
Hierarchical Multigrid Ansatz for Variational
Quantum Algorithms

Christo Meriwether Keller∗†, Stephan Eidenbenz†, Andreas Bärtschi†,
Daniel O’Malley‡, John Golden†, Satyajayant Misra∗

∗Department of Computer Science, New Mexico State University, Las Cruces NM 88003, USA
†Information Sciences (CCS-3), Los Alamos National Laboratory, Los Alamos NM 87544, USA

†Computational Earth Sciences (EES-16), Los Alamos National Laboratory, Los Alamos NM 87544, USA

Abstract—Quantum computing is an emerging topic in engi-
neering that promises to enhance supercomputing using funda-
mental physics. In the near term, the best candidate algorithms
for achieving this advantage are variational quantum algorithms
(VQAs). We design and numerically evaluate a novel ansatz for
VQAs, focusing in particular on the variational quantum eigen-
solver (VQE). As our ansatz is inspired by classical multigrid
hierarchy methods, we call it “multigrid” ansatz. The multigrid
ansatz creates a parameterized quantum circuit for a quantum
problem on n qubits by successively building and optimizing
circuits for smaller qubit counts j < n, reusing optimized
parameter values as initial solutions to next level hierarchy at
j+1. We show through numerical simulation that the multigrid
ansatz outperforms the standard hardware-efficient ansatz in
terms of solution quality for the Laplacian eigensolver as well
as for a large class of combinatorial optimization problems with
specific examples for MaxCut and Maximum k-Satisfiability. Our
studies establish the multi-grid ansatz as a viable method for
improving the performance of variational quantum eigensolvers.

Index Terms—Variational quantum algorithms, multigrid
methods, discrete Laplacian operators

I. INTRODUCTION

Variational quantum algorithms are hybrid methods for gate-
based quantum computers that combine quantum and classi-
cal techniques. By partially offloading error-prone quantum
processing to classical algorithms, these methods present the
best opportunity for achieving quantum advantage in the Noisy
Intermediate Scale Quantum (NISQ) era. Due to this potential
for impact, researchers continue to look for improvements to
variational quantum algorithms.

The VQE algorithm was proposed first by Peruzzo et al. [1].
Following on this, a variational quantum algorithm for solving
the Poisson equation was given by Sato et al. [2]. This work
was further developed on by Liu et al. [3] who improved
the number of measurements required from exponential to
linear (making it practical) and connected it with QAOA. A
comprehensive review of the VQE space is given by Tilley et
al. [4], and a gentle introduction by Adedoyin et al. [5].

Other variants of VQE have been proposed, such as
ADAPT-VQE [6]. This algorithm iteratively produces larger
ansätze by Trotterization to solve chemical simulation prob-
lems. Our work differs from this in that we aim for problems
where there is a natural refinement structure, and especially
NP-hard optimization problems such as MaxCut. In addition,

our approach generalizes a simple case of classical mesh
refinement, where setting new parameters to zero corresponds
to the output of the previous refinement layer. Another variant
in this vein of “growing ansätze” is Layer VQE [7], which
increases the depth of its ansatz at each stage. This method
grows each successive ansatz in a completely “different di-
rection” than our work does, but is applied to combinatorial
optimization problems.

In this paper, we introduce multigrid methods for the
variational quantum eigensolver (VQE) and test them against
other quantum approaches and classical algorithms. Multigrid
methods use hierarchies of discretizations to solve problems
(and especially differential equations) by moving from coarser
to finer grids. This process, known as mesh refinement, is
the algorithm for which we propose a variational quantum
counterpart. Also, there is much potential for future work
in this area: for example, more sophisticated multigrids and
connections with other algorithms such as variational linear
systems [8].

Multigrid methods have been applied to quantum annealers
by Illa and Savage [9] and Lubasch et al. adapted finite-
difference methods to a VQA for nonlinear PDEs [10]. How-
ever, we are not aware of any published work developing
multi-grid methods (in particular, mesh refinement) for gate-
based quantum computing architectures. We propose methods
for platforms with all-to-all qubit connectivity, opening the
pathway for future work to optimize these for other topologies.

In Section II, we introduce variational quantum algorithms
more thoroughly and explain two important examples. We also
discuss hardware-efficient quantum ansätze, which are used
as a benchmark later on. Section III discusses our methods,
including Multigrid Hierarchies of Variational Ansätze and the
Multigrid VQE. In Section IV, we discuss how to implement
our methods for discrete Laplacian energy simulation, and our
results for that problem. Then, in Section V, we look at NP-
hard Maximum Cut problem on graphs. Section VI concludes
with a brief recap of the paper, and directions for future work.

II. BACKGROUND

For a general overview of quantum optimization, we rec-
ommend references [11] and [12]. The rest of this section will
focus on variational quantum algorithms, and particularly our

Algorithm 3: Multigrid Refinement Step

1. Add a new qubit to define a refined problem
2. Entangle that qubit with CZ and RY gates

Algorithm 2: Variational Quantum Eigensolver

1. Set new angles to 0 and append to old angles
2. while no convergence and iter < max iter, do:

Apply Algorithm 1

Algorithm 1: VQE Cost Function
1. Prepare trial wavefunction with current angles
2. Estimate the eigenvalue with num shots shots

Update angles according to output

prior stage’s
angles, eigenvalue

(repeat until max iter is
reached, or convergence)

Algorithm 4: The Multigrid Variational Quantum Eigensolver

inputs: ansatz, hamiltonian,
num shots, max iter, ...

outputs: final angles, eigenvalue,
optionally each stage’s data

Fig. 1: A process diagram for the Multigrid VQE. When one level of the Hamiltonian is optimized, refine the problem and
use the previous level’s angles to optimize. This process procedes until refinement produces the original Hamiltonian.

description of the variational quantum eigensolver.

