
Asynchronous Distributed Actor-based Approach to
Jaccard Similarity for Genome Comparisons

Youssef Elmougy
Georgia Institute of Technology

Atlanta, GA USA
yelmougy3@gatech.edu

Akihiro Hayashi
Georgia Institute of Technology

Atlanta, GA USA
ahayashi@gatech.edu

Vivek Sarkar
Georgia Institute of Technology

Atlanta, GA USA
vsarkar@gatech.edu

Abstract—The computation of genome similarity is important
in computational biology applications, and is assessed by calcu-
lating the Jaccard similarity of DNA sequencing sets. However,
it’s challenging to find solutions that can compute Jaccard
similarity with the efficiency and scalability needed to fully
utilize capabilities of modern HPC hardware. We introduce a
novel approach for computing Jaccard similarity for genome
comparisons, founded on an actor-based programming model.
Our algorithm takes advantage of fine-grained asynchronous
computations, distributed/shared memory, and the Fine-grained
Asynchronous Bulk-Synchronous Parallelism execution model.
Our performance results on the NERSC Perlmutter supercom-
puter demonstrate that this approach scales to 16, 384 cores,
showing an average of 4.94× and 5.5× improvement in execution
time at the largest scale and relevant hardware performance
monitors at medium scale compared to a state-of-the-art baseline.
Our approach is also able to process much larger scale genomic
datasets than this baseline. We make our source code publicly
available1.

Index Terms—Distributed Jaccard Similarity, Distributed Jac-
card Distance, High-Performance Genome Processing, Actors,
Selectors, Shared Memory, Distributed Systems, PGAS, Open-
SHMEM

I. INTRODUCTION

The computation of genome similarity and genetic distances
is highly important in different applications of computational
biology and comparative genomics, such as in assemblers [1],
[2], metagenomic profiling [3], [4], clustering [5], [6], and
retrieval of sequencing samples [7]. Specifically, computing
the genome similarity among two DNA sequencing data sets is
popularly assessed by computing their Jaccard similarity [8],
[9]. The Jaccard similarity, J (X,Y), computes the overlap
of two data sets X and Y by taking the ratio between the
cardinality of their intersection by the cardinality of their union
(|X∩Y |
|X∪Y |). In particular for genome similarity, each data set is a

multiset of substrings of k DNA bases, referred to as k-mers,
where the Jaccard similarity calculates the similarity among
multisets with respect to the fraction of k-mers shared between
them. Similarly, the Jaccard distance, dJ = 1 − J , is used
in assessing genetic distance by calculating the dissimilarity
between multisets.

It’s important to note that due to their simple and intuitive
conceptual characteristics, Jaccard similarity and distance have
been employed extensively to a wide range of fields across

1https://github.com/youssefelmougy/jaccard-selector/

several application types. The use cases include computa-
tional biology [10], [5], [11], pattern recognition [12], data
mining [13], [14], clustering [15], [16], [17], recommendation
systems [18], and machine learning [19], [20].

Although Jaccard similarity and distance have seen wide
adoption in numerous applications, current solutions are not
necessarily efficient for scalable and distributed computation.
Prior approaches focus on sequential or single server solu-
tions [21], [22], [23], or use inefficient MapReduce implemen-
tations [24], [25]. Particularly in the computational biology
and comparative genomics field, there have been recently
published solutions that attempt to tackle some of these
issues [5], [10], [11]. However, due to the continuous growth
in the size of sequencing datasets and the increasing number
of genomes, the computation of genome similarity and genetic
distances is inherently a computationally challenging problem,
which motivates the need for an efficient, fast, and scalable
solution that can process datasets of growing magnitudes in
different domains.

This paper has three main contributions:

• We design a distributed, scalable, and asynchronous
algorithm for computing both J and dJ : The im-
plementation is based on the Actor-based program-
ming system introduced in [26], taking advantage of its
fine-grained asynchronous execution, automatic message
aggregation, distributed and shared memory approach,
and the underlying Fine-grained-Asynchronous Bulk-
Synchronous Parallelism (FA-BSP) execution model. Our
approach is the first solution to result in just two com-
putation supersteps, reducing the need for global barrier
synchronizations.

• We apply our algorithm to high-scale computations
of Jaccard similarity for genome comparisons and
genetic distances and achieve 4.94× performance (on
a synthetic large-scale = 20 dataset) compared to
the state-of-the-art algorithm: This extends the use of
these algorithms within the computational biology field
as well as others previously mentioned. To the best of
our knowledge, [10] represents the current state-of-the-
art (SOTA) algorithm of Jaccard similarity for genome
comparisons; thus, our work bases its evaluation on
comparisons with this SOTA baseline. We present weak
scaling and strong scaling results, scaling up to 16, 384
cores of the Perlmutter supercomputer at the National

Energy Research Scientific Computing Center (NERSC),
showing an average of 4.94× increased performance
compared to the SOTA on both synthetic and real world
data. Moreover, we are able to run much larger dataset
sizes than the SOTA without memory or performance
issues.

• We perform a deep dive hardware performance
counter study to realize the performance benefits of
our approach: We present execution time and HardWare
Performance Counter (HWPC) results on a medium-scale
(= 14) synthetic dataset, showing an average of 3.6×
and 5.5× increased performance for execution time and
HWPC results compared to the SOTA. Our evaluations
are based on analysis of the load imbalance, L1/L2
caches, TLBs, branches, network messages, and batch
sizes.

II. BACKGROUND

This section defines Jaccard similarity, including its calcu-
lation in graph applications and genome similarity, provides
an overview of the SOTA algorithm, and discusses the Actor-
based programming system used to build the algorithms.

A. Jaccard Similarity

The Jaccard similarity, J (X,Y), is an operation that com-
putes the overlap of two data sets X and Y by calculating the
ratio between the cardinality of their set intersection and the
cardinality of their set union:

J (X,Y) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |

Similarly, the Jaccard distance, dJ , calculates the dissim-
ilarity between sets and is calculated by dJ (X,Y) = 1 −
J (X,Y). If both sets are empty or contain the exact same
elements, then J (X,Y) = 1, consequently their distance
would be dJ = 0. These statistics can be applied to both
graph-based similarly and genome-based similarity (the scope
of this paper).

In graph-based similarity, the Jaccard similarity represents
the similarity of the neighborhoods of two vertices connected
by an edge. Specifically, for any two vertices u, v in a graph
G, the Jaccard similarity Ju,v is calculated by looking at the
union and intersection of the neighborhoods U (for vertex u)
and V (for vertex v):

Ju,v =
|U ∩ V |
|U ∪ V |

=
γu,v

du + dv − γu,v
, ∀(u, v) ∈ G

Where γu,v is the number of common neighbors between
vertices u and v, du is the out-degree of vertex u, and dv is
the out-degree of vertex v.

