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Abstract—AMD InstinctTM MI300A is the world’s first data
center accelerated processing unit (APU) with memory shared
between the AMD “Zen 4” EPYCTM cores and third generation
CDNATM compute units. A single memory space offers several
advantages: i) it eliminates the need for data replication and
costly data transfers, ii) it substantially simplifies application
development and allows an incremental acceleration of appli-
cations, iii) is easy to maintain, and iv) its potential can be
well realized via the abstractions in the OpenMP® 5.2 standard,
where the host and the device data environments can be unified
in a more performant way. In this article, we provide a blueprint
of the APU programming model leveraging unified memory and
highlight key distinctions compared to the conventional approach
with discrete GPUs. OpenFOAM®, an open-source C++ library
for computational fluid dynamics, is presented as a case study
to emphasize the flexibility and ease of offloading a full-scale
production-ready application on MI300 APUs using directive-
based OpenMP programming.

Index Terms—GPU, heterogeneous computing, directive-based
offloading, discrete memory

I. INTRODUCTION

High-performance computing (HPC) node architecture de-
signs are driven primarily by power management consider-
ations and are increasingly reliant on high degrees of fine-
grained parallelism [1], [2]. Top500 list [3] mentions over
150+ known systems that use accelerator/co-processor tech-
nology. Although these heterogeneous architectures provide
a high performance per-watt advantage in comparison to
the traditional homogeneous CPU-based systems [4], porting,
tuning, and maintaining scientific applications with millions
of code lines can be tedious and challenging. Additionally,
the desire for user applications to run efficiently on a variety
of accelerators often renders non-portable programming im-
practical as application developers may lack detailed knowl-
edge of a specific accelerator and its hardware intricacies as
well as growing concerns around code maintainability and
duplication [5]. Directive-based programming models allow
developers to insert compiler directives into a code region to
automatically generate parallel code for the target system. Two
popular directive-based programming models that have been
widely adopted are OpenMP® [6] and OpenACC [7].
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OpenMP® 4.0 and beyond have made a paradigm change
to support heterogeneous systems and leverage accelerators
like GPUs with the ability to offload computations to ac-
celerators [8]. In more recent releases [9], new features to
manage memory on heterogenous systems have been added
with full support for accelerator devices. Increasing compiler
support and optimizations have enabled numerous case studies
and user experiences of OpenMP target offloading of in-
house applications [10], mini-apps [11], and benchmarks [12].
However, the simplicity of the example codes presented in
these case studies often creates a challenge when translating
and implementing OpenMP target offloading in production-
ready applications.

Managing memory and data in a performant way is one
of the primary challenges in porting and optimizing complex
applications for systems with discrete memory spaces and
compute devices. Some recent work [12] analyzed using
unified memory, enabling the CPU and GPU to access the
same memory. Before the introduction of unified memory, host
and devices would use separate memory spaces and as a result,
communication between CPU and GPUs had to be managed
by programmers explicitly.

From the coding perspective, unified virtual memory ad-
dressing supported on systems with discrete physical memo-
ries of compute devices provides a unified view of the data
and reduces the programmability complexity. However, low
performance due to insufficient hardware or system software
support for unified virtual memory addressing may render
such an approach not practical. For example, excessive page
migrations triggered by accessing the same virtual memory
by the host and the device can overshadow any performance
advantages in using accelerators. Initial work on assessing
unified memory on systems with discrete GPUs reported low
portability between systems [12], [13] and lack of compiler
optimizations [13] resulting in major bottlenecks. APU offers
an unified physical memory, which eliminates the need for
page migrations and further advances the performance in fine-
grained data sharing by the host and device threads.

In this paper, we focus on programming on AMD InstinctTM

MI300A using the latest OpenMP standard, and specifically its
support for unified memory. To demonstrate the impact of the
alignment of innovation in the hardware and system software



we go beyond using simple code examples. Specifically, we
present our experience in porting within the framework of
OpenFOAM®, an established open-source C++ library and ap-
plication suite for computational fluid dynamics that comprises
on the order of 1 million lines of code [14]. We emphasize the
flexibility and ease of offloading a production-ready applica-
tion on MI300 APUs using directive-based programming. The
contributions of this paper are the following:

• We provide a blueprint of the APU programming model
and demonstrate the ease and flexibility of porting codes
on MI300A with OpenMP.