A. Variational Quantum Algorithms
Variational quantum algorithms (VQAs) are an active area

of research in quantum information science, with the poten-
tial for achieving quantum advantage on near-term quantum
computers [13]. They center on a parameterized quantum
circuit U(θ1, θ2, . . . , θn) called an ansatz which prepares a
trial wavefunction. This quantum state is measured in various
ways, and those measurements are used to classically calculate
a score. This score is fed to a classical optimization algorithm
to update the parameters, and this optimization loop proceeds
until convergence or a maximum number of iterations has
been reached. At this point the angles are finalized and the
corresponding state can be prepared at will and used for
whatever purpose is desired, or the final score can be returned
as output.

Important VQAs include the Variational Quantum Eigen-
solver (VQE) for finding the ground state of a Hamilto-
nian [1], and the Quantum Approximate Optimization Algo-
rithm (QAOA) for combinatorial optimization problems [14].
In the long term, VQE has the potential to find applications to
chemistry, and QAOA to become a serious competitor for real-
world combinatorial optimization applications. As a result,
considerable effort has been spent developing methods for
these VQAs, and studying how different approaches affect
performance across different classes of problems. For example,

ore sophisticated variants have been proposed, such as filtered
VQE, warm-start QAOA, and recursive QAOA [15]–[17].

These hybrid approaches allow for shallower and more
robust circuits, offloading quantum complexity into more
manageable classical overhead. However, such methods come
with substantial uncertainty; no speedup has been proven for
VQAs, and their cost landscapes are susceptible to barren
plateaus [18] where classical optimizers get caught descending
into infinitely vanishing (or, in the case of maximization,
infinitely growing) regions. However, preliminary experimen-
tal work by Boulebnane and Montenaro [19] and Golden et
al. [20] suggest the potential for QAOA advantage. Prior work
by Farhi et al. [21] on Max-kXOR had achieved a better
guaranteed bound than the best known classical methods at
the time, but better classical methods were subsequently found
by Barak et al. [22].

B. Relevant VQA Methods

1) Variational Quantum Eigensolver: Given a Hamiltonian

H =
∑
i

W †
i αiPiWi, (1)

represented as a sum of unitary-transformed weighted Pauli
strings (as in Equation (1), where Wi are unitary and αi

are weights), prepare a trial state U(θ1, θ2, . . . , θn) using a
VQA ansatz and calculate the weighted sum of measure-
ments Mi of each Pauli string Pi on the corresponding

q0 :

Un−1(θ1, θ2, . . . , θm)

• •
q1 : • •
q2 : • •
q3 : • •
q4 : H • RY (θm+1) • • RY (θm+2) • • RY (θm+3) • • RY (θm+4) •

Fig. 2: A refinement layer of a Multigrid Hierarchy of Variational Ansätze. The circuit Un−1(θ1, θ2, . . . , θm) is the previous
refinement layer with angles from the previous optimization round. The solution to the previous round’s coarser problem on four
qubits is extended to a refined problem on five qubits by putting a new qubit in the |+⟩ state with an H gate and entangling it
to all previous qubits with CZ (connected black dots) and RY gates. In our implementation, the new angles θm+1, θm+2, θm+3,
and θm+4 are each initialized to zero in order to create a constant interpolation with respect to computational basis states.

state WiU(θ1, θ2, . . . , θn). Repeating this procedure many
times and averaging yields an approximation of the Rayleigh
quotient ⟨U(θ)|H |U(θ)⟩ / ⟨U(θ)|U(θ)⟩, which is an upper
bound on the Hamiltonian ground state energy λ0(H). (Note
the denominator of this quotient is immaterial since quantum
states have unit norm, and averaging works because the numer-
ator is an expectation value.) Given an ansatz which can find
this state and an effective optimization strategy, variationally
minimizing this term can bring us arbitrarily close to (given
enough shots) or even saturate this bound. Note that everything
in this section also applies to Hamiltonians defined as weighted
sums of Pauli strings without unitary transformation, by setting
Wi to the corresponding identity matrix for each term in Eq. 1.

The VQE algorithm works like this, and can be seen as
a quantum analogue of the classical Ritz method [23]. The
absolute error scales down as the number of shots increases;
heuristically, O(1/ε2) shots are required [1] to obtain error
within ε. However, this result relies on various assumptions
about the robustness of the ansatz and the well-suitedness of
the classical optimization routine for the energy landscape. Al-
gorithm 1 gives the VQE cost function computing the Rayleigh
quotient for a given set of angles. It does this by measuring
each term in the decomposition of the target Hamiltonian many
times, and averaging the measurement results. Algorithm 2
uses this function in the overall logic of the VQE algorithm,
by varying and optimizingthe ansatz parameters until either
a maximum number of iterations is reached or convergence
is achieved. Figure 1 shows our modified VQE, involving
also Algorithms 3 and 4 (defined in Section III). In order to
measure arbitrary Pauli strings, this involves applying change
of basis gates: apply H to a qubit to measure in the X
basis, and apply S†H to measure in the Y basis. Of course,
decomposing H according to Equation (1) can be nontrivial,
as can the efficient implementation of arbitrary unitaries Wi.
In particular, representing an n-qubit Hamiltonian H as a
sum of Pauli strings takes 4n terms in general. Thus it is
important to measure in more convenient bases. For example,
Liu et al. [3] use the operator basis B = {I, σ+, σ−}, where
σ+ = |0⟩ ⟨1| and σ− = |1⟩ ⟨0|, in their VQA for solving the

Poisson equation.
2) Quantum Approximate Optimization Algorithm: Given a

cost function C on bitstrings, we can encode the corresponding
optimization problem in a diagonal matrix

HC =
∑
i∈2n

C(i)ei, (2)

and approximately optimize C using a discretization and
Trotterization of the Quantum Adiabatic Algorithm [14], [24].
This method is called QAOA and was first applied to the NP-
complete Maximum Cut problem (MaxCut) for the maximum
number of edges between two complementary vertex subsets
of a given graph G. It is worth noting that this diagonal Hamil-

Algorithm 1 The VQE Cost Function (vqe cost)

input: Ansatz U , Hamiltonian H , Angles θ1, θ2, . . . , θm,
Number of shots num shots.
output: Estimated eigenvalue λ.