In genome-based similarity, each data set is a multiset
of substrings of k DNA bases, referred to as k-mers. The
Jaccard similarity represents the similarity between all pairs of
multisets with respect to the fraction of k-mers shared between
them. For a set of samples X = {X1, ..., Xn} (which may be
from multiple genomes), where a sample Xi comprises of m

positive integers (where m can range to m = 430), the Jaccard
similarity for each pair of multisets is calculated by:

J (Xu, Xv) =
|Xu ∩Xv|
|Xu ∪Xv|

=
common k-mers

total present k-mers
, u,v∈{1,...,n}

B. State-of-the-Art Similarity Algorithm

The SOTA Jaccard similarity algorithm for genome com-
parisons, GenomeAtScale, is introduced in [10]. It leverages
the distributed memory numerical library Cyclops Tensor
Framework (CTF) [27]. CTF provides routines that allow
for contraction and summation of sparse and dense tensors,
provides primitives for sparse input and transformation of data,
and enables element-wise operations on distributed data types.

Before discussing the GenomeAtScale algorithm, it is im-
portant to realize the algebraic formulation of the Jaccard sim-
ilarity. An indicator matrix Am×n is defined, where aij = 1 if
i ∈ Xj or otherwise aij = 0. The similarity matrix S ∈ Rn×n,
which is the Jaccard similarity J of all pairs of samples, is cal-
culated by sij = J (Xi, Xj) = bij/cij , where B,C ∈ Nn×n

are the cardinalities of the intersections and unions of pairs
of samples respectively calculated by bij =

∑
k akiakj and

cij =
∑

k aki +
∑

k akj − bij . The GenomeAtScale algorithm
then calculates S using the following five steps: (1) divide A’s
rows into batches with m̂ rows and loop through each batch;
(2) remove zero rows within the batch using a distributed
sparse vector; (3) compress row segments with bitmasking; (4)
compute and accumulate partial scores into B and C matrices;
(5) derive the final similarity scores S based on intermediate
B and C matrices. The reader is directed to [10] for more
detailed algorithmic descriptions.

C. Actor-Based Programming System

The algorithmic contributions of this paper are built using
the FA-BSP model introduced in [26], and its accompanying
C++ runtime implementation in [28]. FA-BSP is a productive,
lightweight, and asynchronous computation model suitable
for high-throughput DNA sequencing data computations. It
provides fine-grained asynchronous point-to-point actor mes-
sages, automatic message aggregation (through the Conveyors
library [29]), distributed and shared memory approach, and
an underlying FA-BSP execution model. These actors are
regarded as computation primitives, sharing no mutable state
due to inherent isolation. It as well avoids data races and
synchronization by executing messages sequentially within
its mailbox, avoiding concurrent contention to local data
accesses. The terms ”Actor” and ”Selector”, the latter of
which is “Actors with multiple mailboxes” [30], will be used
interchangeably for the remainder of the paper. It’s important
to note that a unit of computation, which is a processing
element (PE) or an Actor, has a one-to-one relation to a
physical CPU core, where each PE/Actor is spawned and
scheduled on a dedicated core to work in parallel with other
PEs/Actors and communicate using asynchronous message
schemes. The reader is directed to [26], [31] for more detailed
system descriptions and evaluation on graph-based algorithms

and to [32] for evaluation of massive resource and dataset
scalability.

III. DISTRIBUTED, ASYNCHRONOUS, AND SCALABLE
ACTOR-BASED JACCARD SIMILARITY

FOR GENOME COMPARISONS

It’s important to note that Jaccard similarity and distance
can be employed across several application types. Although
we focus on genome comparisons, the input data samples
forming the indicator matrix can be uniquely identified to
adapt to different computational problems. For example, rows
and columns of the matrix can be formed from vertex neigh-
borhoods to calculate the similarity across vertices in a graph;
a matrix formed from rows of vertices and columns of clusters
enables calculation of similarity of clusters; and, a matrix
formed from rows of k-mers and columns of data samples
enables the calculation of similarity of genomes. Moreover, to
avoid redundant computation and reduce memory utilization,
our application computes on and stores a lower triangular
matrix (where n = m to create an m × m matrix, reducing
space from m2 elements to m2

2 −m elements and avoiding a
factor of O(m2) communication) depending on the use case.
Such cases include similarity across vertices in a graph, where
a lower triangular matrix will store the undirected graph edges
for computation. Our approach is the first solution to J and dJ
that employs a novel distributed and asynchronous algorithm
resulting in just two computation supersteps compared to other
synchronous BSP-based approaches utilizing a large number
of barriers. This section discusses the distributed algorithm for
computing both J and dJ (Section III-A) and its application
to genome comparisons (Section III-B).

A. General Jaccard Measures

This algorithm calculates J and dJ using a distributed and
asynchronous approach based on definitions in Section II-A.
The Am×n matrix (m ≥ n) is highly sparse, depending on the
application domain. We use the CSR format to efficiently store
nonzeros in a sparse matrix representation, thereby avoiding
the memory overhead of storing zero values/rows. The high-
level C++ code for the core computation step per Actor in our
algorithm is shown in Listing 1. It follows the FA-BSP model
in [26], [31] to evaluate J using the following steps:

J1 Iterate through nonzero entries in locally stored rows.
Lines: 20 - 24.

J2 Calculate the intersection of local elements and each
nonzero within their data samples. An asynchronous
message (containing the nonzero value of interest) is
sent in Line 34 to the owner PE to access its (possibly
remote) data sample and check for element-wise sim-
ilarity using binary search. If an intersection is found,
the counter will be incremented2. Lines: 30 - 40.

J3 Calculate the final J values using the graph-based
similarity approach discussed in Section II-A. This is

2For readability, intersection is abstracted in Listing 1 while it has
the same sparse format as matrix A in the actual implementation.

Listing 1: (SPMD) Actor-based Jaccard Similarity algorithm.
1 /* Input: (shared) transposed (n x m) matrix A in CSR format with offsets stored

in A−>offset and nonzeros stored in A−>nonzero
2 * Output: (shared) (n x n) matrix J with jaccard similarities */
3

4 /* Utility functions
5 * my pe() : returns PE number of calling PE
6 * n pes() : returns number of PEs running in the application
7 * get remote pe(x) : returns owner PE for element x
8 * get local index(x) : returns local index in shared array for element x
9 * get global id(x) : returns global ID for element x

10 * binary search(arr[:], x) : returns array index for element x if found
11 * barrier() : blocks until async local/remote ops are completed on all PEs
12 * d(x) : returns degree of element x (number of nonzeros)
13 */
14

15 // initialization and start of the Selector instance
16 Selector<1> jac selector;
17

