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Abstract— We introduce a method for processing unstructured

data for machine learning based on an LZ-complexity string

distance. Computing the LZ-complexity is inherently a serial

data compression process; hence, we introduce a string distance

computed by a parallel algorithm that utilizes multiple GPU

devices to process unstructured data, which typically exists in

large quantities. We use this algorithm to compute a distance

matrix representation of the unstructured data that standard

learning algorithms can use to learn. Our approach eliminates

the need for human-based feature definition or extraction. Except

for some simple data reformatting done manually, our proposed

approach operates on the original raw data and is fully automatic.

The parallel computation of the distance matrix is efficient.

It obtains a speed-up factor of 528 in computing the distance

matrix between every possible pair of 16 strings of length 1M

bytes. We show that for learning time-series classification, relative

to the ubiquitous TFIDF data representation, the distance-

matrix representation yields a higher learning accuracy for

most of a broad set of learning algorithms. Thus, the parallel

algorithm can be helpful in efficiently and accurately learning

from unstructured data.

Index Terms—LZ-complexity, string distance, multi-GPU,

CUDA

I. OVERVIEW

The majority of real-world data is unstructured; that is, it
does not consist of pre-defined attributes or a fixed number
of features and can come as a mix of different forms of
data, such as text, general character-based, or any binary
sequences of varying lengths. Data mining is based on machine
learning algorithms, which require structured data with a
fixed number of pre-defined features. For instance, in learning
the classification of textual data, the standard and ubiquitous
approach is to represent text as finite-dimensional numerical
vectors based on the TFIDF word representation [1], which
requires a pre-defined finite dictionary of possible words or
tokens based on word stems. More generally, when dealing
with raw data such as binary streams of complex time-
dependent multi-sensor measurements, there is no well-defined
dictionary of possible ‘words’ or pre-defined patterns. Thus,
to learn such unstructured data, one needs a more general data
representation that can preferably be computed automatically
without human expert intervention to reduce processing time
and cost.

In this paper, we propose a parallel algorithm for auto-
matically processing unstructured data for machine learning

via any standard learning algorithm. Our approach to learning
unstructured data is as follows: given raw data that consists of
general character or binary sequences that may be of different
lengths, we compute a distance matrix of all possible pairs of
data instances where the distance is based on an information-
theoretic notion of the LZ-complexity of a string. The distance
matrix forms a new representation of the original data in
which an instance is represented as a numerical vector of
dimensionality equal to the number of instances in the data
set hence it can be large. To tackle this, we introduce a highly
scalable and efficient parallel algorithm to compute this matrix
and thereby convert any unstructured data that consists of
instances of general sequences into a structured representation
that any standard machine learning algorithm can learn. While
LZ-complexity is a concept that lies at the heart of universal
data compression algorithms, the significance of the current
paper is in the area of machine learning rather than data
compression.

The parallel algorithm scales well with multiple GPUs and
achieves high speed-up factors, for instance, for a 16 ⇥ 16
matrix of 1M strings, we obtain a speed factor of 528
relative to the serial algorithm. We compare the generalization
accuracy of learning classification of unstructured time-series
data between the proposed LZ-distance matrix representation
and the ubiquitous TFIDF data representation. The LZD data
representation yields significantly higher machine-learning
classification accuracies than when the data is represented by
an alternative ubiquitous data representation based on TFIDF
vectors.

II. INTRODUCTION

Lempel-Ziv complexity of a finite string [2] is a complexity
measure inspired by the universal compression algorithms
of Lempel Ziv [3], [4]. Computing the LZ complexity of a
string (a sequence of bytes) is inherently a serial process. The
algorithm traverses the string one byte at a time in a serial
manner, and based on the bytes seen up to the present, it tries
to reproduce a maximal length substring from the remaining
yet unseen part of the string. It then adds this substring to the
seen part and continues iteratively until all of the string has
been reproduced.

