard scaling, specializing and
distributing compute engines throughout the system is a promis-
ing technique to improve applications performance. For example,
NVIDIA’s BlueField Data Processing Unit (DPU) integrates
programmable processing elements within the network and offers
specialized network processing capabilities. These capabilities
enable communication via offloads onto DPUs and present new
application opportunities for offloading nonblocking or complex
communication patterns such as collective communication oper-
ations. This paper discusses the lessons learned enabling DPU-
based acceleration for collective communication algorithms by
describing the impact of such offloaded collective operations
on two applications: Octopus and P3DFFT++. We present new
algorithms for the nonblocking MPI Ialltoallv and blocking
MPI Allgatherv collective operations that leverage DPU offload-
ing, which are used by the above applications, and evaluate
them. Our experiments show a performance improvement in the
range of 14% to 49% for P3DFFT++ and 17% for Octopus,
even though the performance of those collectives in well-balanced
OSU latency benchmarks shows comparable performance to well-
optimized host-based implementations of these collectives. This
demonstrates that taking into account load imbalance in com-
munication algorithms can help improve application performance
where such imbalance is common and large in magnitude.

I. INTRODUCTION

In parallel computing, one highly-desired objective is to
fully overlap computation and communication, thus hiding
the cost of expensive network updates. While progress has
been made over the years, the goal remains elusive, with
a lack of sufficient hardware and software capabilities for
fully asynchronous support, short of dedicating a nontrivial
amount of computational resources. This paper utilizes a
programmable network device that may be used for effective
offloading a new set of communication library capabilities.
In particular, this paper describes the offload of two MPI
collective functions commonly used by HPC simulation codes
and Machine Learning applications. New algorithms were
devised to reduce the effects of application load imbalance
and to deal with application scenarios that block widely-
used algorithms from progressing under such circumstances,
thereby improving overall application performance.

The end of Dennard scaling [1] and the slowing of im-
provements in processor speed have led to an increase in com-
pute specialization to improve performance. General Purpose
Graphical Processing Units (GPGPUs), Tensor Processing
Units (TPUs), and Field-Programmable Gate Arrays (FPGAs)
are well-known examples of such specialization.

In recent years, a class of specialization has emerged
that couples network interface controllers (NICs) and com-
putational capabilities in devices generally known as Smart-
NICs [2], [3], [4]. SmartNICs are enhanced network interfaces
that provide a processing pipeline for network packets arriving
at the interface. The processing capabilities may exist solely
within the NIC’s packet processing pipeline, alongside the
packet processing pipeline, or both. A SmartNIC may support
a set of predefined, specialized hardware-based processing
programs, it may support more general programmable process-
ing capabilities, or may provide a mix of each. SmartNICs
with more general capabilities can be used for offloading
network management, complex network messaging, and even
computational work that is typically done on a host. NVIDIA’s
BlueField Data Processing Units (DPUs) [5] are an example
of this trend of increasing capabilities in SmartNICs.

Effective utilization of DPUs within emerging architectures
is predicated on the existence of a simple, performant inter-
face. To do this, we use the offloading software Multi-tenant
Intelligent Modular Offload Service Architecture (MIMOSA)
for the research carried out in this work. In addition to pro-
viding run-time support for middleware, this modular software
provides implementations of new topology and memory access
primitives required to offload MPI collective communication
work using advanced DPU capabilities.

Previous collective communication offload research has
concentrated principally on non-blocking collectives [6], [7]
wherein available computation work can proceed on the host
in parallel with the communication work that was offloaded
to other engines. Once the offload engines are given the
information to initiate the collective work, the original host
engines are not involved except to check the completion of



the communication work.
However, in this paper, we show that blocking collectives,

in addition to nonblocking collectives, can also benefit signif-
icantly from offloading processing steps within a collective.
Blocking collective algorithms are in much wider use in the
HPC application community and as such are an important
class of algorithms to optimize. Achieving performance im-
provements when blocking collectives are in use requires
thinking broadly about how offload engines and subsystems
can cooperate with host engines and with each other to
achieve low latency communication and/or high bandwidths.
Although algorithm latency considerations are important when
nonblocking collectives are utilized, the primary focus for op-
timization is to maximize communication-computation overlap
in order to enhance user-level algorithm throughput. As a
result, we developed a larger set of offload design principles
to guide our decisions.

Some of the key features of the BlueField class of devices
include an NVIDIA Connect-X network processing core (the
same one used by the host), user-programmable ARM CPUs,
and access to the network or the host through a PCIe bus. The
ARM cores are not server-grade and their number is typically
much smaller than then number of host-side computational
engines, and their memory bandwidth is also smaller than
that of the server compute complex. The BlueField compute
cores may be used independently of the state of the host-side
compute engines. As such, this class of devices is very well
suited for lightweight asynchronous computational tasks. In
the context of collective communication algorithms, this class
of devices is particularly well suited for implementing large-
data loosely coupled operations, such as blocking and non-
blocking versions of alltoall, alltoallv, allgather and allgatherv,
which are used by many HPC and emerging AI applications.

This paper defines and justifies these principles that underlie
state-of-the-art DPU-based communication frameworks, and
describes the design and performance of DPU-accelerated
MPI Allgatherv and MPI Ialltoallv collective communication
algorithms implemented using MIMOSA. These collectives
are used by the applications studied here. We make the
following contributions:

1) A description and justification of the tenets used to build
a communication framework accelerated with DPUs.

2) Descriptions of offloaded collective communication al-
gorithms that are able to simultaneously exploit the
strengths of DPUs and host processors.

3) Performance analysis of these offloaded collective com-
munication algorithms on standard benchmarks and sci-
entific applications.