estimated eigenvalue = 0;
Wi, Pi, αi = Decompose Hamiltonian according to Eq. 1;
for 0 ≤ i < n, do

term eigenvalue = 0;
// H.num qubits is the number of qubits in the system

H
circ = new QuantumCircuit(H.num qubits)
// Appending Q1 to Q2 means performing Q2 then Q1
Append U(θ1, θ2, . . . , θm) to circ;
Append Wi to circ;
Add measurement gates for Pi to circ;
do num shots times

measure = Execute circ on quantum computer;
test eigenvalue = pow(−1, hamming(measure));
term eigenvalue += αi ∗ test eigenvalue/num shots;

end do
estimated eigenvalue += term eigenvalue;

end for
return estimated eigenvalue;

q0 : RY RZ • RY RZ • RY RZ

q1 : RY RZ • RY RZ • RY RZ

q2 : RY RZ • RY RZ • RY RZ

q3 : RY RZ • RY RZ • RY RZ

q4 : RY RZ RY RZ RY RZ

Fig. 3: An Efficient SU(2) ansatz with two repetitions and a final rotation layer. This circuit exhibits the reverse linear
entanglement pattern, which is the default in Qiskit. Ladders of reverse linear entangling CX gates separate blocks of
parameterized Y and Z rotations to form a simple yet robust ansatz for heuristic VQA applications.

tonian HC can be fed into VQE if a suitable representation is
known (see Section V for an example).

3) Hardware-Efficient Ansätze: In order to avoid excessive
noise in a VQA, efficient operations and low circuit depth
are desired. Hardware-efficient ansätze use native gates (such
as nearest-neighbor interactions for superconducting qubits)
to form a robust constant-depth circuit for preparing trial
states [25]. These have been shown to suffer from barren
plateaus at long depths, but to have the potential for quantum
advantage when short [26]. Hardware efficient ansätze provide
reasonable benchmarks for testing VQAs across different
classes of problems due to their general nature and resultingly
broad applicability.

III. MULTIGRID VQE

We employ an approach based on classical multigrid meth-
ods, where hierarchies of increasingly finer discretizations are
used to solve problems, such as differential equations. First
solving a coarser problem with an initial variational ansatz
U(θ1, θ2, . . . θn), we save the optimized angles θi and use
these to seed the next round. In this subsequent round, we
apply the ansatz U (which we call the seed ansatz) then
entangle it to a new qubit as shown in Figure 2. This method
preserves the multigrid intuition because setting the initial

Algorithm 2 The VQE Classical Loop (vqe)

input: Ansatz U , Hamiltonian H , Angles θ1, θ2, . . . , θm,
Numbers max iter, num shots.
output: Estimated eigenvalue λ, Final angles θ′

i, Optional
optimizer information (e.g. number of function evaluations).

num iter = 0;
estimated eigenvalue = vqe cost(U,H,θi, num shots)
while no convergence and num iter < max iter, do

θ1, θ2, . . . , θm = optimize angles(estimated eigenvalue,
θ1, θ2, . . . , θm); // Using a classical optimizer.

estimated eigenvalue = vqe cost(U,H, θi, num shots);
num iter += 1;

end while
return estimated eigenvalue, θi, optional info (such as num-
ber of optimizer calls or other classical optimizer results);

Algorithm 3 The Multigrid VQE (multigrid vqe)

input: Seed ansatz U , Family of Hamiltonians {Hi}, Initial
angles θi, Numbers num shots, max iter.
output: Estimated eigenvalue λ, Final angles θ′

i, Optional
optimizer information and coarse stage data.

λ, θi = vqe(U,H, θ1, θ2, . . . , θm,max iter, num shots);
for U.num qubits < j <= H.num qubits, do

θm+1, θm+2, . . . , θm+U.num qubits = 0, 0, . . . , 0;
Uj = multigrid refine(Uj−1); // With UU.num qubits = U

λ, θi = vqe(Uj , Hj , θ1, θ2, . . . , θm, . . . , θm+U.num qubits,
max iter, num shots);

m = m+ U.num qubits; // For the next iteration.
end for
return λ,θi;

angles for the RY gates entangling the new qubit to zero puts
the system in the state U(θ1, θ2, . . . , θn) |00 . . . 0⟩⊗|+⟩, which
corresponds to a constant interpolation of the state from the
previous round. That is, if U(θ1, θ2, . . . , θn) |00⟩ = |ψ⟩, then

U(θ1, θ2, . . . , θn) |00⟩ ⊗ |+⟩ = |ψ⟩ |0⟩+ |ψ⟩ |1⟩√
2

, (3)

the equal superposition of adding a |0⟩ qubit and adding a |1⟩
qubit. This occurs since neutralizing the Y rotations on the
added qubit causes all CZ gates to annihilate, yielding simply
a Hadamard operation returning the plus state on that qubit.
We continue adding qubits until we reach the target system.

The two-qubit gate cost of this method is only quadratic in
the number of qubits, keeping it reasonable for use on NISQ
devices. In state preparation problems, this makes the gate
cost polylogarithmic in the number of amplitudes (assuming
polynomial circuits for any unitary transforms in the Pauli
decomposition of the problem Hamiltonian, Equation (1)).
This will be relevant in the next section, where we use
Multigrid VQE to prepare the ground state of a discrete
Laplacian Hamiltonian. The overall idea is that for problems
with a hierarchical structure, information from easier, lower
stages can be used to improve the performance of harder,
higher stages. There is no particular reason this process has to
proceed one qubit at a time, either; future work could explore

(a) two qubits (b) three qubits (c) four qubits (d) five qubits

Fig. 4: The smallest eigenvectors of ∇2
D (for dimensions m = 22, 23, 24, 25, respectively) form a refinement structure well-

suited to multigrid methods. The X axes represent computational basis states expressed as decimal integers, and the Y axes
show the amplitudes of the eigenvector in the respective entries. Ignoring a complex global phase, we assume entries in R+.