LZ-complexity has recently been used in pattern recognition
and classification through the introduction of a string distance



function which is used for sequence analysis in bioinformatics
[5]. A main advantage of this string distance is that it applies
to any data type, character or byte, and it can measure the
dissimilarity between a pair of strings of different lengths,
which is very useful for dealing with unstructured data, that
is, data which is not based on a fixed dimensionality and
predefined attributes. For instance, in [6], [7], a universal
image distance (UID) based on the LZ complexity is used
for learning gray-scale image classification by subdividing an
image into multiple segments of pixels that are represented
as short strings of bytes. However, for a string of length n,
computing LZ-complexity in the standard serial manner re-
quires O(n2) time, which is impractical for machine learning.
We note that the computational complexity of the family of
compression algorithms, such as LZ77, LZSS, etc., which are
based on the idea of the LZ-complexity is only O(n) because
they use a fixed length sliding-window over the string. In
contrast, this cannot be done in the algorithm for computing
LZ-complexity since, in general, it would not yield the true
value of the LZ-complexity.

In [8], a parallel algorithm is introduced to compute the
LZ-complexity of strings restricted to a single GPU block of
1,024 parallel execution threads and is limited to specific data
consisting of gray-scale images. In contrast, the current paper
achieves significantly higher speed-up factors for any type of
unstructured data. It builds on the work of [9] who introduces
a parallel algorithm for computing the LZ-complexity of arbi-
trarily long finite strings (limited only by the memory size of
the GPU) of any type, character, or byte, and can execute any
number of blocks in parallel, limited only by the hardware; for
instance, on a DGX workstation it utilizes 160 blocks of 1,024
threads in parallel. It is reported there that this algorithm’s
parallel execution efficiency is 98.95%. This high efficiency
enables us in the current paper to compute an LZ-complexity
based string-distance (described in Section V as Algorithm
LZD) in a reasonable time for long strings. For instance, it
takes 30 seconds to compute 16 pairwise distances (each of
which requires 3 LZ-complexity computations) between pairs
of strings of length 1M byte.

In the current paper, our approach to learning unstructured
data is as follows: given a data set of general sequences,
character-based or binary, of possibly different lengths, an
LZD matrix of distances between all possible pairs of instances
is computed. This distance matrix forms a new representation
of the original data in which an instance is newly represented
as a numerical vector of dimensionality equal to the number
of instances in the data set.

Unlike the ubiquitous TFIDF representation of textual data
[1] used in natural language data mining and machine learning
which requires a priori information about the data, e.g., a
dictionary of words (or tokens/stems), the LZD representation
enables to learn from unstructured data, including but not lim-
ited to text, with no a priori knowledge about the underlying
data where any data instance is regarded just as a sequence of
bytes of any finite length that may differ from one instance
to another. Our parallel algorithm for computing LZD is a

significant advantage for machine learning and data mining,
as the majority of real-world data is unstructured and requires
computational acceleration in data analytics [10].

The algorithm utilizes as many GPUs as available on a
machine and scales well with problem size. For experiments,
we use an nVIDIA DGX station with four V100 GPUs. The
speed-up in computing an LZD matrix of 16 strings of length
1M bytes is 528.

The LZ distance can be applied not only to textual data,
where strings have a delimiting symbol that separates words
but to any strings of contiguous bytes that are not necessarily
separated into words, namely, any binary sequences represent-
ing arbitrary sequential data. Thus, Algorithm LZD enables
efficient and automatic transformation of general unstructured
data into a representation that can be used by standard machine
learning algorithms.

III. LZ-COMPLEXITY

As introduced by [2], the Lempel-Ziv complexity of a
finite string S is proportional to the minimal number of
substrings that are necessary to produce S via a simple copy
operation. For instance, the string S = ababcabcabcbaa can
be constructed from the five sub-strings, a, b, abc, abcabcb,
aa and therefore its LZ-complexity equals 5. The standard
serial algorithm for computing the LZ-complexity of a string
of length n takes O(n2) time. The definition of this complexity
[2], [5] is as follows: let S,Q and R be strings of bytes that
are defined over the alphabet A. Denote by l(S) the length
of S, and S(i) denotes the ith element of S. We denote
by S(i, j) the sub-string of S, which consists of bytes of S
between position i and j (inclusive). An extension R = SQ
of S is reproducible from S (denoted as S ! R) if there
exists an integer p  l(S) such that Q(k) = R(p + k � 1)
for k = 1, . . . , l(Q). For example, aacgt ! aacgtcgtcg with
p = 3 and aacgt ! aacgtac with p = 2. R is obtained from
S (the seed) by first copying all of S and then copying in a
serial manner l(Q) elements starting at the pth location of S
in order to obtain the Q part of R.