The remainder of this paper is organized as follows:
Section II describes the relevant background on DPUs and
describes the specialized capabilities of the NVIDIA Blue-
Field DPU. Section III presents the offloaded algorithms and
provides a brief description of the MIMOSA communication
library, service processes (SPs), and changes made to the UCX
library in order to support implementation of offloaded algo-
rithms. Section IV presents a detailed performance analysis

of offloaded collectives and applications, Section V overviews
related work. Section VI discusses our overall findings and
provides an expanded set of algorithm offloading and library
design principles based on this work.

II. BACKGROUND

A. From SmartNICs to DPUs

Early SmartNICs [8], [9], [10] provided a limited set of
in-pipeline processing capabilities for delivering packets to
user space [11], traffic shaping [12], or tailored offloads for
TCP packet processing [13]. Emerging SmartNICs provide
much richer hardware capabilities such as regular expres-
sion matching [14], compression [15], encryption [16], and
SDN controllers [17]. Current commercial SmartNIC prod-
ucts exist at multiple points along this design space and
range from generally programmable in-pipeline processing
capabilities [18], [19], SmartNICs that provide in-pipeline
processing with general programs and predefined hardware
functions [20], and the most capable SmartNICs providing
a complete feature set that enables packet processing both
alongside and within the packet pipeline using both predefined
programs and programmable processors [5], [21]. Although
there is no clear delineation where SmartNICs end and DPUs
begin, the industry trend appears to be for SmartNICs that are
generally programmable and that provide high levels of in-
pipeline processing performance to take on the DPU moniker.

B. BlueField Data Processing Unit

The NVIDIA BlueField family of DPUs [5] are systems-on-
a-chip (SOCs). They include an InfiniBand Connect-X Host
Channel Adaptor (HCA) core, programmable ARM cores,
which run the Linux operating system, memory, domain-
specific accelerators, DMA engines for transferring data be-
tween the host and the DPU, and a PCIe switch that allows
DPU memory to be accessed from the network or the attached
host. The DPUs are connected to the host via a PCIe bus. The
host-side computational engines and the DPU ARM cores both
access the network through the Connect-X core. Data transfers
between the host and DPU memory may be realized using
either InfiniBand capabilities or DPU DMA engines.

The DOCA software stack provides system-level application
support for BlueField DPUs [22] including standard program-
ming environment tools that can be used to compile the user-
level binaries that will run on the DPU itself. Since the DPU
functions independently of the host, such binaries can be
used to run code asynchronously with respect to host-side
applications. As such, the DPU provides additional resources
to host-resident applications and can be used to enable the
realization of a truly asynchronous communication progress
engine.

The BlueField-3 platform is the device utilized in this
paper. The networking element is the ConnectX-7 400 Gb/s
core, which supports 32 lanes of PCIe Gen 5.0 between the
host and the DPU. It is configurable for either dual ports of
NDR / NDR200 or a single port of NDR and a PCIe switch
bifurcation with 8 downstream ports. The device features up to
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16 Armv8 A78 cores (64-bit) with an 8 MB L2 cache per two
cores and a 16 MB L3 cache. The chipset supports two DDR5
5600 MT/s DRAM5 controllers and up to 64 GB of DRAM5
memory with 8 MB of L2 cache and 16 MB of L3 cache.
The maximum ARM CPU memory bandwidth is 80 GB/s,
depending on how the device is configured.

C. Alias Memory Keys

The InfiniBand specification defines an object called a
memory key (MKey) that is used to describe an InfiniBand
accessible region of memory and access rights to this memory.
For example, the MKey includes a reference to a virtual-to-
physical translation table. These MKeys are associated with
a specific instance of a virtual Host Channel Adapter (HCA).
By default, access to such memory regions is allowed only
through objects, such as queue pairs, that belong to the same
instance of the virtual HCA.

Recently, a secure protocol has been added to allow objects
from one instance of a virtual HCA to access and use MKeys
in another virtual HCA when both instances are mapped back
to the same physical HCA. The result is an alias-Mkey with
InfiniBand access to the original memory region. As host-side
memory and DPU memory access the network via the same
HCA, an alias-Mkey memory key can be created that provides
the DPU InfiniBand access to host-resident memory. This
allows the DPU to initiate network activity, such as posting
a send request, on behalf of the host and is a key capability
for supporting efficient offload of network traffic management
from the host to the DPU. Alias-Mkeys are critical to the DPU
offload work conducted in this study because they avoid the
explicit transfer of data from the host to DPU, or DPU to host,
as would typically be required for an RDMA operation.

III. BLUEFIELD ACCELERATED COLLECTIVE SUPPORT

The BlueField accelerated collective algorithms described
in this paper generally include algorithms whose implemen-
tation is split on a per MPI process basis between an MPI
process resident on the host and an associated process on
the DPU. Such implementations leverage the newly developed
MIMOSA infrastructure and the UCX point-to-point com-
munication library, and are implemented via extensions to
the Unified Collective Communication Library (UCC) [23].
Both blocking and nonblocking algorithms are supported. The
overall goal of the accelerated collective support is to improve
application throughput. This results in different design con-
siderations based upon the accelerated collective algorithm in
question. More specifically, for blocking algorithms the target
is to offer the best operation latency possible, while for non-
blocking algorithms the target is to maximize communication-
computation overlap opportunities.

With the above in mind, the primary principles used to guide
the design of new BlueField accelerated collective algorithms
in this work include:

• The DPU is truly asynchronous with respect to the host.
As a result, the average latency of a response within a
DPU-based algorithm is much lower than a host-based

algorithm wherein compute resources are shared with the
application.