Algorithm 4 Multigrid Refinement (multigrid refine)

input: A parameterized quantum circuit Un with n qubits.
output: A parameterized quantum circuit Un+1 with n + 1
qubits.

circ = new QuantumCircuit(U.num qubits+ 1);
Append U to the first U.num qubits qubits of circ;

// We assume that qubit addresses start at zero.
Append a Hadamard gate to qubit n of circ;

for i < n, do
Append a CZ gate between qubits i and n of circ;
Add a new variational parameter pm+i to circ;
Append the gate RY (pm+i) to qubit n of circ;
Append a CZ gate between qubits i and n of circ;

end do
return circ;

q0 :

q1 : •
q2 : • •
q3 : • • •
q4 : • • • • X

Fig. 5: An increment circuit for the shift operation P of Sato
et al. [2]. This circuit sends big-endian basis states |b⟩ to their
cyclically shifted counterparts |rem(b+ 1, 2n)⟩, and can be
decomposed into linearly many CNOTs [27].

the integration of multiple new qubits at once, or designs
that use fewer entangling gates in each consecutive layer for
implementations on qubit topologies, like with IBM’s heavy-
hex lattice architecture, that lack all-to-all connectivity.

Algorithm 3 uses multigrid refinement to perform what
we call multigrid VQE, assuming a hierarchy of properly

represented Hamiltonians. The idea is to solve progressively
larger Hamiltonians using information about each previous
stage’s angles until you reach your target Hamiltonian. Based
on the design of the multigrid refinement function, we can
think of this as an analogue of classical mesh refinement
with constant interpolation. One drawback of this approach
is that the maximum number of total optimizer iterations goes
to infinity as the size of the problem scales up. This can be
addressed by choosing larger seed ansätze for larger problems.
In this work, we do not simulate large enough n for this to
become an issue, so we use the Efficient SU(2) seed ansatz to
standardize our experiments. Given an ansatz with a total of
ns.a. parameters, the Multigrid Hierarchy has

ns.a. +

n−1∑
i=m

i = ns.a. +
n2 − n−m2 +m

2
(4)

parameters. Now m = 2 and ns.a. = 16 for the Efficient SU(2)
ansatz with 2 qubits, so at the n = 10 layer this approach uses
60 parameters. The number of parameters therefore increases
only quadratically in the number of qubits, and polylogarith-
mically in the refinement depth provided by the number of
statevector amplitudes. Further, assume unitaries in the Pauli
decomposition (Equation (1)) of the problem Hamiltonian are
implementable in polynomial depth. Then each VQE circuit
has depth O(n2) + O(poly(n)) = O(poly(n)) in the number
of qubits, and is O(polylog(n)) in the refinement depth.

To seed our multigrids, and as a benchmark for our meth-
ods, we use a family of hardware-efficient ansätze called
Efficient SU(2) ansätze. These are implemented in Qiskit as
the class qiskit.circuit.library.EfficientSU2,
and are primarily defined by a number of repetitions of
single qubit gates—that is, SU(2) unitaries—followed by CX
entanglements as shown in Figure 3. This family has many of
the hardware-efficient benefits discussed in Section II-B3 such
as only nearest-neighbor interactions and low depth suggesting
the potential for quantum advantage. We construct Efficient
SU(2) circuits using the default arguments from Qiskit includ-
ing the reverse linear entanglement pattern and the {RY,RZ}
gate set, but future work could explore how different choices
for seed ansatz arguments affect multigrid performance on
particular problems. For example, more highly expressible

(a) (b)

Fig. 6: The Multigrid outperforms the static Efficient SU(2) ansatz for Dirichlet Laplacian VQE. In 6a, we plot the estimated
eigenvalues (not the accuracy in eigenvalues) and observe that the Multigrid continues improving while the Efficient SU(2)
ansatz flatlines quickly. As expected, increasing the number of shots improves performance. In 6b, we observe that Multigrid
VQE uses more optimizer calls rather than giving up quickly, and has less variance in the number of optimizer calls.

seed ansatzes should have better performance; and other
factors such as size or entanglement patterns could also affect
performance. Our graphs are generated with 95th-percentile
confidence intervals calculated by z-score. This is not meant to
imply that our data is normally distributed, but to represent the
uncertainty in the mean of the samples. Simulations were done
in Python 3, where quantum circuits were implemented in
Qiskit [28] and we used Scipy’s optimization libraries. Given
data from these simulations, Numpy and PyPlot were used for
analysis and plotting. In the next two sections, we compare
performance between Efficient SU(2)-seeded Multigrid VQE,
Efficient SU(2) VQE, and some classical methods: Numpy
for eigenvalue problems and greedy, brute-force methods for
combinatorial optimization.

IV. LAPLACIAN EIGENSOLVER

We use multigrid VQE to approximately prepare the ground
state of (and estimate the corresponding ground energy for) the
discrete one-dimensional Laplacian with constant zero Dirich-
let boundary conditions. By the second difference methods
expanded on in Appendix A, this Hamiltonian is the m ×m
Toeplitz tridiagonal matrix given by

∇2
D =

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2 −1

−1 2

which Sato et al. [2] give for the case where m is any power
of two in a more convenient form as

∇2
D = S + P †SP + P †(I⊗n−1

0 ⊗X)P. (5)

Here P is the cyclic shift unitary described in more detail
below, S = I⊗n−1 ⊗ (I −X) and I0 = |0⟩ ⟨0| = (I + Z)/2.
Expanding these definitions allows us to express the Dirichlet
Hamiltonian purely in terms of unitary-transformed Pauli
strings, allowing us to implement VQE for this problem.
Specifically, we have unshifted (or periodic) terms S = 1−X0

and cyclically shifted (by P) terms S = 1−X0 and

2−n+1(1+Z0+Z1Z0+Z2Z0+· · ·+Zn−2Zn−1 · · ·Z1Z0)Xn−1,

which can be optimized [3] for efficiency in any practical
implementation. However, for our purposes we only need the
theoretical performance of the algorithm. To speed up simula-
tions, we use the fact that these Pauli strings all commute to
calculate the whole expectation value in just one measurement.