A string S is producible from its prefix S(1, j) (denoted
S(1, j) ) S), if S(1, j) ! S(1, l(S) � 1). For example,
aacgt ) aacgtac and aacgt ) aacgtacc both with pointers
p = 2. The production adds an extra ’different’ byte at the end
of the copying process, which is not permitted in reproduction.

Any string S can be built using a production process where
at its ith step we have the production S(1, hi�1) ) S(1, hi)
where hi is the location of a byte at the ith step. (Note that
S(1, 0) ) S(1, 1)).

An m-step production process of S results in parsing of S in
which H(S) = S(1, h1) ·S(h1+1, h2) · · ·S(hm�1+1, hm) is
called the history of S and Hi(S) = S(hi�1+1, hi) is called
the ith component of H(S). For example, for S = aacgtacc
we have H(S) = a · ac · g · t · acc as the history of S.

If S(1, hi) is not reproducible from S(1, hi�1) then the
component Hi(S) is called exhaustive meaning that the copy-
ing process cannot be continued, and the component should



be halted with a single byte innovation. Every string S has a
unique exhaustive history [2].

Let us denote by cH(S) the number of components in a
history of S. The LZ complexity of S is defined as c(S) =
min {cH(S)} where the minimum is over all histories of S. It
can be shown that c(S) = cE(S) where cE(S) is the number
of components in the exhaustive history of S.

A graphical processing unit (GPU) is a multi-processor
electronic chip specialized for matrix and vector operations for
fast 3D graphics. GPUs have been recently gaining popularity
also for non-graphical processing due to their highly parallel
computing architecture. This architecture typically consists of
thousands of execution cores that operate concurrently on
several gigabytes of global memory. We use CUDA as the
Application Program Interface and parallel execution run time.
A kernel is a program that is executed by every GPU thread in
parallel. It is launched by a program on the host using CUDA
command. When the host code launches a kernel, the CUDA
run-time system generates a grid of threads that are organized
into a two-level hierarchy. Each grid is organized as an array
of thread blocks, which is referred to as a block. All blocks
of a grid are of the same size, and each block has up to 1024
threads.

We start by presenting the serial LZ-complexity algorithm
in the next section.

IV. SERIAL ALGORITHM

The standard LZ-complexity algorithm [2], [5] is executed
serially and is displayed as Algorithm 1. As it scans the input
string S, it searches using Procedure 2 for a maximal length
word that can be produced from the current position based on
any byte in the history, then adds it as a new component and
augments the history iteratively until it reaches the end of S.
The number of components produced is the LZ-complexity of
S.

While using data structures, such as hashtables, it is possible
to make the search in Procedure 2 more efficient, we use the
basic version of the serial LZ-complexity algorithm, which
serves as a fair comparison against the parallel algorithm,
which is introduced in the next section. (The parallel algorithm
also employs basic arrays, as data structure optimization is
beyond the scope of the current paper.)

V. DISTANCE

Typically, machine learning algorithms operate on the as-
sumption that data is well-structured and that it is possible to
formalize quantitative features of the data that can be encoded
by numerical variables organized as finite-dimensional feature
vectors. Learning with unstructured data, for instance, multi-
media data, textual data, or time-series data, requires the
ability to learn data without pre-defined features. Learning
from such featureless data is a major challenge in machine
learning research, and one of the more promising approaches
is measuring dissimilarity between data instances [11]. The
dissimilarity between a pair of data points can be represented

mathematically by the distance function’s value. The LZ-
complexity of a string may be used to define a distance
function that measures the dissimilarity of two finite strings
of possibly different lengths. Such strings may represent
different types of unstructured data, for instance, bioinformatic
sequences [5], images [8], [12], [13], and time-series data [14].

In [5], several string-distances based on the LZ-complexity
are described. For a pair of strings X , Y , let us denote by
c(X), c(Y ), and c(XY ) the LZ-complexity of X , Y and their
concatenation XY , respectively. In the current paper, we use
the following distance,

d(X,Y ) :=
c(XY )�min {c(X), c(Y )}

max {c(X), c(Y )} , (1)

which is used in [6] for learning classification and clustering
of strings that represent images. It is a normalized distance,
taking a value in the unit interval, because

c(XY )�min {c(X), c(Y )}  c(X) + c(Y )�min {c(X), c(Y )}
= max {c(X), c(Y )}

and it is not a metric since a value 0 implies that the two
strings are close but not necessarily identical.