• DPU compute resources are not as powerful as the server
side resources. This limits the amount of computation that
can be done without harming overall performance.

• The number of DPU-side general-purpose computational
elements is a small fraction of the host-side resources.
Therefore, a single DPU-side compute resource is gener-
ally required to service several server-side entities, which
serializes processing on the DPU.

• Algorithmic coordination between the host and DPU
resources adds control path latency.

• The BlueField DPU support for alias-Mkeys allows for
memory that is server-side resident to be accessed without
involving the host-side computational capabilities.

• The BlueField memory bandwidth is additive with respect
to server-side memory bandwidth and may be used to
supplement the available server-side bandwidth for oper-
ations such as data packing.

This section briefly describes the concept of Service
Processes (SPs), the MIMOSA library, and modifications
made to the UCX and UCC libraries in order to support
alias-Mkeys and the BlueField offloaded MPI Ialltoallv and
MPI Allgatherv algorithms, respectively.

A. Service Processes (SP)

Service processes are daemon processes running on the
DPU that execute the BlueField portion of the offloaded
collective algorithms. Each SP participates in establishing
connections with host-resident MPI processes taking part in
the job as well as with other SPs as dictated by implementation
requirements. During communication establishment, service
processes exchange endpoint information as well as topol-
ogy metadata for host application processes. This topology
metadata includes MPI communicator and rank information
along with runtime residency details such as socket and core
binding specifics for the host-resident MPI processes. This
data is used to establish the needed communication channels
between SPs and local and remote host MPI processes. After
completion of the bootstrapping process, the daemons move to
the progression cycle and wait for control messages that direct
the algorithmic flow for any ongoing collective operations.
Figure 1 shows how differing numbers of host processes and
service processes can be associated with each other and the
communication pathways that control messages use.

B. MIMOSA

This subsection provides brief descriptions of key MI-
MOSA components used for enabling BlueField accelerated
collectives. In order to facilitate the implementation of DPU
offloaded algorithms, MIMOSA distinguishes between control
and data paths. The control path is active-message based and
enables the exchange of messages and data that is inherently
required for the implementation of offloaded algorithms, i.e.
coordination messages exchanged between the host-resident
MPI ranks and the SPs as well as between SPs. The exchange
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Figure 1: Process layout for a parallel MPI job with MI-
MOSA service processes. Arrows between processes show
the communication paths available for algorithm control-plane
messages. Data plane messages are sent using RDMA transfers
as described in the text.

of application data within the offloaded algorithms presented
in this paper, typically large in size, is handled by the data path.
For performance reasons, these data path exchanges most often
rely on RDMA operations built upon alias-Mkeys and, there-
fore, do not utilize MIMOSA directly. Control path messages,
on the other hand, are usually accomplished using MIMOSA
events that are designed to be easy to use and optimized for
such exchanges. Information necessary for performing alias-
Mkey enabled data movement as described above, for example,
is exchanged using MIMOSA events.

MIMOSA provides the following capabilities for DPU-
enabled systems:

• Offload engines that implement offload services and cre-
ate and manage the progress of active offloaded opera-
tions.

• Offload service bootstrapping to establish and tear down
a foothold from applications to the offload services.

• Group and topology management in support of distributed
objects like MPI communicators, which enables load
balancing between entities involved in the offloading of
a collective operation by exposing the various mappings
between MPI communicators, ranks, and SPs.

• Endpoint cache supporting high-performance communi-
cation.

• Execution context used to manage a given offloaded
operation such as an MPI collective, on behalf of a single
user-level communication context like an MPI process.

• Notifications and events that encapsulate information, re-
sources, and tasks associated with progressing a commu-
nication operation as well as completion notifications. For
example, when an MPI Allgatherv operation is invoked
by an application process, the communication library uses
a notification to inform the DPU-side proxy that the
operation has started and passes the relevant metadata
to the corresponding DPU context.

C. UCX Modifications

In this work, UCX [24] is used as the low-level communi-
cation library to create and post work requests to the network.
Host-only UCX users create one memory key for each re-

gion of memory used for network communication, but DPU-
initiated network operations involving host-resident memory
regions requires setting up an alias-Mkey. The workflow to
create these keys involves the following steps:

• Create an Mkey (target Mkey) for the relevant memory
region on one virtual HCA (target virtual HCA).

• Modify target Mkey to allow it to be accessible from
another virtual HCA (initiator virtual HCA).

• Transfer target Mkey from target virtual HCA to initiator
virtual HCA.

• Create the alias Mkey from target Mkey on the initiator
virtual HCA.

An optimization that eliminates the need to create the alias-
Mkey for each region of memory being registered is to create
an empty predefined User-Mode Memory Registration (UMR)
MKey (MKeyA) and create its corresponding alias-Mkey on
the DPU (MKeyA-DPU), as described above, and maintain
this pairing for the duration of the given MKey. When a
new memory region needs to be used, a regular host-side
Mkey (MkeyB) is created. This memory key is associated with
MKeyA by posting an InfiniBand send request filling MKeyA.
At this stage MKeyA and MKeyA-DPU are both ready for use
in initiating network activity for host-resident memory regions
described by MKeyB. This requires only local host-side setup
once after MKeyA-DPU is initially set up.

D. BlueField Optimized Collectives

Modifying an MPI collective to leverage DPU offloading
motivates a careful algorithm distribution between host and
DPU. Algorithm offloading can be done in many ways, from
offloading the entire algorithm, wherein the data is copied in
and out of the DPU and the algorithm is executed almost as-is
on the DPU, to a redesign of the algorithm for a finer-grain of-
fload where the algorithm specifies pieces running on the host
and DPU in order to optimize for the respective technologies.
These options impact the balance between leveraged compute
capabilities, coordination, and data transferred between the
hosts and DPU. The algorithm distribution should therefore be
carefully considered since these choices have a clear impact on
performance. Moreover, asynchronous tasks should not be run
on resources shared with other entities, such as on the host-
side where the application is run, in order to ensure optimized
performance. With these considerations in mind, we design
two BlueField-accelerated collective algorithms.