For an increment circuit implementing the cyclic shift
operation P , see Figure 5. As referenced in the caption there,
this circuit can be implemented with a linear overhead in
number of gates. The important part for us is that it acts
on computational basis vectors by sending big-endian com-
putational basis states |b⟩ to |rem(b+ 1, 2n)⟩. For the simpler
case with periodic boundary conditions, we follow Sato et
al. in measuring the simpler Hamiltonian ∇2

P = S + P †SP .
(For an explicit matrix representation, see Appendix A.) This
is convenient for representing the Dirichlet Hamiltonian as
∇2

D = ∇2
P + P †(I⊗n−1

0 ⊗X)P , but preparing the eigenstate
of ∇P (and thus calculating its ground state energy) is not
an interesting application of VQE since the state you try to
get is simply the superposition of computational basis states.

This state can be prepared directly by a circuit applying a
Hadamard gate to each qubit in the quantum register.

Ground state simulation for the discrete Dirichlet Laplacian,
on the other hand, is more interesting. The states are less trivial
than for the discrete Periodic Laplacian, but they still provide
some structure to work with. In fact, the problem is well-
suited to multigrid methods. This is because the ground states
of these Hamiltonians seem to converge smoothly. Seeing this
requires viewing them as functions from the computational
basis states to R+. The corresponding graphs visibly form a
series of increasingly smooth discrete functions with a more
or less parabolic shape. This interesting structure motivates
our Multigrid VQE methods and provides a good test case.
For an illustration of this refinement structure and further
commentary, see Figure 4. Future work could try to produce a
circuit implementing a more linear interpolation better suited
to this problem than our constant interpolation scheme.

The circuits in this method are polylogarithmic in the size
of the obtained eigenvector. This follows from Equation (4)
together with how increment circuits implementing the shift
operation can be constructed with polynomially many CNOTs.
This sort of benefit is common for VQE, and partially explains
its popularity. We implement Multigrid VQE for Laplacian
ground state preparation in Qiskit [28], and compare its esti-
mated performance both with static application of the Efficient
SU(2) ansatz and with a brute force method. We seed the
Multigrid Hierarchy with an Efficient SU(2) ansatz as a proof
of concept. This choice is somewhat arbitrary and does not
come with a multigrid-related theoretical justification. Future
work could test other seed ansätze, and seed sizes. In this case,
we use an ansatz with two qubits since the discrete Dirichlet
Laplacian is not defined on fewer than two qubits. There is a
one qubit analog [3] given by the formula A = 2I−X , but this
has an uninteresting ground state, the plus state. Therefore A is
more analogous to ∇2

P than to our target of ∇2
D. However, the

ground state energy of ∇2
D vanishes quickly in the number of

qubits and thus needs increasingly more shots to maintain its
accuracy. However, this only reflects the exponential increase
of the size of the multigrid resolution, and the number of shots
grows more reasonably in terms of that.

A. Simulation results

To create the plots in Figure 6, we generated the multigrid
hierarchy of Dirichlet Laplacians from the two to the twelve
qubit case. Running each Hamiltonian through Multigrid
VQE and Efficient SU(2) VQE, we estimated eigenvalue and
number of optimizer calls. The solid green line represents
the 103-shot Multigrid VQE, and the dashed green line is
for the 103-shot Efficient SU(2) VQE. The solid blue line
represents the 106-shot Multigrid VQE, and the dashed blue
line is for the 106-shot Efficient SU(2) VQE. We estimate the
performance of our method on Dirichlet Hamiltonians with
as many as 12 qubits, corresponding to preparing eigenstates
with 4,096 amplitudes. These experiments are performed using
Qiskit’s Aer simulator, assuming no hardware noise.

Fig. 7: In the dashed line, we test BFGS with all zero angles at
every stage. In the solid line, COBYLA is used to seed a BFGS
Multigrid VQE. The apparent scaling advantage suggests that
gradient methods can be used to preserve good solutions once
COBYLA becomes unwieldy due to number of parameters.

We observe significant improvement over the static Efficient
SU(2) ansatz when using the dynamic Multigrid VQE. This
result suggests that the refinement structure of the problem
is being taken advantage of. In Figure 6a, the static ansätze
quickly flatline in performance, while the Multigrid VQE is
able to squeeze out more accuracy. Furthermore, increasing
the number of shots for the Multigrid VQE roughly lines
up with the heuristic prescribing O(1/ε2) shots for error ε.
With 103 shots it achieves error 10−2, and with 106 shots,
it eventually achieves error 10−3. On the other hand, the
static VQE does not even reach 10−1 accuracy with 103

shots, or 10−2 accuracy with 106 shots. Interestingly, 106

shot Multigrid VQE appears strikingly precise, producing very
similar values in each test. Also, there is a crossover point
after which 103 shot Multigrid VQE appears to outperform
106 shot Efficient SU(2) VQE despite its having substantially
more parameters. In Figure 6b, we see that this method uses
more function evaluations (optimizer calls) as a trade-off. On
the other hand, it shows how Multigrid VQE is able to take
more time thoroughly exploring the parameter space rather
than giving up too quickly.

Figure 7 demonstrates clearly how the Multigrid VQE
method of saving angles from previous rounds can lead to
better solutions. The dashed line represents static application
of the Multigrid Ansatz (i.e., using the ansätze produced by
Algorithm 4 but with all angles initialized to zero rather
than just the new ones). In contrast, the solid line repre-
sents performing the Efficient SU(2)-seeded Multigrid VQE
as defined in Algorithm 3. To draw inferences about this
method’s ability to keep producing better results when meth-
ods such as COBYLA (Constrained Optimization by Linear
Approximation) become unwieldy for large systems beyond
the reach of our simulations, we use BFGS and observe that
the Multigrid VQE values are consistently better than their

Fig. 8: (a) The Multigrid VQE achieves better and more stable approximation values for MaxCut than the static Efficient SU(2)
ansatz does. Also, p seems to affect Efficient SU(2) performance much more drastically. (b) Multigrid VQE is able to use
more optimizer calls than the Efficient SU(2) ansatz VQE, and experiences less variance in number of optimizer calls.

static counterparts.