• We elaborate our method for incremental acceleration
of a production and widely used in industry code—
OpenFOAM.

The rest of this paper is organized as follows: §II highlights
some notable work from the past. §III provides background
on OpenMP target offloading, high-level details of AMD
InstinctTM MI300A node architecture and describes some of
the key advantages of programming with OpenMP instead
of HIP [15]/CUDA® [16]. §IV presents a case-study to
demonstrate the ease and flexibility in porting a production-
ready HPC application to MI300A and §V compares the
performance on discrete GPUs and MI300A. Finally, §VI
provides the main concluding remarks of this paper.

II. RELATED WORK

Programming models based on compiler directives for of-
floading to GPUs are gradually becoming a real alternative
to programming models based on HIP [15]/CUDA [16].
Several production codes such as QMCPACK [17], VASP
[18], ICON [19], GenASiS [20], etc. employ either OpenACC
or OpenMP based acceleration. In addition, OpenMP target
offloading to accelerate applications from various scientific
domains on discrete GPUs has been the context of sev-
eral case studies (e.g., Nekbone [21], Lulesh [22], and U.K
mini-apps [23] among others). The analysis presented in
the previous publications can be categorized into compiler
optimization, runtime overheads, and data management chal-
lenges. Compiler optimizes compute kernels, achieving high
performance with OpenMP target offload on CPU and GPU
targets when using teams distribute parallel for
constructs and avoiding the use of explicit schedules [24],
[25]. Other compiler optimization research has been focussed
on accelerating user code that exists between the target
and parallel constructs [24], [26], [27]. Detailed analysis
of OpenMP 4.5 supported by different compilers show run-
time overheads during the testing of different features [28].
More recently [11], three compilers supporting OpenMP direc-
tives for offloading tested discrete GPU compute capabilities,
and runtime overheads in LLVM/Clang were identified with
suggestions for manual implementation of acc_attach to
create data structure on device and find association between
host and device addresses. Similarly to using HIP/CUDA
programming models, in directive-based programming the data
management challenges have been one of the major hurdles
in extending the applicability of OpenMP GPU offloading

from benchmarks to full-scale production codes. The challenge
of dealing with nested data is described in [13], and some
code transformations to work with nested structures have
been proposed. However, alternative methods to map struct
containing pointers [29] using managed memory allocations
via cudaMallocManaged simplify the use of C++ objects,
and enable use of classes like std::vector in OpenMP
target regions.

Many successful attempts with OpenMP target offloading
using unified memory have been presented, however, the
majority of work has leveraged benchmarks and mini-apps.
Unified memory addressing is not available on all CPU +
GPU platforms and its use in some cases has been associated
with higher than expected overheads [13]. While explicit data
management is possible through abstractions using OpenMP
runtime API calls, e.g., Kokkos [30], the lack of compiler sup-
port can be problematic. In this paper, we focus on directive-
based programming using OpenMP, and specifically, on the
advantages of the unified memory approach in programming
supported by the unified physical memory in the MI300A.

III. PROGRAMMING MI300A WITH OPENMP

(a) Discrete CPU and GPU. (b) APU.

Fig. 1: Schematic representation of a socket with a discrete
CPU and GPU and a socket with APU.

Figure 1 shows the schematics of a socket with a) a discrete
CPU and GPU, and b) an APU. In the APU design, the
AMD “Zen 4” EPYCTM cores and third generation CDNATM

compute units share the same high-bandwidth memory, which
eliminates the need for data replication and does not require a
programming distinction between the host and device memory
spaces.

High performance, fine-grained sharing of the same virtual
and physical memory by the threads running on the CPU
and GPU processing elements enables a unified programming
framework that provides software developers with the ability
to: i) alternate the work on the same data sets between the
CPU and the GPU without taking the penalty of data transfers,
and ii) write significantly less code. OpenMP specifications
include an informational pragma that allows programmers to
select unified_shared_memory as a requirement for the
execution of a program. ROCmTM supports the requirement



and its implementation is based on AMDGPU Unified Mem-
ory support.

1 #define N (1024*100)
2

3 #pragma omp requires unified_shared_memory
4

5 int main() {
6 double *a = new (std::align_val_t(

__STDCPP_DEFAULT_NEW_ALIGNMENT__)) double[N];
7 double *b = new (std::align_val_t(

__STDCPP_DEFAULT_NEW_ALIGNMENT__)) double[N];
8 double k = 0.0;
9

10 // fill a and b arrays and constant k from file
11 fileIO(a, b, &k, N);
12

13 #pragma omp target teams distribute parallel for
14 for(int i = 0; i < N; i++)
15 b[i] += a[i] * k;
16 }

Listing 1: Simple example of directive-based code acceleration
with OpenMP and unified_shared_memory.