The algorithms we accelerate in this work are designed to
optimize operations that involve large data transfers where the
goal is to orchestrate the global data transfers in a manner that
reduces the likelihood of encountering network congestion. A
basic building block for such algorithms is the use of some
sort of ring algorithm with the specifics dependent on the
collective operation being implemented. For our accelerated
algorithms, a common feature across implementations is run-
ning the per-process ring-management on the DPU in order
to avoid the situation where the orchestration described above
may compete with the application computation for resources.
This optimization allows the collective operations to progress
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independently of the state of the running application. Further,
it also enables application computation to continue without the
need to stall in order to progress ongoing collective operations.

1) MPI Ialltoallv BlueField Algorithm: Within an
MPI Ialltoallv collective operation, each MPI process sends
unique data to every other MPI process in the communicator
wherein each data block size is unique. Large-data optimized
algorithms for this collective, both blocking and nonblocking,
typically use a ring-like algorithm to schedule data transfers
as they are readied as described above.

Our offloaded algorithm builds upon this approach by using
a service process (SP) to progress the ring-like algorithm
without host-side assistance. At a high level, the algorithm
is performed as follows:

• A host process notifies its associated SP on the DPU
that the collective has started. It passes metadata to the
SP that includes items such as a unique group (MPI
communicator) context, group rank, collective ID, virtual
addresses and memory keys for the source and destination
buffers, data type, and the counts arrays.

• The SP progresses a ring-like algorithm to distribute data
to each of the other MPI ranks in the communicator.
MIMOSA notifications are used to notify the destination
MPI process’s corresponding SP that data is ready to be
read. Each notification includes the addressing informa-
tion needed by the SP to read user data from the source
process.

• When the notification arrives at the remote SP, the SP
enqueues the metadata for in-turn processing. If the
associated receive-side MPI process has not entered the
iAlltoallv and given its metadata to this SP, the SP will
wait to handle this request after it receives that metadata.

• The receive-side SP performs a UCX RDMA read op-
eration, coupled with the alias-Mkey capabilities of the
NVIDIA DPU, to transfer the data from the source MPI
process directly to the receive-side MPI process. As part
of this procedure, the SP ensures that the number of active
read requests does not exceed a predefined upper limit. It
also checks for completion of the transfer to complete this
step of the algorithm. Note: while RDMA Writes from
multiple sources can potentially flood a destination and
cause tree saturation, RDMA Reads can more effectively
limit network congestion.

• After all local data transfers are completed, the SPs notify
the host-side communication library of local collective
completion.

2) MPI Allgatherv BlueField Algorithm: An
MPI Allgatherv collective operation enables each MPI
process to send its data to every other MPI process in the
communicator. The data size each MPI process sends is
unique to the given MPI process. Similar to MPI Ialltoallv,
large-data optimized algorithms use a ring-like algorithm
to schedule data transfers as they are readied. Optimized
MPI Allgatherv implementations often use some form
of a hierarchical ring algorithm [25] and a more recent

implementation [26] segments messages to improve network
utilization and load balancing.

Our offloaded algorithm is a hierarchical algorithm wherein
a given MPI rank’s data is sent to a host only once. A
service process (SP) is used to progress communication and
to manage the segmented ring-like algorithm. This allows the
the algorithm to take advantage of a DPU’s asynchronous
capability to pick an available local MPI process to receive the
remote data and load balance data delivery across ready local
MPI processes. At a high level, the algorithm is as follows:

• A host process notifies its associated SP on the DPU
that the collective has started. It passes metadata to the
SP that includes items such as a unique group (MPI
communicator) context, group rank, collective ID, virtual
addresses and memory keys for the source and destination
buffers, data type, and the counts arrays.

• The SP progresses a ring-like algorithm to distribute each
MPI rank’s data to every other host running an MPI
rank participating in the collective operation. MIMOSA
notifications are used to notify one of the SPs running
on each remote host that data is ready to be read. Each
notification includes the addressing information needed
by that SP to read user data from the source process.

• When the notification arrives at the remote SP, the
process of determining which of that DPU’s SPs will
initiate the data transfer from the source to one of that
SP’s associated MPI processes is started. If the receiving
SP recognizes the collective operation, it will manage the
data transfer. If not, it will pass the request in a ring to
the remaining local SPs until one is found that is ready
to handle the request. If no such SP is found, the request
is placed on a shared list that all local SPs will check for
work such that the request will eventually be satisfied.

• The receive-side SP performs a UCX RDMA read op-
eration, coupled with the alias-Mkey capabilities of the
NVIDIA DPU, to transfer the data from the source MPI
process directly to the receive-side MPI process. As part
of this procedure, the SP ensures that the number of active
read requests does not exceed a predefined upper limit.
It checks for completion of the transfer to complete this
step of the algorithm.

• After this host-memory-to-host-memory RDMA data
transfer completes, data transfer to the remaining local
MPI processes commences. These MPI processes are
notified that the requisite data is available by passing
metadata that includes the MPI rank of the local pro-
cess that has already received the data as well as the
virtual address and data type of the available data. These
host processes then initiate the data transfer within the
host, thereby avoiding an unnecessary waste of network
bandwidth.

• After all local data transfers are completed, the SPs notify
the host-side communication library of local completion.