Algorithm 3 uses the parallel LZ-complexity algorithm
of [9] to compute the distance (1) between two strings. In
the next section, we report on the computational execution
times of Algorithm 3 and in Section VII, we use it to pre-
process featureless data, specifically time series, and then
apply standard machine learning algorithms to learn time-
series classification.

VI. COMPUTATIONAL EFFICIENCY

In this section, we evaluate the speed-up factor of Algorithm
3 which is implemented in C with the CUDA API [15] on an
nVIDIA DGX station with Intel Xeon E5-2698 v4 2.2 GHz
that has 20 cores (40 threads) and four V100 GPUs, each
with 32G bytes of global memory and up to 96Kb of shared
memory.

As mentioned above, Algorithm 3 uses the parallel LZ com-
plexity algorithm of [9], whose speed-up factor for computing
the LZ complexity of strings is estimated to grow with respect
to string length n at a rate of n2/3 at least for all n  6M
bytes.

In this section, we compare the computational time of an
N ⇥N matrix whose entries are LZ distances of pairs of N
strings, each of length n = 1M bytes, using a single CPU
core that evaluates the LZ distance using the serial Algorithm
1 versus the parallel Algorithm 3 using four GPUs. In both
the serial and the parallel versions, the computation is divided
into two stages: in the first stage, the LZ-complexity of each
of the N strings is computed. In the second stage, the LZ-
complexity of each of the N2 possible concatenations of a
pair of strings, is computed. In the first stage, each of the four
GPUs computes the LZ-complexity of N/4 strings of length
1M bytes (from the set of N strings), and in the second stage,
the task of computing the LZ-complexity of each of the N2

strings of length 2M bytes is divided equally amongst the four



Algorithm 1

SerialLZ(S)

1: Input: S := {S(0), S(1), . . . , S(n� 1)} // string S
2: p := 1, hs := 0, he := 0, c := 1 // Initialize present p to S(1), history start hs and history end he to S(0), and

LZ-complexity c
3: while p < n do

4: {found,max} := Search(S, hs, he, p, n)
5: if found = TRUE then

6: // word found is {S(p), . . . , S(p+max� 1)}, make it a component, add to history
7: he := he+max
8: c := c+ 1 // increment number of components
9: p := he+ 1 // update present position to after the new word

10: else

11: // no word found, make S(p) be new component, add it to history
12: he := he+ 1
13: c := c+ 1 // increment number of components
14: p := p+ 1 // update the present position to S(p+ 1)
15: end if

16: end while

17: Output: c // LZ-complexity of S

Procedure 2

Search(S, hs, he, p, n)
1: // S is input string of length n, history start and end

positions hs, he, and present position p
2: found := FALSE, max := 0
3: for hs  i  he do

4: // Search for starting point i in history that can repro-
duce maximal component starting at S(p)

5: if S(i) = S(p) then

6: found := TRUE // found starting point
7: j := i
8: k := p
9: // create a word starting at S(p)

10: while j < n do

11: k := k + 1
12: j := j + 1
13: if S(j) 6= S(k) then

14: // end of word
15: if j � i+ 1 > max then

16: // word’s length is the new max
17: max := j � i+ 1
18: break// from the while loop
19: end if

20: end if

21: end while

22: end if

23: end for

24: return {found,max}

GPUs. At the end of the computation, a matrix of all pairwise
distances is obtained.

Table I displays the execution time results and speed-up

Algorithm 3

LZD(S1, S2)
1: Input: strings S1, S2
2: S = S1 · S2 // Concatenated string
3: c1 = ParallelLZ(S1) // Use algorithm of [9]
4: c2 = ParallelLZ(S2)
5: c = ParallelLZ(S)
6: dist = (c�min{c1, c2})/max{c1, c2}
7: Output: dist // LZ-complexity distance d(S1, S2)

factors. For instance, if N = 4, the speed-up factor is
419 for four GPUs versus a single CPU core. By Amdahl’s
Law, taking the number of parallel execution units to be the
number of threads, which is four times 160K, this amounts to
a reduction in the percentage of serial execution time down to
approximately 0.24%. Therefore, the percentage of time spent
in executing parallel code is 99.76%. For the range N = 4,
8, 12, 16 this parallel utilization percentage ranges between
99.76% and 99.81%.