18 int sender PE = my pe();
19 int n local rows = n / n pes();
20 for (int v = 0; v < n local rows; v++) { // loop through locally stored rows
21 int v global = get global id(v); // get global ID for v (local operation)
22 // get offset indices for the row
23 for (int k = A−>offset[v]; k < A−>offset[v+1]; k++) {
24 int u = A−>nonzero[k]; // get nonzero using offset index (local operation)
25 /* calculate intersection, the loop in L30 & L49 is application−dependant:
26 * for general jaccard measures, the nonzeros of v are looped through
27 for(int kk = A−>offset[index]; kk < A−>offset[index+1]; kk++){...}
28 * for genome−based similarity, all pairs of samples are looped through
29 for(int next sample = v id; next sample < n; next sample++){...} */
30 for (int kk = A−>offset[v]; kk < A−>offset[v+1]; kk++) {
31 int v nonzero = A−>nonzero[kk]; if (v nonzero == u) continue;
32 int remote PE = get remote pe(u);
33 // asynchronous msg sent to loop through shared array on remote PE
34 jac selector.send(0, remote PE, [=]() {
35 if (binary search(A−>nonzero[A−>offset[get local index(u)] :
36 A−>offset[get local index(u)+1]], v nonzero))
37 // found common element, update local counter
38 intersection[get local index(v global), get local index(u)]++;
39 });
40 } } }
41

42 // automatic termination of the Selector instance
43 jac selector.done(0); // the mailbox will be terminated through the runtime’s

automatic termination protocol after guaranteeing all its messages have
been received and executed

44 barrier(); // FA−BSP model, ensure all async messages have been executed before
all PEs move forward

45

46 // calculate jaccard similarity J
47 for (int v = 0; v < n local rows; v++) {
48 // get offset indices for the row
49 for (int k = A−>offset[v]; k < A−>offset[v+1]; k++) {
50 int u = A−>nonzero[k]; // get nonzero using offset index (local operation)
51 // J = intersection / (d(x) + d(y) − intersection)
52 J[v,u] = intersection[v,u] / (d(v) + d(u) − intersection[v,u]);
53 } }

a fully local operation that is performed after the barrier
operation in Line 44 ensures that all asynchronous mes-
sages have been fully processed in accordance with the
FA-BSP model (the done call in Line 43 ensures that
all messages are processed before all PEs can proceed
through the barrier). Lines: 47 - 53.

B. Jaccard Similarity for Genome Comparisons

The distributed algorithm discussed in the previous section
is adapted into the field of computational biology and compar-
ative genomics to compute the Jaccard similarity for genome
comparisons and genetic distances. Figure 1 shows a high-
level description of the algorithm and an example execution
flow applying a matrix with m = 8, n = 4, and #PEs = 2.

Fig. 1: A high-level overview of the Jaccard similarity algorithm adapted for genome comparisons (top) and an example
execution flow using m = 8, n = 4, and #PEs = 2 (bottom). The data samples are distributed across PEs then 3 steps are
performed (matrix creation and transpose, batching, computation) to calculate J and dJ .

Type	equation	here.

Distributed, Scalable, and Asynchronous Actors Approach to Jaccard Similarity for Genome Comparisons

1 2 3create indicator matrix from data samples and transpose matrix create batch for each PE async. communication and computation
to calculate Jaccard similarity

...

m x n

...

a k-mer

n x m

...

n x m

PE 0

PE 1

PE N

PE N-1
...

0.3

0 ...

1.0 0.3 ...

0.7

1.0 ...

0 0.7 ...

n x n

n x n

Jaccard
Similarity
matrix
𝒥

Jaccard
Distance
matrix
𝑑𝒥

𝒥(𝑋!) 𝒥(𝑋")

𝒥 𝑋", 𝑋# =	
𝑋" 	∩ 	𝑋#
𝑋" 	∪ 	𝑋#

𝑋! on
PE 0

𝑋" on
PE 1

...

𝒥 𝑋", 𝑋# =	
𝑋" 	∩ 	𝑋#
𝑋" 	∪ 	𝑋#

𝒥(𝑋!) 𝒥(𝑋")

𝑋! on
PE 0

𝑋" on
PE N

Data samples: 𝑋 = 𝑋#, … , 𝑋$
where 𝑋! = 𝑚

sample length m

n
sa

m
pl

es

a batch

Example Execution Flow using (𝒎 = 𝟖, 𝒏 = 𝟒, #𝑷𝑬𝒔 = 𝟐)
1, 2 3 execution from the perspective of PE0 (assume SPMD, all PEs execute same steps)

1 1 1 0 0 0 1 1
0 0 0 1 0 1 0 0

1 1 1 1 0 1 0 1
1 1 1 1 0 0 1 1

4 x 8
PE 0
PE 1

4 x 4

Jaccard
Similarity
matrix
𝒥

Jaccard
Distance
matrix
𝑑𝒥

𝑋 = 𝑋#, 𝑋%, 𝑋&, 𝑋'
where 𝑋! = 𝑚 = 8

sample length 8

4
sa

m
pl

es

...
1 1 1 0 0 0 1 1
0 0 0 1 0 1 0 0
1 1 1 1 0 1 0 1
1 1 1 1 0 0 1 1

PE 0
PE 1

uses 1D cyclic
distribution for batching

PE 0
1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1

PE 1
0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1

Partitioned
Global
Address
Space

PE 0
1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1

PE 1
0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1

Send an asynchronous message to
other PEs to check if the same k-mer is

present in any other data samples
[CODE: Listing 1, L34]

1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1

0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1

𝑋"
𝑋#
𝑋$
𝑋%

1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1

0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1

0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1

...

a k-mer

E
X
T
E
N
D
E
D

B
A
R
R
I
E
R

IN
TE

RS
EC

TI
ON

 C
AL

CU
LA

TI
ON

 D
ON

E,

IN
VO

KE
 B

AR
RI

ER
 B

EF
OR

E
EX

EC
UT

IN
G

NE
XT

 P
HA

SE

PE 0
1 1 1 0 0 0 1 1

1 1 1 1 0 1 0 1

0 0 0 1 0 1 0 0

1 1 1 1 0 0 1 1

𝓙 𝑿𝟏, 𝑿𝟐 =
𝑋# 	∩ 	𝑋$

𝑑 𝑋# + 𝑑 𝑋$ − 𝑋# 	∩ 	𝑋$

=
0

5 + 2 − 0
= 0.0

𝓙 𝑿𝟏, 𝑿𝟑 = ⋯
𝓙 𝑿𝟏, 𝑿𝟒 = ⋯

𝓙 𝑿𝟑, 𝑿𝟒 = ⋯

PE 1

𝓙 𝑿𝟐, 𝑿𝟑 =
𝑋$ 	∩ 	𝑋'

𝑑 𝑋$ + 𝑑 𝑋' − 𝑋$ 	∩ 	𝑋'

=
2

2 + 6 − 2
= 0.3

𝓙 𝑿𝟐, 𝑿𝟒 = ⋯

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑎𝑣𝑜𝑖𝑑𝑒𝑑	𝑏𝑦	𝑢𝑠𝑖𝑛𝑔	𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟	𝑚𝑎𝑡𝑟𝑖𝑥

0.0
0.6 0.3
0.8 0.1 0.7

1.0
0.4 0.7
0.2 0.9 0.3

4 x 4

DESCRIPTIONS:

Highlights the k-mer of interest in the
comparison for each data sample

[CODE: Listing 1, L35-36]

Extended barrier to wait for
completion of sending and receiving
async. messages before proceeding

[CODE: Listing 1, L44]