5



IV. EVALUATION

We evaluate the effectiveness of our BlueField-accelerated
collective algorithms using a variety of Open MPI-based
collective implementations. As described in this paper, our
implementation is based on Open MPI [27] using a modified
UCX transport implementation and a modified UCC collective
algorithm component. For comparisons to the existing state of
the art, we compare to the standard Open MPI implementation
and to NVIDIA’s closed source HPC-X MPI implementation
[28]. Latency tests are used to measure the average time it
takes a given collective to complete. The Overlap benchmark
measures the relative amount of computational work that can
be done while a single nonblocking collective is active. To
evaluate collective communication performance in isolation,
we use the OSU Micro-Benchmark suite [29], release 5.8. We
do not modify the default number of warm-up trials (10 for
large messages) or measured trials (100 for large messages) in
any test. On OSU runs, error bars show the reported minimum
and maximum latencies across the 100 trials. In addition, we
also evaluate performance using the P3DFFT++ distributed
Fast Fourier Transform (FFT) and Octopus scientific appli-
cations. Note that because the OSU collective benchmarks
are well load-balanced, their measured performance tends to
be better than for the same collectives executed within full
applications that exhibit various degrees of load imbalance.

A. System Configuration

The numerical experiments presented in this paper have
been performed on a 32-node Intel Broadwell system with
NVIDIA BlueField-3 DPUs. The system configuration is
described in Table I. Note that BlueField-3 DPUs run at
NDR200 speed, which has a theoretical throughput of 200
Gbps. However, since the host architecture only supports PCIe
3.0, the NDR200 BlueField-3 is limited to 128 Gbps when
used as a host channel adapter (HCA) from the host. When
used as an HCA from the DPU, it is capable of delivering
native 200 Gbps.

Table I: 32-node system configuration. Each host is connected
via PCI 3.0 to one BlueField-3 DPU.

Host BlueField-3 DPU
OS Rocky Linux 9.2 Rocky Linux 9.2

Kernel 5.14.0-284.25.1.el9 2 5.15.0-1015-bluefield
CPU Intel(R) E5-2697A Cortex-A78AE

Frequency 2.60 GHz 2.10 GHz
Sockets 2 1

Cores / Socket 16 16
RAM 256 GB 32 GB

Switch NVIDIA Quantum-2 QM9700
HCA NVIDIA ConnectX-7 (with NDR200 links)

HCA FW 32.38.1002
Storage NFS & Lustre

B. Point-to-point Performance

In order to understand the behavior of any collective op-
eration, we first need to understand the BlueField-3 perfor-
mance metrics for relevant point-to-point communications.

These metrics, collected using the OSU latency and bandwidth
benchmarks, have been measured host to host and DPU to
DPU on a native NDR system, as well as the NDR200 system.
The native NDR data was collected from a pair of Intel
Sapphire Rapids nodes while the NDR200 data was collected
from the aforementioned test system that is utilized for the
rest of this paper.

Figure 2 shows the OSU latency and bandwidth com-
parisons for different configurations. We can see that the
BlueField-3 zero-byte latency is very close to that of
ConnectX-7 at 1.16 µs and 1.19 µs, respectively. The latency
for host-host and DPU-DPU are also identical for small
messages, which indicates that processing work requests on
the ARM side is as efficient as on the host side. For large
messages, performance on the native NDR is better than
NDR200 due to increased bandwidth, where 49.47 GB/s and
24.75 GB/s performance measurements with 4 MB message
sizes are observed, respectively. The PCIe 3.0 on the test
system limits the host to host bandwidth to 128 Gbps so it
is less than DPU to DPU even though they are both NDR200,
at 13.92 GB/s and 24.75 GB/s, respectively.
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Figure 2: Point-to-point latency and bandwidth between
BlueField-3 and ConnectX-7 with different configurations.

C. Service Process Count Selection

MIMOSA provides the ability to configure a varying
number of service processes to run on the DPU. For our
DPU-accelerated algorithms, each service process acts as an
asynchronous agent for a statically configured set of MPI
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Figure 3: MPI Allgatherv and MPI Ialltoallv — 1024 Process, 32 processes per node latency measurements, as a function of
SP count and message size.

processes. As such, a given SP serializes the handling of work
for the MPI processes it handles. It is desirable to minimize
the number of SPs used in order to make the DPU cores
available for other work and, therefore, we study the impact
of the number of SPs per DPU on operation latency.

Figure 3 (a) and (b) show the performance of DPU-
accelerated MPI Allgatherv and MPI Ialltoallv, respectively,
as a function of the number of SPs. The OSU MPI Allgatherv
and MPI Ialltoallv benchmarks are used to collect data using
one, two, four, and eight SPs servicing 32 MPI processes per
node. The data show that for smaller sized messages up to
64 KB one SP cannot quite keep up with the amount of work
required to service 32 MPI processes. For larger messages,
four SPs are needed, which is equivalent to one SP per eight
MPI processes. Increasing the count of SP to eight improves
performance slightly further but does so with diminishing
returns. Given these results, we used four service processes
for our remaining experiments.

D. DPU-Accelerated MPI Allgatherv

Latency measurements for MPI Allgatherv are shown in
Figure 4. This data is collected using the BlueField offloaded
algorithm, Open MPI, and HPC-X. Two MPI process layouts
are used: 1) MPI ranks are distributed block-wise across hosts
within the communicator, i.e. “contiguously” distributed, and
2) MPI ranks are distributed in a round-robin manner across
the communicator hosts, or “strided”. As the data show, the
offloaded algorithm’s performance is often better and at least
comparable to the latency of the best host-only algorithm
implemented in HPC-X, being 31% better at 64 KB message
sizes and 1% worse at 512 KB message sizes.