VII. MACHINE LEARNING

In this section, we apply Algorithm 3 to learn classification
of unstructured data. Given a data set of instances, each of
which is a string, for example, each is a text document; we
define an LZD matrix to be a matrix whose ijth entry is the
distance (1) between the ith and jth strings, as computed
by Algorithm 3. As mentioned above, one of the benefits
of this distance is that it can measure dissimilarity between
two strings of different lengths, which is very useful for
unstructured data, in particular, for time series.

We use an LZD distance matrix as an alternative representa-
tion of time-series data sets. These data sets consist of a variety
of numerical multidimensional time series ranging from 3 to



TABLE I
LZD NXN DISTANCE MATRIX COMPUTATION TIMES TS , TP , FOR

SERIAL AND PARALLEL ALGORITHMS, RESPECTIVELY.

N=4 TS TP
Stage 1 execution time
Total (4 1M -strings ) 16.31 min 3 sec

Average per string 4.08 min 2.75 sec
Stage 2 execution time
Total (16 2M -strings) 3.22 hr 27 sec

Average per string 12.07 min 1.69 sec
Total time: Stages 1 + 2 3.49 hr 30 sec

Speed Factor: 419

N=8 TS TP
Stage 1 execution time
Total (8 1M -strings ) 32.57 min 6 sec

Average per string 4.07 min 3 sec
Stage 2 execution time
Total (64 2M -strings) 14.28 hr 1.7 min

Average per string 13.39 min 1.59 sec
Stages 1 + 2 14.82 hr 1.8 min

Speed Factor: 494

N=12 TS TP
Stage 1 execution time
Total (12 1M -strings ) 49.09 min 9 sec

Average per string 4.09 min 2.5 sec
Stage 2 execution time
Total (144 2M -strings) 33.33 hr 3.77 min

Average per string 13.88 min 1.57 sec
Stages 1 + 2 34.15 hr 3.92 min

Speed Factor: 523

N=16 TS TP
Stage 1 execution time
Total (16 1M -strings ) 1.09 hr 12 sec

Average per string 4.07 min 2.63 sec
Stage 2 execution time
Total (256 2M -strings) 59.98 hr 6.73 min

Average per string 14.06 min 1.58 sec
Stages 1 + 2 61.07 hr 6.93 min

Speed Factor: 528

approximately 50 dimensions (each dimension corresponds to
a numerical measurement of some sensors). This numerical
time-series data is considered to be featureless because a
numerical value at an instant of time does not constitute a
feature value of an instance for machine learning (an instance
needs to consist of the behavior along a whole time interval).
We run several algorithms to learn time-series classification
and compare the classification accuracy between our proposed
LZD-matrix representation of the data and the standard ubiq-
uitous Term Frequency Inverse Document Frequency (TFIDF)
[1] data representation.

To start, we describe a simple preprocessing stage to convert
a time series data into a symbolic representation. We first take
the raw numerical time series data, normalize and discretize it
such that each normalized numerical value at any time instant
is transformed into one of ten characters, A, B, ..., J. So
with n numerical attributes, we obtain a word of length n
for each time instant in the time series. We insert a blank
character between every word (while it is not needed for the
LZD matrix representation, we still do this as it is needed for

the TFIDF representation of the data). This way, we obtain a
sequence of words such that each word is of length equal to
the dimensionality n of the time series.

Next, we partition the sequence into subsequences by break-
ing it into words that are delimited by a space character. This
is unnecessary for the LZD matrix representation since the
LZ-complexity is well-defined for any data sequence, even
for binary or character sequences with no word-delimiting
characters. We do this solely for the TFIDF representation,
which needs sequences of words (or word stems). Each
subsequence is then considered as a single learning instance
(since every standard learning algorithm trains on a set of
instances).