Consider the program in listing 1. A single OpenMP host
thread executes code in the main function and it launches a
GPU kernel execution when using the pragma target. First,
it allocates heap memory using the new operator. Note that
we use C++17 semantics to control memory alignment via
the code compilation. Also note that while we use new to
allocate memory, on MI300A any memory allocator includ-
ing hipMalloc will allocate unified memory, i.e., memory
accessible by any compute element. Second, it populates the
arrays with input data in a separate function. Then it launches
a GPU kernel using the arrays and a constant value. The
program does not contain any OpenMP data mapping because
it specified the requirement unified_shared_memory,
which “makes map clauses optional on target constructs” [9].
Following OpenMP specification, the compiler maps pointers
a and b as zero-sized array sections, with the pointers as
the base. That is, the compiler adds an implicit map clause
as following map(a[:0], b[:0]). The effect of such
mapping is that the contents of a and b are passed by value as
GPU kernel arguments. Inside the GPU kernel, threads access
a and b pointers from the kernel function parameters. When
accessing addresses based on a and b pointers (e.g., a[0],
a[1], etc.), GPU threads emit loads and stores with the host
pointer values as the base address.

The ROCm software stack and its AMDGPU hardware
support provide an implementation of such host-pointer ad-
dressing from GPU kernels using its Unified Memory support.
OpenMP programmers are oblivious of how the GPU support
functions, and they only need to know that a and b are passed
by-value to the GPU kernel.

In addition, using functions inside a GPU kernel requires
a different programming effort because unlike data that can
be accessed from any device on AMDGPU-based systems,
code that has been compiled for the host cannot be executed
on a GPU device. OpenMP programmers need to mark all
functions that might be called inside a GPU kernel using the
pragma declare target. The compiler will generate a

device (and host) code for all those functions marked with
the pragma and replace calls to those functions inside GPU
kernels to the corresponding GPU implementations. Marking
functions for GPU code generation is easily achieved in simple
applications that do not make use of third-party libraries inside
target regions.

In general applications, developers are interested to employ
third-party library calls in target regions, however, they do not
normally have access to their implementation, nor should they
be expected to modify them. Consider the program in listing 2,
which is a simplified coding of the daxpy algorithm using C++
STL vectors.

1 #include <vector>
2 #pragma omp requires unified_shared_memory
3

4 template<typename T>
5 void daxpy(T da, vector<T> dx, vector<T> dy) {
6 #pragma omp target teams distribute parallel for
7 for(auto i = 0; i < dx.size(); i++)
8 dy[i] = dy[i] + da*dx[i];
9 }

10

11 int main() {
12 std::vector<double> dx, dy;
13 double da;
14 // input da, dx, and dy from file
15 fileIn(da, dx, dy);
16

17 daxpy(da, dx, dy);
18 }

Listing 2: Example of directive-based offloading with nested
data and implicit code generation for std::vector class
methods.

The program uses unified_shared_memory to enable
GPU threads to access variables declared and allocated on host
memory. This includes program stack variables dx and dy and
the host pointers they encapsulate for the vector data, which
is allocated on the heap. The target region uses the size
function of C++ vectors, as well as the [] operator to access
elements in the vector data buffers. The OpenMP compiler
identifies the function and operator as needed to correctly
generate code for the GPU, and if their implementations are
visible in the vector header file, it generates their code in
the GPU binary.

This support is not available when the implementation of
a function, called from within a target region, is not visible
when compiling the file that contains the target region. This
often happens when the implementation is stored in a separate
C++ implementation source file: the compiler can only see the
declaration of the function in the included header file, but not
its definition in the backing implementation file. In this case,
the user is required to manually modify the source code of the
implementation file to mark the function with the declare
target pragma. In the example above, this is not necessary
as the implementation of size and [] is provided in the
vector header file.

It is worth mentioning that the ROCm software stack
provides an evolved API compared to what was described in
a previous paper [31], where instead of special allocators the



default C++ vector allocator can now be used. This means
that memory allocated using standard OS allocators such as
mmap, sbrk, and similar, can be accessed on AMDGPUs and
supported by the ROCm unified memory facility.