The offloaded algorithm’s performance is much better than
HPC-X’s when the “strided” process distribution is used. In
the strided configuration, DPU offload performance is 6.9
times better than Open MPI’s at 64 KB message sizes and 6.7
times better at 512 KB message sizes. The extra overheads that
come from initiating the offload and in handling late arriving
processes are small relative to the overall cost of data transfer,
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Figure 4: 1024 Process, 32 processes per node MPI Allgatherv
latency measurements as a function of message size. For the
HPC-X and Offloaded algorithms we present data with MPI
ranks mapped contiguously within a node (contig) and ranks
mapped round-robin across nodes (strided). The additional
topology information within the DPU offloaded algorithm
ensures that performance is stable across arbitrary rank map-
pings while existing host-based algorithms can be extremely
sensitive to rank mapping algorithms.

so even when all MPI processes are actively participating in
the collective operation all of the time, the overall overhead
is low. Surprisingly, we find that late arrivals are common
even under the ideal conditions of an OSU benchmark. Across
approximately 13,000 benchmarking trials, slightly more than
1% of the MPI ranks find that a message intended for the given
rank has arrived at its DPU before the host process begins its
collective processing. However, for 96% of those late arrivals,
another process on the same host has arrived at the collective,
and the SP is able to forward the data to an available and
waiting host process.

A common implementation for large-data MPI Allgatherv
is that of a pipelined-ring algorithm based on MPI rank in the
communicator. With a block-wise, contiguous distribution of
ranks across host, a given message is sent over the interconnect
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only once per host, with distribution within the host done by a
host-optimized mechanism, such as a single copy through the
kernel. Host memory bandwidth is typically quite a bit higher
than network bandwidth, therefore being a better choice for
data transfer. Network transfers also consume host-network
bandwidth at both the sender and the receiver. With the
”strided” distribution of ranks a large fraction the pipelined-
ring algorithm will be sent over the interconnect. The offloaded
algorithm described in this paper minimized the number of
messages sent over the interconnect, independent of MPI
process layout.
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Figure 5: OSU MPI Allgatherv latency for fixed message sizes
(32, 128 and 512 KB) as a function of MPI process count (with
32 processes per node).

Figure 5 shows the latency of MPI Allgatherv for message
sizes of 32, 256, and 512 KB as a function of MPI process
count in the range of 256 to 1024 processes. This data is
collected using the BlueField offloaded algorithm, Open MPI,
and HPC-X. With the BlueField offloaded algorithm, the
latency scales linearly with the MPI process count, as ex-
pected, given that the message sizes are in the range where
network bandwidth dominates the cost of data transfer. Here,
the performance of the BlueField offloaded algorithm is very
similar to that obtained using HPC-X and much better than
that obtained using Open MPI.

E. DPU-Accelerated MPI Ialltoallv

As mentioned in section II, although absolute perfor-
mance is also important, nonblocking collective algorithms
are primarily optimized for communication-computation over-
lap. The OSU benchmark calculated concurrency of the
MPI Ialltoallv operation is shown in Figure 6 wherein the
BlueField offloaded algorithm, Open MPI, and HPC-X are
compared using a block-wise process layout. It is interesting
to note that the concurrency produced by the DPU offloaded
algorithm remains above 99% for the full range of message
sizes displayed, which is well above that of the Open MPI
and HPC-X implementations. At the same time, from a per-
formance standpoint, the BlueField algorithm’s performance
with 1024 MPI processes is 6.3 times better at 32 KB message
sizes, 2.07 times at 256 KB, and 2.02 times better at 512 KB

message sizes than HPC-X, while Open MPI’s performance
is consistently slower than HPC-X, as shown in Figure 7.
As expected, for a fixed message size, the latency of the
collectives scales linearly with the number of MPI processes
in the communicator.

We find that late arrivals are relatively common during the
OSU latency benchmark runs, with approximately 0.1% of
the MPI ranks finding a message has arrived at the DPU for
that collective prior to the rank starting collective processing.
Although this percentage seems low compared to what was
observed for MPI Allgatherv, the MPI Ialltoallv algorithm
requires per rank communication where only the first few
communications to a rank are likely to arrive late given
the nature of OSU benchmark runs. Even with the much
higher volume of total communication, more than 290,000
late arrivals occurred during the approximately 6000 trials
conducted as part of the data collection for Figure 6.
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Figure 6: MPI Ialltoallv algorithm concurrency using several
algorithm implementations and 32 processes per node and the
DPU offloaded version uses four service processes.
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F. P3DFFT++ Application Performance
P3DFFT++ is a library of spectral transforms that includes

a 3D Fast Fourier Transform (FFT) implementation [30], [31],
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Figure 8: P3DFFT++ 4-variable test3D c2c cpp benchmark-
reported average transform time for 10 repetitions of
1024×1024×1024 grids on a 2D processor decomposition
scheme of Nodes×PPN with traditional (blocking and non-
blocking) and offloaded (nonblocking) Alltoallv implementa-
tion. The numbers above each bar represent the percentage
improvement of the offloaded nonblocking implementation
relative to the given implementation.

[32]. By using two-dimensional processor decomposition, it is
capable of scaling to a large number of compute cores/tasks.
More generally, 3D FFTs represent a ubiquitous algorithm
essential to many application areas in HPC programs. There-
fore, any improvement in scalable performance of 3D FFTs
and related spectral algorithms, particularly on top of existing
solutions, would be extremely beneficial, since it would trans-
late into higher throughput and better resource utilization for
a large number of important user applications. When run at
large scale (such as thousands of cores), the main performance
challenge for spectral algorithms is efficient implementation
of an all-to-all data-exchange, which is typically performed
using an MPI Alltoallv routine. In P3DFFT++ this routine is
used in two orthogonal communicators, once per 3D FFT call.
Overall, the performance of MPI Alltoallv implementations is
often the limiting factor in the overall performance of many
applications relying on 3D FFTs. Moreover, this problem will
likely worsen as applications move into the world of exascale
computing, as bisection bandwidth is not projected to keep up
with compute performance [33], [34].