This gives a symbolic representation of the original nu-
merical time series data where now a learning instance is an
‘artificial document’ that consists of ‘artificial words’ in the A
to J alphabet. We experiment with several variants, where in
each variant, we choose a different value for the length of an
instance. There is a trade-off: the more instances, the shorter
the sequence in each instance. Standard learning algorithms
treat instances as independent, so ideally, an instance should
not be too short to capture a sufficient amount of the time-
dependency structure in the original time-series data. And it
should not be too long to have sufficient size for training data.
This human intervention is only needed because we compare
the LZD to the TFIDF representation. In operational mode
(non-test mode), the LZD algorithm is fully automatic and
can be applied to the original data or its character sequence
representation; no artificial words need to be defined, and no
human fine-tuning is needed.

Once the original time-series data is transformed into a
symbolic representation of artificial documents, a simple script
generates the LZD matrix representation and the TFIDF rep-
resentation of the original time series.

Our experiments are organized as follows: we have four
data sets from the UCI data-set learning repository [16];
see the Appendix for reproducibility information. We create
several variants from each one. The data sets are labeled
by their acronyms as follows: DSDD is “Dataset for Sen-
sorless Drive Diagnostics”, which consists of measurements
of electric current drive signals with intact and defective
components. There are 11 different categories that describe the
condition of a drive. LDPA is “Localization Data for Person
Activity Data Set“ and UIWA is “User Identification From
Walking Activity“, both of which consist of measurements
made by sensors on a human body. LDPA has 11 classification
categories, which indicate the type of activity that the person
did at any particular time instance and UIWA has 22 classi-
fication categories. GSATM is “Gas sensor array temperature
modulation”, which consists of gas sensor measurements for
detecting various chemicals. We used 12 of the 13 different
time series as data.

Table II displays the size of the data sets after the pre-
processing stage that converts a time series into an artificial
document. For each variant we write N x M x K where
N is the number of instances (artificial documents), M is



TABLE II
DIFFERENT VARIANTS OF THE FOUR DATA SETS, DSDD, LDPA, GSATM,
AND UIWA, WHERE FOR EACH VARIANT, WE HAVE N X M X K , WHERE
N IS THE NUMBER OF INSTANCES, M IS THE NUMBER OF WORDS PER

INSTANCE, AND K IS THE NUMBER OF BYTES PER WORD.

Dataset Variant 1 Variant 2 Variant 3
DSDD 33 x 1,773 x 48 99 x 591 x 48 297 x 197 x 48
LDPA 829 x 200 x 3 556 x 300 x 3 334 x 500 x 3
GSATM 708 x 5,000 x 19 360 x 10,000 x 19 240 x 15,000 x 19
UIWA 756 x 200 x 3 509 x 300 x 3 309 x 500 x 3

the number of words per instance, and K is the number of
characters per word (where the bytes are from the alphabet A
to J). Note that data sets LDPA and UIWA consist of three-
dimensional numerical time series based on positioning values
in 3D space; hence the transformed data consists of three-letter
words as indicated by the value of K on the second and fourth
rows of Table II.

Figure 1 shows an example of two instances from Variant 1
of the LDPA data set; each is a row of 200 three-letter words.
Each variant is stored as a folder with files, one per class
category and each file consists of all the instances from that
category.

For each variant of every data set, we compute an LZD
matrix corresponding to the distances of every pair of instances
in that variant. We use Algorithm 3, which as mentioned
above, uses the parallel LZ-complexity algorithm of [9], to
compute the distance (1) between every pair of instances and
store each instance as a row in a file such that the ith row
is a numerical vector whose jth entry is the distance (1)
between the ith and jth instances. We refer to this file as
the LZD matrix representation of a variant of a data set. For
example, for Variant 1 of LDPA, there are 829 rows in the file,
where the ith row has 829 numerical values that correspond to
the distances between the ith instance and all 829 instances,
followed by the class category of the ith instance. This file is
then used as data for all the learning algorithms that we test. To
compute the LZD matrices for DSDD, it takes a few minutes
for Variant 1, about 15 minutes for Variant 2, and about 40
minutes for Variant 3. For LDPA and UIWA, the approximate
times are: 4 hours for Variant 1, 2 hours for Variant 2 and 40
minutes for Variant 3. For GSATM, it takes approximately 18
hours to compute the LZD matrix of Variant 1, 6 hours for
Variant 2, and 4 hours for Variant 3.

In general, for larger data sizes, in order to reduce the LZD
computation time one can choose to compute the distance
between every instance in the data with every instance in a
randomly chosen subset of the data, which yields a smaller
non-square LZD matrix.