𝒊 𝑿 𝟏,𝟏 , 𝑿 𝟑,𝟏 + +
LOC
AL 𝒊 𝑿 𝟏,𝟏 , 𝑿 𝟒,𝟏 + +

LOC
AL

𝒊 𝑿 𝟑,𝟖 , 𝑿 𝟒,𝟖 + + LOCAL𝒊 𝑿 𝟑,𝟖 , 𝑿 𝟏,𝟖 + + LOC
AL

𝒊 𝑿𝒊, 𝑿𝒋 + +
LOCAL Update a local

intersection counter since a common
k-mer was found

[CODE: Listing 1, L38]

Calculate the final 𝓙 values
[CODE: Listing 1, L47-53]

The goal of the example execution flow is to assist the reader
in understanding the distributed and asynchronous nature of
the algorithm as well as the intricacy of the Jaccard similarity
calculations. The algorithm follows two preprocessing steps
(step 1, step 2) followed by one computation step3 (step 3).
The preprocessing steps are performed to enhance runtime
efficiency in the computation step: (1) step 1 creates an
indicator matrix from the data samples and transposes this
matrix since the actor runtime that we use [28] stores sparse
matrices in a row-major CSR format. Given that computation
is with respect to data samples, storing these data samples
row-wise guarantees that traversal is always a local operation,
hence avoiding the cost of remote communication; (2) step
2 creates batches for each PE, given the transposed matrix as
input. This allows a close-to equal distribution of data elements
across PEs. However, if some processors are more specialized
or have a larger per-processor-memory, then batches allow
for a heavier load to be placed on the more specialized
processors by adjusting the batch size for a particular set.
The computation step (step 3) is adapted from the general
Jaccard measures algorithm to allow for similarity with respect
to pairs of data samples while evaluating J2. Lines 25 - 29 in
Listing 1 explain the necessary changes to apply it to genome
comparisons and also provides a sample code (Line 29).

IV. EVALUATION

This section describes the experimental setup and architec-
ture for the testing environment and discusses the performance
results collected.

3Only the computation step was shown in Listing 1.

A. Experimental Setup and Architecture
We use the CPU nodes of the Perlmutter supercomputer

at NERSC, which is an HPE Cray EX supercomputer. Each
node has 2 AMD EPYC 7763 (Milan) CPUs with 64 physical
cores per CPU, 512 GB of DDR4 memory, and 1 network
card connected to the HPE Cray Slingshot 11 network. There
is 32KB of L1 data cache, 32KB of L1 instruction cache,
512KB of L2 cache, and 2560 4K pages of TLB per physical
CPU core. We use 32 PEs per node as our configuration and
32 MPI processes per node for the GenomeAtScale algorithm
to be consistent with the configuration used in their paper [10].
To show the performance and scalability of our approach, we
perform weak scaling experiments using a synthetic dataset of
scale4 = 12 to 20 (medium-scale to large-scale) and strong
scaling experiments using a synthetic dataset of much larger
scale than the SOTA (scale = 25) and two real world datasets
(E. coli genome5 with 2M sequences and SARS CoV2 genome6

with 10K sequences, both with sequence reads of length 150).
We ran our experiments 5 times, taking their average for each
data point. The reader is directed to our GitHub repository for
more information on the software stack and setup.

B. Performance Analysis
Figure 2 displays the performance and scalability of our

proposed approach compared to the SOTA (GenomeAtScale)

4scale refers to the number of data sample rows in the dataset as a power
of two, popularly used in Graph500 and Genomics Communities (Reference
scales - small-scale: 210, medium-scale: 214, large-scale: 220,
extra-large-scale: 225).

5https://www.ncbi.nlm.nih.gov/nuccore/NZ CP027599.1?report=fasta
6https://www.ncbi.nlm.nih.gov/nuccore/NC 045512.2?report=fasta

Fig. 2: Performance analysis of our proposed approach: (a) weak scaling using synthetic datasets of scale = 12 to 20, (b)
strong scaling using a synthetic dataset of scale = 25, (c) strong scaling using the E. coli genome (2M sequences, k = 7, 150
bp), and (d) strong scaling using the SARS CoV2 genome (10K sequences, k = 5, 150 bp).

using large-scale synthetic datasets and large-scale real ge-
nomic datasets. The overhead due to startup, synchronization,
and IO is negligible but included (less than 1% of the execution
time for small-medium datasets).

Scalability Performance on Synthetic Data - Figure 2(a)
displays the weak scaling (scale = 12 to 20) and Figure 2(b)
displays the strong scaling (scale = 25) performance of our
proposed approach. In the case of weak scaling, we observe
good scaling with only an increase of 2.7× in execution time
when we increase the resources by 256× and dataset by
1024×; in contrast, the SOTA incurs an increase of 10.5×
in execution time with the same increases. We observe a
spike phenomena starting from 2K cores for the SOTA,
whereas our proposed approach scales well until 16K cores,
outperforming the SOTA approach by 4.94× at the largest
scale. In the case of strong scaling, the SOTA approach is
unable to process datasets of large scale without memory
issues, using a minimum of 512 nodes (16K cores) to process
the scale = 20 dataset while our approach is able to process
and evaluate a much higher scale dataset (scale = 25) using
only a minimum of 1 node (32 cores). We observe good scaling
in this case, executing the scale = 25 dataset in 91 seconds
using 1 node, and achieving a speedup of 10.1× until the
point of plateau (512 cores, 16× resource increase), whereas
comparable approaches are unable to run this dataset size.

Scalability Performance on Real Data - Figure 2(c)
displays the performance analysis of our approach on the E.
coli genome (2M seq.) and Figure 2(d) on the SARS CoV2
genome (10K seq.). It is important to note that these two
datasets are utilized due to their different data sparsities and
variability, as well as to display the real world application
of our proposed approach to the field of genomics. It can be
seen that our algorithm undergoes excellent scaling for both
genomes, even up to 16K cores (there is a stagnant phenomena
for the SARS CoV2 genome from 512 cores, as the number
of cores becomes greater than the number of columns of the
indicator matrix, though the performance does not degrade
thereafter). At the point of plateau for the SARS CoV2 genome
(512 cores), we still achieve a 9.8× speed up relative to the
smallest node count and a 9.9× speed up compared to the
SOTA. At the highest node count, we achieve a 42.8× and

Fig. 3: Sensitivity to batches on algorithm performance.

13.8× speed up relative to the smallest node count respectively
for both genomes (and 11.4× better performance compared to
the SOTA for the SARS CoV2 genome). In fact, we are able
to run the E. coli genome in 3759 seconds using only 4 nodes
(128 cores), scaling to less than 90 seconds at the largest scale.
Notably, the SOTA approach is unable to process the large E.
coli genome without memory issues.