To address this issue, we have implemented a pipelined
multi-variable version of P3DFFT++ that takes advantage
of overlapped communication and computation. This version
(briefly described here and to be revealed in more detail
in future publications) can be found in the newly released
branch nb-mv (NonBlocking MultiVariable) in the P3DFFT++
repository [32]. Whereas the default version (master branch)
takes a 3D FFT of one variable at a time and relies on blocking
MPI Alltoallv calls, the nb-mv branch offers a batch 3D FFT
routine with several independent variables such as velocity
components, pressure, passive scalars, etc. It pipelines the
execution of these variables in a staggered fashion: while one
variable goes through a local 1D FFT computation on a host
CPU, another variable is undergoing an inter-processor ex-

Table II: P3DFFT++ process average MPI Ialltoallv and
MPI Waitany times for 4-variable test3D c2c cpp benchmark
with 1024×1024×1024 grids 10 repetitions running on 16 and
32 nodes, with host-based and DPU-offloaded implementa-
tions.

Function 16N HOST 16N OFF. 32N HOST 32N OFF.
Communication 17.58 7.54 10.15 5.46
MPI Waitany 10.20 4.88 6.32 3.22
MPI Ialltoallv 2.98 1.38 1.64 0.77
other 4.40 1.28 2.19 1.47

change. To make this possible, the nonblocking MPI Ialltoallv
routine is used in lieu of MPI Alltoallv. Taken together,
these modifications provide a framework for overlapping com-
munication with computation, provided that such overlap is
supported by the underlying system’s hardware and software
capabilities.

In this paper we have used the P3DFFT++ nb-mv version to
evaluate the performance of our offloaded MPI Ialltoallv al-
gorithm in real-world application scenarios. Performance gath-
ered using our offloaded algorithm and nb-mv P3DFFT++ is
compared against runs performed using the same P3DFFT++
code using a host-only version of MPI Ialltoallv and runs
using host-only MPI Alltoallv. The messages sizes used in
the MPI Ialltoallv range from up to 16 MB for the 4×32 use
case and up to 256 KB for the 32×32 use case. Figure 8 shows
that the overall performance improvement between our DPU-
offloaded implementation and the host-only MPI Ialltoallv
implementation ranges from 14% on four nodes to 49% on
node counts in the range of four to 32. Table II shows
the average process cost breakdown for the two main MPI
functions in the 3D FFT algorithm for the 16 and 32-node
runs. It shows that the time spent in the communication
library waiting for the MPI Ialltoallv operations to complete is
reduced by close to 50%, which demonstrates the effectiveness
of overlapping communication and computation.

G. Octopus Application Performance

The Octopus [35], [36] simulation code applies density-
functional theory (DFT) in its time-dependent form to model
non-equilibrium phenomena in molecular complexes, low-
dimensional materials, and extended systems by accounting for
electronic, ionic, and photon quantum mechanical effects using
ab initio methods. Octopus release 11.4 [37] was used in this
study. As a benchmark, we run a time-dependent simulation
of an adenine molecule with 38 states and ca. 70 million
grid points in order to assess the performance of various
MPI Allgatherv algorithms. For each measurement, Octopus
restarts from a pre-computed ground state and computes 100
time steps of the evolution. Each measurement was performed
three times with the average time reported. Across all three
runs the minimum and maximum iterations per hour are
always within 0.5% of the reported average.

Figure 9 shows the application performance for two con-
figurations: 32 nodes with eight processes per node (PPN)
and four threads per process (TPP), and 32 nodes with four
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Figure 9: Octopus total wall time with traditional and offloaded
Allgatherv implementations on 32 nodes for time-dependent
simulations of the Adenine benchmark (100 time steps).

PPN and eight TPP. For each configuration, the traditional
host implementation of collectives from Open MPI was used
as the baseline, and the BlueField-3 offloaded collective imple-
mentation with UCC was run to demonstrate any performance
improvements. In the offloaded runs, four service processes
were launched on each DPU, and each service process was
allowed four concurrent sends and receives. Figure 9 shows
that our new DPU offloaded implementation is able to improve
Octopus performance over HPC-X by 24% for the eight PPN
four TPP configuration. The total communication time (time
spent in the MPI library) is approximately 40% of the walltime
in the non-offloaded case (245.99s) and 31% in the offloaded
case (138.45s). Octopus performance improves by 17% over
Open MPI in the four PPN eight TPP configuration.

Table III shows the breakdown of the average cost per
process for all MPI functions accumulating more than 5
seconds per process. From this, one can see that the DPU-
offloaded MPI Allgatherv was improved 35% in the eight PPN
four TPP configuration and 25% in the four PPN eight TPP
configuration, respectively. This seems to be in contradiction
to Figure 5, where the performance, measured by the OSU
MPI Allgatherv benchmark, of the host and DPU-offloaded
MPI Allgatherv looked similar. However, the reason is sim-
ple, as DPU-offloaded collectives better handle late-arrival or
straggler processes. Across the 308 offloaded Allgatherv calls,
approximately 9% of the messages received at service pro-
cesses were for ranks that had not yet arrived at the collective.
Furthermore, for 5.9% of the messages received, no ranks for
that host had arrived at the collective, resulting in a delay in
the servicing of those messages. Across Allgatherv calls with
late arrivals, the late arriving processes arrived between 30–
100ms later than the earliest arriving process (with that late
arrival time making up approximately 15–50% of the total
Allgatherv execution time for that collective). Finally, we note
that by improving the performance of a single collective, the
performance of other communication routines also improves.
The majority of the improvement is in communication calls
that immediately follow the offloaded Allgatherv (the Alltoall
immediately following an Allgatherv shows 3.4–5.9x speedup,

while a later Alltoall shows no speedup).