IV. CASE STUDY: OPENFOAM

OpenFOAM is an established and wide-spread open-source
C++ library [14] that uses object-oriented programming and
tensor algebra to implement mathematical models for com-
putational continuum mechanics with special focus for com-
putational fluid dynamics (CFD). In OpenFOAM, the com-
putational domain is divided into a set of discrete volumes
∂Vi that fill the computational domain D without overlap,
i.e., ∪i∂Vi = D and ∩i∂Vi = ∅. The fluid-flow equations
are then volume-integrated over each individual finite volume
∂Vi. Parallelization on distributed systems uses MPI for inter-
process communication, where the domain is split into N sub-
domains and neighboring processors are joined with processor-
to-processor boundary conditions that are responsible for ex-
changing information during the simulation.

From the code organization and architecture perspective,
OpenFOAM makes extensive use of templated classes, macros,
and data encapsulation. Such choice hides many lower-level
details of the code, for example, implementation of the basic
tensorial classes, operator overloading, enabling parallel com-
munication, from view at the higher levels and makes it easy
for user to implement new continuum mechanics models [14].
At the same time, such a code architecture makes porting
O(1M) lines of the CPU-code to GPUs quite challenging.
Efforts to port OpenFOAM to discrete GPUs have been made
in the past, and resulted in either stand-alone forks [32] or
enabling GPU-acceleration by interfacing OpenFOAM with
other third-party libraries like PETSc [33], Ginkgo [34], etc.
All of those efforts are based on data duplication and managing
two discrete memory spaces—one for the GPU and another
for the CPU. The third-party packages can themselves be
quite large—both PETSc and Ginkgo contain O(1M) code
lines, with further complex dependencies on libraries such as
hipSparse or cuSparse.

As an example, the code snippet in listing 3 is the main
part of the code, simpleFoam, which is a steady-state solver
for incompressible, turbulent flows solving the Navier-Stokes
equations with turbulence modeling. In the predictor-corrector
SIMPLE algorithm [35] (listing 3), the pressure and velocity
fields are decoupled and solved iteratively as follows:

1) Pressure solution from a previous time-step is used as
an initial guess and the momentum equation is solved in
line 10 to a predefined tolerance to give an approximate
velocity field,

2) The pressure Poisson equation is formulated on line 19
with the divergence of the partial velocity flux as a
source term and solved to give a new estimate of the
pressure field on line 23. A new set of conservative
fluxes is obtained from the pressure equation,

3) The corrected pressure field is used in an explicit cor-
rection to the velocity field on line 32,

4) Solve the transport equations; turbulent quantities on line
37.

1 while (simple.loop())
2 {
3 Info<< "Time = " << runTime.timeName() << nl <<

endl;
4 // --- Pressure-velocity SIMPLE corrector
5 {
6 // Momentum predictor
7 ...
8 if (simple.momentumPredictor())
9 {

10 solve(UEqn == -fvc::grad(p));
11 fvOptions.correct(U);
12 }
13 ...
14 // Non-orthogonal pressure corrector loop
15 while (simple.correctNonOrthogonal())
16 {
17 fvScalarMatrix pEqn
18 (
19 fvm::laplacian(rAtU(), p) == fvc::div(

phiHbyA)
20 );
21

22 pEqn.setReference(pRefCell, pRefValue);
23 pEqn.solve();
24

25 if (simple.finalNonOrthogonalIter())
26 {
27 phi = phiHbyA - pEqn.flux();
28 }
29 }
30 ...
31 // Momentum corrector
32 U = HbyA - rAtU()*fvc::grad(p);
33 U.correctBoundaryConditions();
34 fvOptions.correct(U);
35 }
36

37 laminarTransport.correct();
38 turbulence->correct();
39 ...
40 }

Listing 3: Code snippet from simpleFoam.C showing
different stages of computations as per SIMPLE algorithm.