Sensitivity to Batches - Figure 3 shows the effect on perfor-
mance given the number of batches per core. Batches allow for
variable load allocation across processors. For instance, during
initialization and distribution, the user can assign larger data
batches to specific processors with greater memory. Although,
one must be careful with choosing the batch size since it
has a direct correlation with the amount of communication
and hence execution time. It can be seen that as the number
of batches increases, the execution time increases with direct
proportion (excluding obvious outliers). This is attributed to
the fact that larger number of batches mean that per-core slices
of the computation matrix will be lower, inducing the need for
increased remote communication for continued computation.
Given that increased communication has a direct effect on
the number of remote atomics and collective operations, the
execution time will in-turn be affected. Nevertheless, our
proposed algorithm still scales efficiently as well as performs
better than the SOTA by 3.6× attributing to its asynchronous
execution and underlying FA-BSP model. We note that the
optimal batch size is a perfectly even distribution of data
samples across all workers, hence n/N , in turn increasing
per-core slices while reducing communication.

TABLE I: Hardware performance counters and descriptions.

Abr. Counter Description

L1 data cache
L1DA PAPI_L1_DCA L1 data cache accesses
L1DM PAPI_L1_DCM L1 data cache misses

L1 instruction cache
L1IA perf::PERF_COUNT_HW_CACHE_L1I:ACCESS L1 instruction cache accesses
L1IM perf::PERF_COUNT_HW_CACHE_L1I:MISS L1 instruction cache misses

L2 data cache
L2DR PAPI_L2_DCR L2 data cache reads
L2DM PAPI_L2_DCM L2 data cache misses

L2 instruction cache
L2IR PAPI_L2_ICR L2 instruction cache reads
L2IM PAPI_L2_ICM L2 instruction cache misses

TLBs
TLBDM PAPI_TLB_DM Data translation lookaside buffer misses
TLBIM PAPI_TLB_IM Instruction translation lookaside buffer misses

Branches
BRINS PAPI_BR_INS Branch instructions
BRMSP PAPI_BR_MSP Conditional branch instructions mispredicted

Network Messages
MSGCNT MSG_COUNT Number of point-to-point communication across PEs
MSGBYT MSG_BYTES Size (bytes) of point-to-point communication across PEs

Cycles CYC PAPI_TOT_CYC Total cycles

Instructions INS PAPI_TOT_INS Instructions completed

V. DEEPER DIVE INTO HWPC:
REALIZING THE PERFORMANCE BENEFITS

Our proposed approach achieves strong performance results
in the weak and strong scaling experiments on the synthetic
and real datasets compared to the SOTA, hence it is important
to realize the performance and understand the sources of this
benefits. To this front, we do a deeper dive into HardWare
Performance Counters (HWPC) values, communication mes-
sages and sizes, and execution times using strong scaling
experiments of a synthetic dataset of medium-scale (scale
= 14). Given the large number of data points needed for
our analysis, it was not feasible to perform our evaluation on
larger scale values due to resource allocation and availability
limitations on the Perlmutter system. This section states the
HWPC used to evaluate the proposed and SOTA algorithms
and discusses the performance results collected.

A. Hardware Metrics

Through the analysis of hardware counters, we aim to
display and explain the significant performance benefits of
the algorithmic choices undertaken by our approach. We
collect a total of sixteen performance counters, ranging from
analysis of L1/L2 data/instruction caches, data/instruction
TLBs, branches, network messages, cycles, and instructions.
Memory-bound applications, such as Jaccard similarity, em-
phasize high importance to cache and TLB misses [33] and
to memory bandwidth. Branches are studied to analyze the
frequency of mispredictions [34], [35]. It’s also important to
study instruction cache performance since effective instruction
cache is key to support high Instruction-Per-Cycle per core
and high I-fetch bandwidth [36]. Network congestion and
bandwidth are important since they capture the impact of
remote atomics and collective operations. Table I shows the

HWPC measurements collected and their descriptions. We use
the PAPI library (v7.0.0.1) and the perf tool (v5.14.21)
as part of the CrayPat performance analysis tool [37] to
access these performance counters. For graphical analysis
and visualizations, such as those for load imbalance and call
graphs, we use Cray Apprentice 2 [37].

B. Performance Analysis

Figure 4 shows visually the strong-scaling performance
results of the proposed Actor-based approach as compared to
the SOTA (GenomeAtScale). The reader is referred to Table II
for the numerical value of each data point in Figure 4 for
easier comprehension. We investigate the performance based
on analysis of the execution time, load imbalance, L1/L2
caches, TLBs, branches, network messages, and batch sizes,
and discuss each in the order of their importance and impact.

Execution Time - [Figure 4 (q)] We can see that our algo-
rithm achieves significantly lower execution times compared
to the SOTA for all node counts. This is largely attributed to
the exploitation of asynchronous communication/computation
and actor-level parallelism, as well as the benefits from the
forthcoming memory-bound discussions. Besides reduction in
execution time, the total instructions (Figure 4 (m)) and cycles
(Figure 4 (n)) for program execution are as well significantly
reduced (5.5× - 8.9×). However, we also note that for this
medium-scale input size, the execution time plateaus after
1024 cores with strong scaling, but does not degrade (not
experienced when running larger scale datasets). This occurs
because the number of cores begins to surpass the number
of rows. The optimizations in Section VI are proposed to
help reduce the impact of the bottlenecks contributing to this
plateauing phenomenon.

Fig. 4: Strong scaling (scale = 14) HWPC, network statistics, and execution time performance results of the proposed Jaccard
similarity algorithm for genome comparisons (blue) compared to the SOTA (orange). All numbers are per-PE averages.

Load Imbalance - Figure 5 displays the workload per
core, where the x-axis is the cores (512 core experiment)
and the y-axis is the execution time. It can be seen that our
algorithm reduces the total workload and achieves a near-
perfect equal distribution of load per core, as compared to
the SOTA where the workload is much higher with a heavy
imbalance per core. This is clearly reflected with the Relative
Load Imbalance (RLI) statistic [38], measuring the relative
difference in workload among processing units, where our
approach outperforms the SOTA by approximately 592× in
terms of RLI. Refer to the following section to understand the
effect of collectives on the load imbalance.

Fig. 5: Workload per core compared to the SOTA. Numbers
collected using CrayPat for 512 cores.

Network Messages - [Figure 4 (o-p)] Remote atomics and
collective operations induce heavy effects on network conges-
tion and bandwidth, hence the importance of their reduction.
Our algorithm is observed to reduce both message counts and
bytes as the number of nodes is scaled, with message counts
observing super-scalar speedups. The increased performance
can be attributed to two factors: (1) our algorithm executes in
only two computation phases (intersection calculation, union
+ similarity calculation) and takes advantage of the FA-BSP
execution model [26], reducing the total number of collective
calls to 2 per application run. Conversely, the SOTA algorithm
is profiled to utilize an average of 98% of network messages in
MPI_Alltoall() calls and invoke synchronization barriers
at each collective call (largely due to topology changes and
data re-distribution), with an increasing number as the nodes
are scaled. Moreover, our algorithm has scalable performance,
though the SOTA sees spikes in performance due to calls
to collective variants (MPI_Bcast, MPI_reduce); (2) our
algorithm takes advantage of fine-grained message aggregation
from the Actor-based system, allowing a significant reduction
to network traffic and message counts. Though the aggregation
increases the total bytes per network message, an optimal spot
is achieved at ≈ 2K cores. It’s important to note that while
95% of the messages sent in the SOTA are 16B, 100% of

TABLE II: Numerical performance results as displayed in Figure 4. Our algorithm is ”Selector” and GenomeAtScale is ”SOTA”.