V. COMBINATORIAL OPTIMIZATION

An instance of a combinatorial optimization problem is
a set S ⊆ {0, 1}n of bitstrings together with a function
f : S → R called the cost function. When S = {0, 1}n
we call the problem unconstrained, and constrained otherwise.
A solution to such an instance is a bitstring z ∈ S with
f(z) = minz∈S f(z). Combinatorial optimization problems
are important in computer science, where they provide a
framework for studying many classes of NP problems. In
order to apply our multi-grid hierarchy ansatz to combinatorial
optimization, we successively grow the problem instance by
defining solution bitstring sets Sj ⊆ 2j and corresponding
cost functions fj : Sj → R for 0 < j ≤ n with S = Sn and
f = fn. The exact relationship of fi and fi+1 depends on
the nature of the problem; for graph problems, for example,
we insert the i+ 1-st vertex and its corresponding edges that
connect to the already inserted first i vertices. We give two
concrete examples below.

When a combinatorial optimization problem is defined using
a diagonal encoding HC of the cost function as in QAOA, this
Hamiltonian representation can be used to solve the problem
with VQE because the target is either the minimum eigenvalue
λ0(HC) or the maximum, −λ0(−HC). For unconstrained
problems, this is all we need; and for constrained problems
we can use penalty terms to enforce the constraints.

To demonstrate these methods and test the performance of
Multigrid VQE in such a setting, we implement VQE for
two unconstrained optimization problems: Maximum Cut and
Maximum Exact k-Satisfiability. These problems are both NP-
hard, and future work could look into constrained versions of
them such as Maximum Bisection.

1) Maximum Cut: Given a graph G = (V,E), a cut on G
is a partition of V into complementary subsets U1 ⊔U2 = V .
The size of a cut is the number of edges between U1 and U2.
The Maximum Cut (MaxCut) problem is to find the maximum
size among all cuts on G. We implement Multigrid VQE
for MaxCut by minimizing the inverse MaxCut Hamiltonian
representation given by the weighted sum of Pauli strings

HC =
1

2

∑
(v,w)∈E

(
ZvZw − 1

)
, (6)

which requires only one measurement since all measurements
are in the Z basis. These measurements commute so that it is
enough to measure all qubits simultaneously and classically
compute the ZZ terms. Letting n = |V |, the complexity
of computing the cost function from a measurement is then
O(n2), since |E| ≤ |E(KV)| = (n2−n)/2. In fact, you need
only measure qubits corresponding to nonzero degree nodes;
but this does not affect scaling in general.

In order to use the Multigrid Hierarchy in this setting, we
need a corresponding Subgraph Hierarchy to perform MaxCut
on at each stage as we build the graph. We choose to naively
add nodes in the order they are labeled in the NetworkX library
by which they are generated. Generating Erdős-Rényi random
graphs, we compare the performance of Multigrid VQE to
static application of the Efficient SU(2) ansatz. To enable this,
we compute the approximation ratio C(zobs)/C(zopt), using
a brute force method to compute C(zopt). Here zobs is the
observed bitstring that we are computing the approximation
ratio for and zopt is an optimal bitstring.

2) Maximum k-Satisfiability: Given a propositional formula
on n variables, in conjunctive normal form with exactly
k variables in each of m clauses, the Maximum Exact k-
Satisfiability problem (MaxEk-Sat) asks how many clauses

Fig. 9: (a) The Multigrid VQE achieves better approximation values for hard instances of Max 2 and 3-Sat than the Efficient
SU(2) ansatz. Furthermore, this performance seems to be consistent across the different values of k. (b) The Multigrid VQE
uses more total optimizer calls than the Efficient SU(2) ansatz, showing its better ability to explore the feasible state space.

can be satisfied simultaneously. We encode such formulae
into Hamiltonians using a clause-by-clause decomposition.
Given a clause, we produce the k-local Hamiltonian I⊗k −H
where H applies |0⟩ ⟨0| to the qubits corresponding to true
propositions, and |1⟩ ⟨1| to the qubits corresponding to false
ones. This process, derived from the De Morgan duality,
penalizes bitstrings satisfying the negation of the clause.

For example, the clause x2 ∨ ¬x3 maps to the 2-local
Hamiltonian I⊗3 − I ⊗ |0⟩ ⟨0| ⊗ |1⟩ ⟨1|. The whole problem
Hamiltonian is given by the sum of these Hamiltonians, for
each clause in the formula. To convert this Hamiltonian to
the Pauli-Z basis, we use the mappings |0⟩ ⟨0| → (I + Z)/2
and |1⟩ ⟨1| → (I − Z)/2. Expanding out the resulting tensor
product yields only O(m2k) terms, so it is efficient in terms
of m and n. This means that our example becomes

I⊗3 − I⊗3 − I⊗2 ⊗ Z + I ⊗ Z ⊗ I − I ⊗ Z⊗2

4
.

All Pauli-Z measurements commute, so we can optimize the
circuit to only use one circuit execution per shot. Furthermore,
we only need to measure qubits corresponding to variables that
occur in some term (although this does not matter practically).

We produce a Multigrid Hierarchy for this problem by
adding variables in the order they are generated by our code.
When a variable is added, all clauses including that variable
or variables already added are admitted. However, we do not
admit any clause involving any variable not yet added.

We compare Multigrid Random MaxEk-Sat VQE to static
Efficient SU(2) VQE, using a brute force algorithm to compute
exact solutions for determining approximation ratios. Follow-
ing Golden et al. [29], we generate hard instances beyond the
difficulty phase transition by setting m = 3n for the k = 2
case and m = 6n for the k = 3 case.