The TFIDF data representation for each variant of every data
set is obtained as follows: we create a single file that consists
of all instances in every artificial document of a variant. This
file contains the instances of all class categories. We then
apply WEKA’s [17] filter StringToWordVector, which converts
strings of words into the TFIDF vector representation.

The above constitutes all of the pre-processing that is

TABLE III
LEGEND OF THE LEARNING PERFORMANCE RESULTS

Variant Data representation
(a) 1 LZD
(b) 1 TFIDF
(c) 2 LZD
(d) 2 TFIDF
(e) 3 LZD
(f) 3 TFIDF

TABLE IV
LEARNING CLASSIFICATION RESULTS FOR DATA-SET DSDD

a b c d e f
a - 0 (0) 18 (2) 7 (1) 29 (21) 18 (6)
b 27 (19) - 30 (26) 27 (14) 30 (30) 27 (26)
c 12 (0) 0 (0) - 2 (2) 28 (28) 14 (6)
d 23 (3) 2 (0) 28 (18) - 30 (28) 28 (15)
e 1 (0) 0 (0) 2 (1) 0 (0) - 4 (3)
f 12 (3) 3 (1) 16 (6) 2 (1) 26 (24) -

needed to transform time-series data into the two represen-
tations, the LZD matrix and the TFIDF representations.

Next, we describe the learning problems. Each variant of
every data set defines a classification learning problem. We use
WEKA as a machine-learning platform. We choose a range
of algorithms [18] that includes: k-NN based on Euclidean
distance between two instances, with different values for k
in the range k = 1, 3, 5, 7, 10 and with three possible
weight functions (used for weighing each instance), standard
(no weight), inverse (1/Euclidean distance), 1�Euclidean dis-
tance. The other algorithms are Naive-Bayes, C5.0 classifica-
tion tree learning, multi-layer perceptrons (MLP), SVM with
two different kinds of kernels, and three kinds of calibrations.
For assessing the learning accuracy, in each learning problem,
we do a 10-fold cross validation.

In total, 30 algorithms are used on each of the three variants
of every one of the four data sets. An experiment is defined
as a single machine learning algorithm that is executed on a
single variant of a data set.

Tables IV, V, VI and VII display the learning performances
on each of the variants of every data set, respectively. The
legend is displayed in Table III. When looking at any of the
tables, the (i, j)th entry represents the number of algorithms
(out of the 30 in total) for which the variant specified in
column j outperformed the variant specified in row i. We
compare pairs (i, j) of LZD variant j 2 {1, 2, 3} against
variant i 2 {1, 2, 3} of TFIDF, by picking column (a) and
row (b), or, column (c) and row (d), or, column (e) and row
(f).

Let us explain the results displayed in Table IV. Looking
at row (b) of column (a), we see that out of the 30 machine
learning algorithms executed on Variant 1 of DSDD, the LZD
data representation resulted in 19 statistically significant wins
over the TFIDF data representation (the number in parenthesis
indicates this), and an additional 8 wins (not statistically
significant). That is, 27 out of the 30 algorithms resulted
in a higher learning accuracy when trained with the LZD



Fig. 1. An example of two instances in Variant 1 of LDPA. Each instance is an artificial document with 200 words each of length 3.

TABLE V
LEARNING CLASSIFICATION RESULTS FOR DATA-SET LDPA

a b c d e f
a - 12 (9) 24 (7) 15 (12) 27 (24) 15 (12)
b 18 (15) - 21 (16) 27 (9) 26 (21) 27 (24)
c 6 (3) 9 (6) - 12 (10) 27 (9) 15 (12)
d 15 (15) 3 (3) 18 (15) - 21 (19) 27 (2)
e 3 (3) 4 (4) 3 (0) 9 (5) - 12 (10)
f 15 (1) 3 (3) 15 (15) 3 (3) 18 (15) -

TABLE VI
LEARNING CLASSIFICATION RESULTS FOR DATA-SET GSATM

a b c d e f
a - 3 (3) 12 (3) 3 (3) 15 (3) 3 (3)
b 27 (27) - 27 (27) 6 (1) 27 (27) 10 (1)
c 18 (0) 3 (3) - 3 (3) 21 (2) 3 (3)
d 27 (27) 24 (2) 27 (27) - 27 (27) 17 (0)
e 15 (0) 3 (3) 9 (0) 3 (3) - 3 (3)
f 27 (27) 20 (4) 27 (27) 13 (0) 27 (27) -