Cores: 64 cores 128 cores 256 cores 512 cores 1024 cores 2048 cores 4096 cores 8192 cores 16384 cores

Event Selector SOTA Selector SOTA Selector SOTA Selector SOTA Selector SOTA Selector SOTA Selector SOTA Selector SOTA Selector SOTA

L1DA 193M 301M 110M 384M 71M 855M 41M 232M 28M 412M 35M 335M 21M 425M 27M 679M 35M 1.4B

L1DM 3.9M 2.2M 2.4M 1.4M 1.6M 0.6M 0.8M 0.4M 0.5M 0.3M 0.4M 0.4M 0.3M 1.0M 0.2M 1.2M 0.2M 2.0M

L1IA 1.2M 1.7M 1.2M 2.2M 1.2M 1.9M 1.5M 2.2M 1.4M 1.5M 2.0M 2.2M 1.5M 2.4M 1.2M 2.8M 1.2M 4.2M

L1IM 4.3K 14.1K 5.9K 12.8K 12.7K 12.9K 13.3K 13.6K 9.2K 13.7K 12.2K 14.5K 12.8K 18.7K 8.7K 19.8K 7.6K 20.0K

L2DR 3.9M 2.2M 2.4M 1.4M 1.5M 0.7M 0.8M 0.6M 0.5M 0.3M 0.3M 0.4M 0.3M 1.0M 0.2M 1.1M 0.2M 2.1M

L2DM 544K 122K 474K 121K 212K 65K 118K 61K 76K 54K 54K 58K 36K 136K 27K 115K 21K 230K

L2IR 96K 437K 113K 372K 253K 343K 256K 342K 168K 337K 192K 347K 188K 458K 148K 476K 127K 473K

L2IM 332K 875K 217K 463K 312K 231K 182K 176K 87K 143K 52K 129K 47K 158K 36K 169K 31K 240K

BRINS 72.8M 93.1M 47.0M 120M 27.8M 61.9M 15.8M 189M 10.1M 102M 13.4M 105M 8.5M 154M 12.2M 228M 17.3M 671M

BRMSP 82K 147K 85K 158K 72K 152K 55K 580K 43K 280K 52K 256K 39K 308K 40K 483K 40K 1.8M

TLBDM 29K 426K 36K 257K 49K 167K 49K 76K 41K 51K 42K 57K 52K 75K 42K 84K 36K 102K

TLBIM 2.4K 26.9K 3.8K 23.8K 7.7K 22.1K 7.7K 22.2K 8.3K 21.8K 7.9K 22.4K 23.6K 31.4K 7.8K 33.4K 5.5K 33.2K

MSGCNT 1.9K 247 1.0K 377 540 927 281 1.7K 140 3.3K 97 6.3K 69 16.6K 35 32.9K 16 65.7K

MSGBYT 19.1M 6.3M 9.5M 6.3M 4.9M 1.6M 2.5M 0.9M 1.2M 0.5M 0.6M 0.5M 0.3M 3.6M 0.2M 2.1M 77K 1.5M

CYC 146M 230M 128M 272M 79M 121M 46M 157M 26M 135M 47M 265M 44M 345M 53M 518M 55M 783M

INS 374M 542M 237M 683M 178M 282M 73.6M 366M 50.6M 315M 66.9M 610M 47.0M 808M 77.9M 1.2B 86.2M 1.8B

Exec. Time 0.05s 0.16s 0.05s 0.16s 0.03s 0.11s 0.02s 0.11s 0.03s 0.09s 0.02s 0.13s 0.02s 0.08s 0.02s 0.07s 0.02s 0.05s

the messages sent in our algorithm are ≈ 10KB (= size of
our aggregation buffer), improving the network bandwidth. An
average performance increase of 595.2× (max: 4065.9×) and
5.3× (max: 19.4×) is observed for message counts and bytes
respectively.

L1,L2 Caches - [Figure 4 (a-d) and (g-j)] For dcache,
our proposed algorithm achieves efficient parallel scaling, as
seen by the reduction in accesses and misses to both L1 and
L2 dcache as a factor of the increasing number of nodes.
Moreover, an optimal spot is achieved at ≈ 2K cores where
henceforth (1) the proposed algorithm outperforms the SOTA
and (2) the SOTA shows an increase in the HWPC numbers
due to topology changes and data re-distribution. This can
be attributed to the data distribution mechanisms (and both
preprocessing steps) employed in our algorithm, increasing
the possibility of reusing data stored within the same PE. An
average performance increase of 8.7× (max: 41.7×) and 2.5×
(max: 10.9×) is observed for L1 and L2 dcache respectively.
For icache, the proposed algorithm consistently outperforms
the SOTA (with the exception of obvious outliers) on accesses
and misses to both L1 and L2 icache. It can be seen that as
the number of nodes is increased, the icache misses are either
stable or decreased in the proposed algorithm, as compared to
an inefficient increasing pattern in the SOTA, which in turn de-
creases the instruction fetch latency. Specifically, the proposed
algorithm efficiently decreases the cycles per instruction (CPI)
due to its sensitivity to L2 cache misses. These effects can
be attributed to: (1) the reusing of the same remote message
handler code across all memory requests; and (2) the simplicity
(in terms of binary file code size) of our user code and backend
runtime system (as compared to the SOTA CTF-based backend
as well as their utilization of several external libraries). An
average performance increase of 1.7× (max: 3.5×) and 2.8×
(max: 7.7×) is observed for L1 and L2 icache respectively. In
general, our approach takes 98 nodes to fit all the data into the
L1 dcache and only 6 nodes to fit all the data in the L1 and
L2 dcache. This is evident by the graph crossover with the
SOTA as well as the rapid decrease in accesses and misses.

TLB - [Figure 4 (e-f)] TLB misses have a positive corre-

lation with instruction fetch latency/stalls and CPI, hence it’s
important to decrease their occurrence. On a TLB miss (no
TLB entry is present for the virtual page number of the ac-
cessed page), the processor has to perform a page walk (lookup
on the page table) which is an expensive operation [39]. Our
algorithm is observed to consistently reduce latency and page
walks at a much higher magnitude as compared to the SOTA
for all node counts. This is extremely important in memory-
bound applications. Moreover, the memory bandwidth is in-
creased in our algorithm due to the reduced frequency of
TLB misses. An average performance increase of 4.0× (max:
15.0×) and 4.6× (max: 11.4×) is observed for data and
instruction TLBs respectively.