The while loop runs for a desired time T =
∑

ti, and
within an individual time step ti the inner pressure-correction
(steps 2–3) can be iterated as many times as necessary for
convergence. The HPC_motorbike benchmark (Large with
34 M cells) [36] uses simpleFoam solver and the top-half
of Figure 2 uses markers to provide a more detailed view of
the computations in an individual time-step. For simplicity,
Execution time line, is provided which helps connect the
markers with the code in listing 3. Bottom half of Figure 2
shows a trace of the HPC_motorbike benchmark configured
with PETSc. In comparison to the CPU-executions, PETSc
interface offloads only the KSPSolve [33] kernels to GPUs
and a significant fraction of the workflow, corresponding to
matrix assembly and preconditioner setup, is executed on
the CPU, preventing further acceleration using GPUs. Major
concerns [37] with the existing GPU interface libraries and
creating a direct GPU-port of OpenFOAM are:

• Existing third-party libraries and packages have opti-
mized GPU-code, however the interface can provide



Fig. 2: Markers for the CPU-execution (top half) and trace of the GPU kernels offloaded (bottom-half) with PETSc interface
show the execution of the HPC_motorbike benchmark (Large with 34 M cells) with simpleFoam solver for a single time
step ti. Identifiers for the different stages of computations are marked in the Execution time line.

acceleration to only a limited part of the computation,
as seen with PETSc interface in Figure 2.

• Code duplication: OpenFOAM has ∼ O(1M) lines of
code, and porting and maintaining a separate/duplicate
GPU-code will be tedious.

• Vendor-specific GPU code and proprietary packages can
limit performance-portability, thereby restricting users to
a specific hardware type.

• Code ownership and maintenance can be challenging, es-
pecially with vendor-specific code. Open-source projects
thrive on community engagement, but lack of vendor-
specific GPU programming knowledge can hinder in-
volvement and slow down application development.

To this effect, our approach for accelerating OpenFOAM
is fundamentally different, where we: i) embrace the unified
memory model, ii) identify for loops which can be parallelized
(sometimes using atomics) and add a single line of compiler
directives to express parallelism and allow multithreaded code
execution on compute elements of the CPU or the GPU, and
iii) accelerate code regions that closely follow each other and
share the data. The last point deserves additional explanation.
Considering that our target architecture supports unified phys-
ical memory, and considering that frequently alternating the
execution between the CPU and the GPU carries very small
performance penalty, we initially take a rather opportunistic
approach where we offload the “low hanging fruits” with
maximum impact on the performance. For example, line 27 of
listing 3 uses operator overloading and macro expressions as
shown in listing 4 to perform field operations for momentum
correction. The for loops in macro expressions are offloaded
with OpenMP compiler directives and are called multiple
times, as seen in the trace in Figure 3, thereby resulting
in substantial acceleration. Simply put, adding a single line
with OpenMP directives results in offloading significantly
large number of loops within each time step. Note the use
of if(target:n>TARGET_CUT_OFF) construct allows
adaptive switching of the execution between the CPU cores
and the GPU. This construct is very useful on an APU where
switching between the computation on the host and device has
a low overhead.

1 #define TPARALLELFOR_ALL_F_OP_F_OP_F(typeF1, f1, OP1
, typeF2, f2, OP2, typeF3, f3) \

2 \
3 /* Check fields have same size */ \
4 checkFields(f1, f2, f3, "f1 " #OP1 " f2 " #OP2 "

f3"); \
5 \
6 /* Field access */ \
7 List_ACCESS(typeF1, f1, f1P); \
8 List_CONST_ACCESS(typeF2, f2, f2P); \
9 List_CONST_ACCESS(typeF3, f3, f3P); \

10 label loop_len = (f1).size(); \
11 \
12 /* Loop: f1 OP1 f2 OP2 f3 */ \
13 _Pragma("omp target teams distribute parallel

for if(target:loop_len > TARGET_CUT_OFF)") \
14 for (label i = 0; i < loop_len; ++i) \
15 { \
16 (f1P[i]) OP1 (f2P[i]) OP2 (f3P[i]); \
17 }

Listing 4: Code snippet from FieldM.H showing directive-
based offloading of macro expressions.

Fig. 3: A section of the trace collected of simpleFoam
solver showing offloading of macro expressions, here
TFOR_ALL_F_OP_F_OP_F in the momentum corrector
stage, on MI300A.

We further add OpenMP directives to other paralleliz-
able loops. In simpleFoam (listing 3), the solve() rou-
tine on line 10 solves the linear system of equations to
predict the velocity. Listing 5 shows a snippet from the
PBiCGStab solver used to solve the momentum equations in
the HPC_motorbike benchmark. The solver inturn invokes
the preconditioner (line 4) and an example code is shown
in listing 6. Both the solver and preconditioner implemen-
tations have for loops that iterate over the available cells



(or discrete volumes) ∂Vi. OpenMP is used to offload these
regions with target clause and teams distribute
parallel for compiler optimizations.