Table III: Octopus process average communication timing
breakdown for 100 time steps of the adenine benchmark
running on 32 nodes.

Function 8P4T HOST 8P4T OFF. 4P8T HOST 4P8T OFF.
All Communication 245.99 138.15 230.66 142.37
MPI Allgatherv 126.38 82.74 102.17 76.26
MPI Waitall 57.60 32.02 73.65 41.40
MPI Alltoall 37.89 13.87 30.03 17.45
MPI Allreduce 7.44 4.96 2.88 4.05
Other 16.68 4.56 21.93 3.21

V. RELATED WORK

A. In-network Computing Frameworks

Programming frameworks for offloading computation onto
SmartNICs have recently become an area of research focus.
The sPIN framework [38] enables the creation of SmartNIC-
based handlers that are designed to perform line-rate packet
processing with handler selection performed based on the
contents of the packet headers. The INCA programmable NIC
framework is built upon triggered operations and a tag field
within packets that enables a series of tag-specific in-transit
operations to a packet as it enters or exits the NIC [39].
Construction of a pipeline of packet processing operations,
called chained operations, is also supported by the PANIC pro-
gramming framework, which adds explicit support for multi-
tenancy and dynamic resource allocation to improve both
offload performance and network utilization under load [40].
The MIMOSA framework described in this paper most closely
follows the asynchronous progress principle and memory se-
mantics described by RaDD [41]. Offloaded operations within
MIMOSA are similar to the Mercury framework’s nonblocking
RPCs [42] while the mechanisms used to perform reads and
writes to on-host data structures without host CPU intervention
are related to the PRISM RDMA read/write extensions [43],
but extended to enable SmartNIC DPUs to modify local
and remote host memory directly. More recently, the Two-
chains [44] and Three-chains [45] frameworks have extended
traditional active message capabilities to perform execution of
RDMA binary code payloads on remote SmartNICs.

B. Offloads for Communication Libraries

The abstract interface for collective communication algo-
rithms provided by MPI has enabled the development of ded-
icated hardware and software for improving the performance
of collectives. The Quadrics network provided acceleration for
the collective barrier synchronization and broadcast algorithms
using a set of specialized hardware multicast primitives with
supporting system software [46]. Offloads for the collective
broadcast algorithm leveraging in-switch multicast primitives
have demonstrated latency improvements and near-linear scal-
ing for small message broadcasts [47], [48].

More specifically, efforts using NIC-based processors have
explored performing barrier message origination entirely
within the network card to reduce the number of transactions

10



between the CPU and network interface [49]. The Cray
XC40 network provided support for performing the collective
reduction operators within compute elements inside the Aries
NIC [50]. SmartNICs supporting general program offloading
have been demonstrated to improve communication latency
and reduce host CPU load for the nonblocking versions of
allgather and broadcast collectives [6].

VI. DISCUSSION

This paper describes strategies for offloading collective
communication work to BlueField DPUs. It describes of-
floaded implementations of the (blocking) MPI Allgatherv
and (nonblocking) MPI Ialltoallv long-message protocols,
which are prominently used by the Octopus and P3DFFT++
applications. An analysis of these collective operations of-
floaded to BlueField-3 DPU is provided, demonstrating the
benefits of this strategy to improve application performance.

Standard MPI benchmarks have been used to individually
characterize the performance of these collective operations.
The latency of the DPU-offloaded MPI Allgatherv was shown
to be similar to that of the host-only implementation, although
the latter incurs extra work associated with coordination of
the DPU SPs and handling requests to read data from host
ranks that are not ready. These latencies also scale linearly,
as expected, with process count. However, the real benefits
of using the offloaded MPI Allgatherv algorithm appear more
clearly when used in the context of the Octopus application,
with the performance of the four-process, eight-thread, 32-
node job improving by 17% when offloading the collective
operation to DPU. While almost 9% of the ready-to-read
requests arrive at SPs that are unable to service these requests
immediately, the SP implementation is able to find other MPI
processes that are ready for this data in 3% of these cases. The
remaining cases are serviced later as additional MPI processes
enter the collective operation. Such a load imbalance is typical
for applications, but this offloaded approach is effective in
mitigating the effects of this imbalance on application run
time. Similar improvements in performance have also been
seen with other applications; however, space constraints limit
the results presented here.

The benefits of having a truly asynchronous agent pro-
gressing nonblocking collective operations are demonstrated
with the BlueField-offloaded MPI Ialltoallv algorithm. The
OSU overlap benchmark shows that for messages of 16 KB
and above, over 99% of the time spent in execution of
the collective operation can be overlapped with computation.
This is reflected in an improvement of 14–42% in P3DFFT’s
transfor time for 1024 processes.

In developing offload solutions that are advantageous not
only for nonblocking, but also for blocking collectives, we
created a set of tenets to guide collective offload work. First,
service processors (SPs) must be able to act as peers to
traditional host processors. SPs must also be able to directly
access both local and remote host memory to avoid extra data
copying. Load balancing across SPs and MPI host processes
can be critical. Finally, looking to the future, due to the

acceleration possibilities created by DPUs, it is critical to allow
additional specialization within communication libraries.
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