Branches - [Figure 4 (k-l)] Besides observing much lower
overall branch instructions, our algorithm is seen to achieve
efficient parallel scaling as the number of nodes is increased
for both branch statistics. On a branch misprediction, an
instruction flush and an instruction fetch occurs in the pipeline,
incurring cycle overheads which have a dire effect on pipeline
performance. Our algorithm is observed to consistently de-
crease the cycle penalty incurred from mispredictions at a
much higher magnitude as compared to the SOTA for all
node counts. This can be attributed to the simple (predictable)
pattern among the majority of branch instructions, allowing the
Branch Target Buffer to predict the branch jump accurately.
An average performance increase of 12.4× (max: 38.8×) and
10.4× (max: 45.9×) is observed for branch instructions and
mispredictions respectively.

Performance Benefit from Algorithmic Choices - Figure 6
displays the number of collectives/barriers invoked per-core
throughout the execution run on the log-scale. Our proposed
approach invokes only two barriers throughout the full exe-
cution, which is consistent with our algorithmic choice of a
two superstep execution process. The results show that as the
number of cores and nodes are scaled, our proposed approach
consistently only invokes a collective/barrier per superstep (2)
while the SOTA approach drastically increases the number of
collectives as the application is scaled.

Fig. 6: Per-core number of collectives throughout the execution
run (log-scale).

VI. OPTIMIZATIONS AND FUTURE WORK

In an effort to understand bottlenecks and possible op-
timizations, as well as engage future work using our pro-
posed distributed Jaccard similarity algorithm for genome
comparisons, we explore several possible algorithmic-level
and compiler-/runtime-level optimizations and discuss their
potential performance benefits.

Row compression using bitmasking - The aim is to reduce
the overhead of storing nonzeros by storing a sequence of
nonzeros as a binary value which takes only one bit of data
compared to a 32-/64-bit integer nonzero. Specifically, an x-bit
bitmask is used to encode x elements of each column of the
indicator matrix, compressing the number of rows by a factor
of x and potentially the number of nonzeros stored [10].

Matrix distribution - The aim is to reduce the need for
remote atomics by distributing data in a communication-
aware approach. This can be achieved by exploring different
data distribution strategies, such as cyclic distribution, XOR
distribution, or circular hash distribution, in effect improving
communication by reducing the amount of remote atomics
needed to access data. Our approach employs the 1D-cyclic
distribution which is effective on synthetic and real data,
though our algorithm is flexible enough to support different
distributions when encountering a load-imbalance problem.

Message buffer size - In the runtime system used to realize
the proposed algorithm, a harmony of asynchronous fire-and-
forget messages and a capped message buffer exist. During
program execution, a PE will execute program code and send
asynchronous messages to other PEs (as seen in Listing 1).
When the message buffer of a PE is full, a context switch
occurs to yield the processing element to flush and execute
the messages from the buffer. Therefore, from the analysis
done in Sections IV and V, the small amount of messages
with a large message size sent across the execution of the
application can be attributed to a large message buffer size.
Although, there may be more optimal configurations to induce
increased memory bandwidth per core.

GPU acceleration - GPUs can be leveraged to accelerate
the execution of our fine-grained computations. Although
GPUs have not been exploited in SOTA approaches for this

application domain, it has benefited many Sparse-Sparse and
fine-grained operations, thus, this acceleration can be applied
to large-scale datasets to reduce the CPU resources utilized
and provide a comparable execution time speed up.

VII. RELATED WORK

There are four well-known approaches to genome and
set similarity: Mash, Dashing, BELLA, and GenomeAtScale.
Mash [5] is a genome similarity software that extends Min-
Hash sketches to calculate the Jaccard similarity for all pairs
of multisets. It allows for genome distance estimation and
clustering through Mash distance. Dashing [11] is a soft-
ware for estimating genome similarities using HyperLogLog
sketches and is presented as a faster alternative to Mash. It
uses cardinality estimation methods highly specialized for set
union and set intersection. BELLA [40] is an overlap detection
and alignment algorithm that defines genome similarity cal-
culations using sparse matrix-matrix multiplication. Similarly,
GenomeAtScale [10], the SOTA algorithm, is a matrix-matrix
multiplication approach to genome similarity that allows for
parallel data compression and batch computation.

VIII. CONCLUSION

Jaccard similarity and distance are highly popular in assess-
ing the genome similarity of DNA sequencing sets in applica-
tions of computational biology and comparative genomics, but
have also seen adoption in applications of pattern recognition,
data mining, clustering, machine learning, and much more.
However, current solutions are not suitable or efficient for scal-
able computation. This paper makes three contributions. The
first contribution is a distributed, scalable, and asynchronous
algorithm for computing Jaccard similarity and distance for ap-
plications assessing general Jaccard measures. This is based on
an Actor programming system [26], taking advantage of fine-
grained asynchronous execution, distributed/shared memory
approach, and the FA-BSP model. We believe this distributed
Actors approach to deriving Jaccard similarity and distance
can be adapted to applications in other domains as well.

The algorithm for the derivation of Jaccard similarity and
distance is then applied to genome comparisons and ge-
netic distances of DNA sequencing sets, extending the use
of this algorithm within the computational biology field, as
the second and third contributions. This application follows
a communication-aware and distributed/shared-memory ap-
proach to computation. Thorough analysis on the performance
of the proposed algorithm compared to the state-of-the-art
algorithm [10] was done using hardware performance metrics
and execution times. We scale to 16, 384 cores of NERSC
Perlmutter supercomputer, achieving 3.6× and 5.5× increased
performance in execution time and hardware counters on a
medium-scale synthetic dataset compared to SOTA baseline,
and reducing L1/L2 cache accesses/misses, data/instruction
TLB misses, branch instructions/mispredictions, and network
statistics with efficient parallel scaling. We also show a 4.94×
increase in performance on a large-scale synthetic dataset, and
we are able to efficiently run much larger scale synthetic and

real datasets without memory issues unlike the SOTA. More-
over, our algorithm allows for an equal workload distribution
per core throughout program execution. The efficacy of our
algorithm is clearly shown when larger datasets (which are
more popular in genomics) are employed, where we decrease
the execution time from 1.1 hours to less than 90 seconds
using the E. coli genome dataset for example. In future work,
we plan to explore possible acceleration strategies on both the
algorithm level (bitmasking and matrix distribution) as well
as the compiler/runtime level (message buffer size and GPU
acceleration).

ACKNOWLEDGEMENT

This research is based upon work supported by the Office
of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), through the
Advanced Graphical Intelligence Logical Computing Envi-
ronment (AGILE) research program, under Army Research
Office (ARO) contract number W911NF22C0083. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the ODNI, IARPA, or the U.S. Government.

REFERENCES

[1] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M.
Phillippy, “Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing,” Nature biotechnology, vol. 33, no. 6, pp.
623–630, 2015.

[2] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M.
Phillippy, “Canu: scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation,” Genome research, vol. 27, no. 5,
pp. 722–736, 2017.

[3] D. Moi, L. Kilchoer, P. S. Aguilar, and C. Dessimoz, “Scalable phy-
logenetic profiling using minhash uncovers likely eukaryotic sexual
reproduction genes,” PLoS computational biology, vol. 16, no. 7, p.
e1007553, 2020.