On systems supporting unified virtual memory addressing,
the OpenMP pragma unified_shared_memory is used
to simplify data management across CPU and GPU. The
OpenMP runtime pass host pointers by-value to the device (see
Section III), which provides the ease and flexibility to offload
complex regions of code. On MI300A, which supports both
the unified virtual addressing and unified physical memory
addressing, unified_shared_memory results in a highly
performant implementation.

1 #pragma omp requires unified_shared_memory
2 ...
3 // --- Precondition pA
4 preconPtr->precondition(yA, pA, cmpt);
5 ...
6 // --- Calculate sA
7 #pragma omp target teams distribute parallel for

if(target:nCells>TARGET_CUT_OFF)
8 for (label cell=0; cell<nCells; cell++)
9 {

10 sAPtr[cell] = rAPtr[cell] - alpha*AyAPtr[cell
];

11 }
12 ...

Listing 5: Code snippet from PBiCGStab.C showing
directive-based offloading on MI300A.

1 #pragma omp requires unified_shared_memory
2 ...
3 #pragma omp target teams distribute parallel for

if(target:nCells>TARGET_CUT_OFF)
4 for (label cell=0; cell<nCells; cell++)
5 {
6 wAPtr[cell] = rDPtr[cell]*rAPtr[cell];
7 }
8 ...

Listing 6: Code snippet from DILUPreconditioner.C
showing directive-based offloading on MI300A.

To this end, the key advantages of using directive-based
approach in OpenFOAM and unified physical memory are:

• Figure 4 shows a trace of HPC_motorbike bench-
mark on MI300A with OpenMP target offloading and
unified_shared_memory. With O(100) lines of
code modification, substantially more code than in
OpenFoam-to-PETSc (Figure 2) approach is offloaded to
the device, resulting in better device utilization and in-
creased speedups. Accordingly, the time and effort taken
to port and tune production-ready code is significantly
lower than conventional GPU-programming with HIP or
CUDA and discrete memory spaces.

• Unified memory reduces the complexities around data
management. All of simpleFoam (listing 3) was of-
floaded without the need to add explicit map clause
and manage data environment (see OpenMP data envi-
ronments in [38]). To reduce the number of code lines
and to simplify the porting effort, we heavily relied on
the implicit declare target feature that we explained in

Section III as many variables in the body of the for loops
are complex objects (classes) using overloaded operators.

• Unified memory keeps the total memory footprint al-
most identical to the original CPU-only code, which
is in stark contrast to using third-party interfaces and
libraries like PETSc, where additional CPU memory is
needed for conversion between matrix formats and GPU
memory is needed for data replication. For example, the
HPC_motorbike benchmark requires more than 80 GB
of GPU memory and consumes almost 2x more system
memory, compared to the non-accelerated OpenFOAM.

• Minimal code duplication, and high portability. On HPC
systems where either the accelerators/GPUs are not avail-
able or the compiler lacks support for target offloading,
multi-thread parallelism on CPU cores is obtained with
the same compiler directives.

• The if(target:n>TARGET_CUT_OFF) feature in
OpenMP allows the runtime to dispatch the computations
to the desired hardware based on the iteration count
TARGET_CUT_OFF as shown in listings 4, 5, and 6.

To our knowledge, our work is the first demonstration of the
potential of the APU, OpenMP standard, and unified memory
to accelerate a complex production application with relatively
low effort. There is an ongoing effort to upstream our unified
memory implementation in OpenFOAM (currently accessible
through GitHub [39]) to official repository [40].

V. PERFORMANCE EVALUATION: THE APU ADVANTAGE

The performance of directive-based offloading in Open-
FOAM with unified_shared_memory is assessed by
running the HPC_motorbike benchmark (Large with 34
M cells) on a single MI300A. The benchmark is configured
to run for 20 time-steps, with the average time of execution
per time-step (in sec.) taken as the figure of merit (FOM).
Performance of the APU is compared to that of the systems
with discrete CPU (dCPU) and discrete GPU (dGPU: MI210,
A100, and H100). The high level system details are provided in
Table I. All systems must be configured and enabled with het-
erogeneous memory management (HMM) to allow the GPU to
address the system memory and accordingly run OpenFOAM
with OpenMP offloading and unified_shared_memory.
Furthermore, memory pooling is employed to improve perfor-
mance by reusing the allocated memory (for buffers larger than
5K elements) instead of frequently allocating and deallocating
memory. An interface with the Umpire library [41] allocates
and provides the memory pool using different memory allo-
cators — HIP/CUDA Managed Memory provides an optimal
solution for systems with dGPU platforms [42], whereas any
memory allocator can be used with MI300A.