A. Simulation Results

As in the previous section, we run our tests with Qiskit’s
Aer simulator, assuming that there is no hardware noise.

1) Maximum Cut: To create the plots in Figure 8, we pre-
pared Erdős-Rényi random graphs on 15 nodes and generated
their multigrid hierarchies. Running each subgraph through
Multigrid VQE and Efficient SU(2) VQE, we can see how
the methods diverge in performance before reaching their
solutions. Some subgraphs had MaxCut zero (due to having no
edges), and those datapoints were thrown away for Figure 8a
since their approximation ratios are undefined.

For MaxCut, we expect saving information about subgraph
MaxCut to inform the optimization in subsequent refinement
stages and improve performance. Using NetworkX, we gen-
erated 15-node Erdős-Rényi random graphs with edge proba-
bilities p ∈ {0.3, 0.6, 0.9} and compare approximation ratios
between the Efficient SU(2)-seeded Multigrid VQE and the
Efficient SU(2) VQE.

2) Maximum k-Satisfiability: To create the plots in Fig-
ure 9, we prepared random Ek-SAT instances at the satisfia-
bility threshold for 15 variables and generated their multigrid
hierarchies. Running each sub-formula through Multigrid VQE
and Efficient SU(2) VQE, we can see how the methods diverge
in performance before reaching their solutions. It is worth
noting that some sub-formulas had MaxSat zero (due to every
clause sharing some not-yet-added variable) and that those
datapoints were thrown away since their approximation ratios
are undefined. Further, there is no data for 2 variables since
there is no E3-SAT instance with only 2 variables.

For Max Ek-SAT, we expect the increased parameterization
of the Multigrid Hierarchy and saving information about sub-
formula MaxSat to inform the optimization in subsequent
refinement stages and improve performance. This appears to
be achieved, as in Figure 9 the multigrid methods outperform

their hardware-efficient counterparts.

VI. CONCLUSION

We have presented the hierarchical multi-grid ansatz as
an alternative approach for the variational quantum eigen-
solver. Our approach generalizes classical mesh refinement,
and can be applied anywhere a hierarchy of problems can
be defined. Using a particular seed ansatz and multigrid
refinement method, we showed improved average performance
by comparison with the Efficient SU(2) VQE for the Laplacian
eigenvalue problem, as well as for MaxCut and Max-Ek-Sat.

Future work: We will study this ansatz further for other
application domains such as quantum chemistry, where physi-
cal Hamiltonians such as the molecular electronic Hamiltonian
could perhaps gain from exploiting the structure or symmetries
of molecules in a multigrid hierarchy. Additional studies
remain to be done to compare the multigrid ansatz for opti-
mization problems to other quantum optimization algorithms,
such as QAOA variants and filtered VQE. Also, in the future,
we plan to complement our numerical studies with actual
hardware studies on existing NISQ devices, and to explore
more efficient ansatz designs such as ansaetze tailored to qubit
architectures without all-to-all connectivity.

APPENDIX

In this appendix, we present the derivation of the Discrete
Laplacian Hamiltonians. To begin with, Poisson’s equation
∇2f = g can be discretized by second difference methods.
Assuming the one-dimensional case with unit displacement,
we have the approximation

gi = ∇2fi = ∂f/∂x ≈ −fi−1 + 2fi − fi+1.

In terms of vector entries, this translates to the formula

n∑
i=0

(−fi−1 + 2fi − fi+1)ei ≈ ∇2f ≈
n∑

i=0

giei,

where, taking Dirichlet boundary f−1 = fn+1 = 0, the left-
hand side motivates the discrete Dirichlet Laplacian. This is
the linear operator

∇2
D =

2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2 −1

−1 2

producing this matrix from the vector f . Using periodic
boundary f−1 = fn−1, fn = f0, we instead get the discrete
periodic Laplacian

∇2
P =

2 −1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2 −1

−1 −1 2

which can be seen by matrix multiplication to satisfy the
relationship ∇2

D = ∇2
P + P †(I⊗n−1 ⊗ X)P from Sato et

al. [2]. The same paper gives a third Laplacian for Neumann
boundary conditions. Assuming zero derivative at the bound-
ary, the second difference approximation changes to

g0 = ∇2f0 = ∂f/∂x ≈ f−1 − f1

gn = ∇2fn = ∂f/∂x ≈ fn − fn−1

so that the discrete Laplacian operator is given by

∇2
N =

1 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2 −1

−1 1

completing the set of Laplacians from Sato et al. [2]. Future
work could look at adapting these methods to more compli-
cated boundary conditions.

REFERENCES

[1] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, no. 1, p. 4213, Jul. 2014.

[2] Y. Sato, R. Kondo, S. Koide, H. Takamatsu, and N. Imoto, “Variational
quantum algorithm based on the minimum potential energy for solving
the Poisson equation,” Physical Review A, vol. 104, no. 5, p. 052409,
Nov. 2021.

[3] H.-L. Liu, Y.-S. Wu, L.-C. Wan, S.-J. Pan, S.-J. Qin, F. Gao, and Q.-Y.
Wen, “Variational quantum algorithm for the Poisson equation,” Physical
Review A, vol. 104, p. 022418, Aug. 2021.

[4] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, “The Variational
Quantum Eigensolver: A review of methods and best practices,” Physics
Reports, vol. 986, pp. 1–128, Nov. 2022.

[5] A. Jayakumar, A. Adedoyin, J. Ambrosiano, P. Anisimov, W. Casper,
G. Chennupati, C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons,
S. Lin, A. Malyzhenkov, D. Mascarenas, S. Mniszewski, B. Nadiga,
D. O’Malley, D. Oyen, S. Pakin, L. Prasad, R. Roberts, P. Romero,
N. Santhi, N. Sinitsyn, P. J. Swart, J. G. Wendelberger, B. Yoon,
R. Zamora, W. Zhu, S. Eidenbenz, A. Bärtschi, P. J. Coles, M. Vuffray,
and A. Y. Lokhov, “Quantum Algorithm Implementations for Begin-
ners,” ACM Transactions on Quantum Computing, vol. 3, no. 4, pp.
18:1–18:92, Jul. 2022.