[4] A. Criscuolo, “On the transformation of minhash-based uncorrected
distances into proper evolutionary distances for phylogenetic inference,”
F1000Research, vol. 9, p. 1309, 2020.

[5] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,
S. Koren, and A. M. Phillippy, “Mash: fast genome and metagenome
distance estimation using minhash,” Genome biology, vol. 17, no. 1, pp.
1–14, 2016.

[6] S. Behera, J. S. Deogun, and E. N. Moriyama, “Minisoclust: Isoform
clustering using minhash and locality sensitive hashing,” in Proceedings
of the 11th ACM International Conference on Bioinformatics, Compu-
tational Biology and Health Informatics, 2020, pp. 1–7.

[7] S. Seth, N. Välimäki, S. Kaski, and A. Honkela, “Exploration and
retrieval of whole-metagenome sequencing samples,” Bioinformatics,
vol. 30, no. 17, pp. 2471–2479, 2014.

[8] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579,
1901.

[9] M. Levandowsky and D. Winter, “Distance between sets,” Nature, vol.
234, no. 5323, pp. 34–35, 1971.

[10] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoe-
fler, and E. Solomonik, “Communication-efficient jaccard similarity
for high-performance distributed genome comparisons,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2020, pp. 1122–1132.

[11] D. N. Baker and B. Langmead, “Dashing: fast and accurate genomic
distances with hyperloglog,” Genome biology, vol. 20, pp. 1–12, 2019.

[12] S. Theodoridis and K. Koutroumbas, “Pattern recognition. 2003,” Else-
vier Inc, 2009.

[13] S. Park and D.-Y. Kim, “Assessing language discrepancies between
travelers and online travel recommendation systems: Application of the
jaccard distance score to web data mining,” Technological Forecasting
and Social Change, vol. 123, pp. 381–388, 2017.

[14] D. Selivanov and Q. Wang, “text2vec: Modern text mining framework
for r,” Computer software manual](R package version 0.4. 0)., 2016.

[15] R. Ferdous et al., “An efficient k-means algorithm integrated with
jaccard distance measure for document clustering,” in 2009 First Asian
Himalayas International Conference on Internet. IEEE, 2009, pp. 1–6.

[16] A. Strehl, J. Ghosh, and R. Mooney, “Impact of similarity measures
on web-page clustering,” in Workshop on artificial intelligence for web
search (AAAI 2000), vol. 58, 2000, p. 64.

[17] S. E. Schaeffer, “Graph clustering,” Computer science review, vol. 1,
no. 1, pp. 27–64, 2007.

[18] S. Bag, S. K. Kumar, and M. K. Tiwari, “An efficient recommendation
generation using relevant jaccard similarity,” Information Sciences, vol.
483, pp. 53–64, 2019.

[19] Y. Yuan, M. Chao, and Y.-C. Lo, “Automatic skin lesion segmentation
using deep fully convolutional networks with jaccard distance,” IEEE
transactions on medical imaging, vol. 36, no. 9, pp. 1876–1886, 2017.

[20] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2019, pp. 658–666.

[21] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proceedings of the 16th international conference on World
Wide Web, 2007, pp. 131–140.

[22] A. Fender, N. Emad, S. Petiton, J. Eaton, and M. Naumov, “Parallel
jaccard and related graph clustering techniques,” in Proceedings of the
8th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, 2017, pp. 1–8.

[23] V. Sachdeva, D. M. Freimuth, and C. Mueller, “Evaluating the jaccard-
tanimoto index on multi-core architectures.” in ICCS (1), 2009, pp. 944–
953.

[24] J. Bank and B. Cole, “Calculating the jaccard similarity coefficient with
map reduce for entity pairs in wikipedia,” Wikipedia Similarity Team,
vol. 1, p. 94, 2008.

[25] R. Vernica, M. J. Carey, and C. Li, “Efficient parallel set-similarity
joins using mapreduce,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, 2010, pp. 495–506.

[26] S. R. Paul, A. Hayashi, K. Chen, and V. Sarkar, “A productive and
scalable actor-based programming system for pgas applications,” in
Computational Science–ICCS 2022: 22nd International Conference,
London, UK, June 21–23, 2022, Proceedings, Part I. Springer, 2022,
pp. 233–247.

[27] E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton, and J. Dem-
mel, “A massively parallel tensor contraction framework for coupled-
cluster computations,” Journal of Parallel and Distributed Computing,
vol. 74, no. 12, pp. 3176–3190, 2014.

[28] “Hclib-actor documentation,” https://hclib-actor.com, 2022.
[29] F. M. Maley and J. G. DeVinney, “Conveyors for streaming many-to-

many communication,” in 2019 IEEE/ACM 9th Workshop on Irregular
Applications: Architectures and Algorithms (IA3). IEEE, 2019, pp. 1–8.

[30] S. M. Imam and V. Sarkar, “Selectors: Actors with multiple guarded
mailboxes,” in Proceedings of the 4th International Workshop on Pro-
gramming based on Actors Agents & Decentralized Control, 2014, pp.
1–14.

[31] S. R. Paul, A. Hayashi, K. Chen, Y. Elmougy, and V. Sarkar, “A fine-
grained asynchronous bulk synchronous parallelism model for pgas
applications,” Journal of Computational Science, vol. 69, p. 102014,
2023.

[32] Y. Elmougy, A. Hayashi, and V. Sarkar, “Highly scalable large-scale
asynchronous graph processing using actors,” in 2023 23rd IEEE
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2023.

[33] S. Beamer, K. Asanović, and D. Patterson, “Gail: The graph algorithm
iron law,” in Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms, 2015, pp. 1–4.

[34] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in 2015
IEEE International Symposium on Workload Characterization. IEEE,
2015, pp. 56–65.

[35] O. Green, M. Dukhan, and R. Vuduc, “Branch-avoiding graph algo-
rithms,” in Proceedings of the 27th ACM symposium on Parallelism in
Algorithms and Architectures, 2015, pp. 212–223.

[36] D. Bortolotti, F. Paterna, C. Pinto, A. Marongiu, M. Ruggiero, and
L. Benini, “Exploring instruction caching strategies for tightly-coupled
shared-memory clusters,” in 2011 International Symposium on System
on Chip (SoC). IEEE, 2011, pp. 34–41.

[37] S. Kaufmann and B. Homer, “Craypat-cray x1 performance analysis
tool,” Cray User Group (May 2003), 2003.

[38] R. Sakellariou and J. R. Gurd, “Compile-time minimisation of load
imbalance in loop nests,” in Proceedings of the 11th international
conference on Supercomputing, 1997, pp. 277–284.

[39] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han, and L. Zhang,
“Understanding big data analytics workloads on modern processors,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 6,
pp. 1797–1810, 2016.

[40] G. Guidi, M. Ellis, D. Rokhsar, K. Yelick, and A. Buluç, “Bella:
Berkeley efficient long-read to long-read aligner and overlapper,” in
SIAM Conference on Applied and Computational Discrete Algorithms
(ACDA21). SIAM, 2021, pp. 123–134.