Normalized speedups with respect to the FOM observed
on a system with x86 dCPU and H100-SXM dGPU are
shown in Figure 5. On each system, a single CPU-core (and
single process) is used to offload work to the device and
the benchmark is run five times to record the average FOM.
MI300A offers significant performance gain over systems with
dGPUs with 4x speedup over a system with H100-SXM and 5x



Fig. 4: A trace of the HPC_motorbike benchmark (Large with 34 M cells) using simpleFoam solver showing directive-
based offloading with OpenMP and unified_shared_memory on MI300A. In comparison to the GPU-acceleration
achieved with PETSc interface (middle), directive-based offloading with OpenMP 5.0 (bottom) is able to offload significantly
larger portions of the code to MI300A, thereby resulting is significantly higher acceleration than that offered by PETSc and
other third-party interfaces. For simplicity, the trace included here contains details of a single time step only.

Fig. 5: Normalized speedup for the HPC_motorbike bench-
mark (Large with 34 M cells) on different devices with respect
to the observed FOM on an x86-based H100-SXM. The APU
offers significant performance gain over discrete GPUs.

speedup over the previous generation MI210. Profiling analysis
(Figure 6) reveals that:

• On dGPUs, more than 65% of the time is spent in page
migrations: updating GPU tables and copying the data
between host and device.

• On APU, the unified physical memory shared between
the CPU cores and GPU’s compute units (Figure 1)
completely removes the overhead of page migrations,
resulting in significant performance boost.

Measurements were collected on single-socket (64-
cores) AMD EPYCTM “Zen”4 CPU by running the same
HPC_motorbike benchmark and OpenFOAM source. Nu-
merical experiments confirm that 1 MI300A with 1 CPU-core
has 2x better performance than a single-socket “Zen”4 CPU.
Furthermore, overloading MI300A with multiple processes

Fig. 6: Profiling analysis from different platforms showing the
portion of time spent in page migrations (updating GPU tables
and copying the data between host and device) during the exe-
cution of the HPC_motorbike benchmark (Large with 34 M
cells). The unified physical memory shared between the CPU
and compute cores of the APU removes the overhead of page
migrations, providing significant acceleration in comparison to
discrete GPUs.

improves performance, for example, tests with 3-6 CPU-
cores per APU gives 2x better performance than reported in
Table I. Whereas, with unified memory, overloading a device
in dCPU+dGPU system gives marginal gain in performance
due to lack of scalability and serialization of certain parts of
page migration and page registration within the OS image. For
simplicity, Figures 5 and 6 compare the performance of GPUs
only with emphasis on speedup of one APU over a single
dGPU, and thus the CPU-only execution and overloading



TABLE I: Details of different discrete GPU platforms used to compare with MI300A.

Device Stack, Compiler, NPS Memory Pool

MI300A ROCm-6.0, amdclang++ (clang-17.0), NPS1 System memory
x86, MI210, PCIe 4.0 ROCm-6.0, amdclang++ (clang-17.0), NPS1 Managed memory
x86, A100-80GB SXM, PCIe 4.0 CUDA-12.2.2, clang-18.0, NPS1 Managed memory
x86, H100-SXM, PCIe 5.0 CUDA-12.2.2, clang-18.0, NPS1 Managed memory

an APU with multiple CPU-cores is omitted from further
discussion.

VI. CONCLUSIONS

In this paper we discuss OpenMP target offloading and
implementation of unified_shared_memory in the AMD
ROCmTM OpenMP compiler. A blueprint of the APU pro-
gramming model is presented, which leverages unified mem-
ory on MI300A, and key distinctions compared to the
OpenMP target offloading on discrete GPUs are high-
lighted. OpenFOAM, an open-source C++ library for com-
putational fluid dynamics, is ported to MI300A with min-
imal code modifications and the addition of OpenMP and
unified_shared_memory demonstrates the ease and
flexibility of porting production-ready codes to MI300A using
OpenMP directives.
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