[6] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An
adaptive variational algorithm for exact molecular simulations on a
quantum computer,” Nature Communications, vol. 10, no. 1, p. 3007,
Jul. 2019.

[7] X. Liu, A. Angone, R. Shaydulin, I. Safro, Y. Alexeev, and L. Cincio,
“Layer VQE: A Variational Approach for Combinatorial Optimization
on Noisy Quantum Computers,” IEEE Transactions on Quantum Engi-
neering, vol. 3, no. 01, pp. 1–20, Jan. 2022.

[8] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and
P. J. Coles, “Variational Quantum Linear Solver,” Quantum, vol. 7,
p. 1188, Nov. 2023. [Online]. Available: https://doi.org/10.22331/
q-2023-11-22-1188

[9] M. Illa and M. J. Savage, “Basic elements for simulations of standard-
model physics with quantum annealers: Multigrid and clock states,”
Physical Review A, vol. 106, no. 5, p. 052605, Nov. 2022.

[10] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D. Jaksch,
“Variational quantum algorithms for nonlinear problems,” Phys.
Rev. A, vol. 101, p. 010301, Jan 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.101.010301

[11] A. Abbas, A. Ambainis, B. Augustino, A. Baertschi, H. Buhrman,
C. J. Coffrin, G. Cortiana, V. Dunjko, D. J. Egger, B. G. Elmegreen,
N. Franco, F. Fratini, B. Fuller, J. Gacon, C. Gonciulea, S. Gribling,
S. Gupta, S. Hadfield, R. Heese, G. Kircher, T. Kleinert, T. Koch,
G. Korpas, S. Lenk, J. Marecek, V. Markov, G. Mazzola, S. Mensa,
N. Mohseni, G. Nannicini, C. O’Meara, E. Peña Tapia, S. Pokutta,
M. Proissl, P. Rebentrost, E. Sahin, B. C. B. Symons, S. Tornow,
V. Valls, S. Woerner, M. L. Wolf-Bauwens, J. Yard, S. Yarkoni,
D. Zechiel, S. Zhuk, and C. Zoufal, “Quantum optimization: Potential,
challenges, and the path forward,” 12 2023. [Online]. Available:
https://www.osti.gov/biblio/2229681

[12] B. C. B. Symons, D. Galvin, E. Sahin, V. Alexandrov, and
S. Mensa, “A practitioner’s guide to quantum algorithms for
optimisation problems,” Journal of Physics A: Mathematical and
Theoretical, vol. 56, no. 45, p. 453001, oct 2023. [Online]. Available:
https://dx.doi.org/10.1088/1751-8121/ad00f0

[13] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational
quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–
644, Aug. 2021.

[14] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate
Optimization Algorithm,” Nov. 2014.

[15] D. Amaro, C. Modica, M. Rosenkranz, M. Fiorentini, M. Benedetti,
and M. Lubasch, “Filtering variational quantum algorithms for
combinatorial optimization,” Quantum Science and Technology, vol. 7,
no. 1, p. 015021, feb 2022. [Online]. Available: https://dx.doi.org/10.
1088/2058-9565/ac3e54

[16] D. J. Egger, J. Mareček, and S. Woerner, “Warm-starting quantum
optimization,” Quantum, vol. 5, p. 479, Jun. 2021. [Online]. Available:
https://doi.org/10.22331/q-2021-06-17-479

[17] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Obstacles to
variational quantum optimization from symmetry protection,” Phys.
Rev. Lett., vol. 125, p. 260505, Dec 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.125.260505

[18] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function
dependent barren plateaus in shallow parametrized quantum circuits,”
Nature Communications, vol. 12, no. 1, p. 1791, Mar. 2021.

[19] S. Boulebnane and A. Montanaro, “Solving boolean satisfiability prob-
lems with the quantum approximate optimization algorithm,” Aug. 2022.

[20] J. Golden, A. Bärtschi, S. Eidenbenz, and D. O’Malley, “Numerical
Evidence for Exponential Speed-up of QAOA over Unstructured Search
for Approximate Constrained Optimization,” in IEEE International
Conference on Quantum Computing and Engineering QCE’23, Sep.
2023.

[21] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm applied to a bounded occurrence constraint
problem,” Jun. 2015.

[22] B. Barak, A. Moitra, R. O’Donnell, P. Raghavendra, O. Regev,
D. Steurer, L. Trevisan, A. Vijayaraghavan, D. Witmer, and J. Wright,
“Beating the Random Assignment on Constraint Satisfaction Problems
of Bounded Degree,” in Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques APPROX/RANDOM’15,
Aug. 2015, pp. 110–123.

[23] W. Ritz, “Über eine neue Methode zur Lösung gewisser Variations-
probleme der mathematischen Physik,” Journal für die reine und ange-
wandte Mathematik, 1909.

[24] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum compu-
tation by adiabatic evolution,” Jan. 2000.

[25] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, pp. 242–246, Sep. 2017.

[26] L. Leone, S. F. Oliviero, L. Cincio, and M. Cerezo, “On the practical
usefulness of the Hardware Efficient Ansatz,” Nov. 2022.

[27] C. Gidney, “Constructing large controlled nots / Constructing large
increment gates / Using quantum gates instead of ancilla bits,”
Jun 2015. [Online]. Available: https://algassert.com/circuits/2015/06/22/
Using-Quantum-Gates-instead-of-Ancilla-Bits.html

[28] Qiskit contributors, “Qiskit: An open-source framework for quantum
computing,” 2023.

[29] J. Golden, A. Bärtschi, D. O’Malley, and S. Eidenbenz, “The Quantum
Alternating Operator Ansatz for Satisfiability Problems,” in IEEE Inter-
national Conference on Quantum Computing and Engineering QCE’23,
Sep. 2023.