TABLE VII
LEARNING CLASSIFICATION RESULTS FOR DATA-SET UIWA

a b c d e f
a - 0 (0) 11 (0) 0 (0) 6 (0) 3 (0)
b 15 (9) - 15 (3) 9 (0) 15 (0) 5 (0)
c 4 (0) 0 (0) - 0 (0) 1 (0) 0 (0)
d 15 (0) 6 (0) 15 (8) - 15 (0) 3 (0)
e 9 (0) 0 (0) 14 (0) 0 (0) - 0 (0)
f 12 (4) 10 (2) 15 (5) 12 (0) 15 (6) -

data representation compared to the TFIDF representation.
Looking at row (d) of column (c), we see that out of the
30 machine learning algorithms executed on Variant 2 of
DSDD, the LZD data representation resulted in 18 statistically
significant wins over the TFIDF data representation and an
additional 10 wins (not statistically significant). That is, 28
out of the 30 algorithms resulted in a higher learning accuracy
when trained with the LZD data representation compared
to the TFIDF representation. Looking at row (f) of column

(e) we see that out of the 30 machine learning algorithms
executed on Variant 3 of DSDD, the LZD data representation
resulted in 24 statistically significant wins over the TFIDF
data representation and an additional 2 wins (not statistically
significant). That is, 26 out of the 30 algorithms resulted in
a higher learning accuracy when trained with the LZD data
representation compared to the TFIDF representation. So in
summary, the LZD data representation is much better than the
TFIDF representation as it improves the learning accuracy for
almost all 30 algorithms.

We see the same success for the LZD representation in
Tables V, VI as almost all of the 30 algorithms consistently
learn better based on the LZD data representation than when
compared to the TFIDF representation.

On the learning problem defined by the UIWA data set,
we observe that the LZD data representation improved only
the 15 algorithms (of the k-NN type) relative to the TFIDF.
The results are displayed in Table VII. As can be seen from
column (a) and row (b), column (c) and row (d), column (e),
and row (f), the LZD data representation always outperforms
the TFIDF representation.

VIII. CONCLUSIONS

We introduce Algorithm LZD for computing in parallel
a string distance based on the LZ-complexity of a pair of
arbitrarily long finite strings, limited only by the amount of
global memory on a GPU and the number of GPUs. One of
the main advantages of this distance is that it can measure
dissimilarity between a pair of strings of different lengths,
which is useful for machine learning from unstructured data.
We introduce a data representation based on Algorithm LZD,
which transforms featureless data into a distance-matrix rep-
resentation that can be learned by standard machine learning
algorithms. This LZD-matrix representation of the data is
easily and automatically computed from the original unstruc-
tured data and hence eliminates the need for pre-defining or
extracting machine learning attributes. The speed-up factor for



computing an NxN distance matrix for N instances reaches
528 for N = 16 and strings of length 1M bytes.

As an example of unstructured featureless data, we run
Algorithm LZD on several time-series data sets, including data
from electric drive diagnostics for defective components, data
sets with measurements of sensors on a human body (used
to classify a person’s activity), and a data set of gas sensor
measurements for the detection of chemicals. The LZD data
representation yields significantly higher machine-learning
classification accuracies than when the data is represented by
an alternative ubiquitous data representation based on TFIDF
vectors. Therefore, we conclude that the proposed parallel
algorithm can be useful to efficiently learn from unstructured
data.

As regards future research, possible directions include
learning from unstructured binary data, e.g., audio, video
files, and other character-based data, evaluating the LZD-
data representation for unsupervised learning, e.g., clustering
from unstructured data, and comparing it to other methods
of learning from unstructured data. A possible extension of
Algorithm 3 is to reuse the result of the first stage in the second
stage. With some added algorithm complexity and additional
memory allocation, one could store the components (and not
just the number of components) of the LZ-complexity of a
string x in the first stage and use this as a starting point
for computing the LZ-complexity of its concatenation with
another string, namely, xy, where y is any of the other N � 1
strings. We expect this to give a significant computational
speedup in the second stage.
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APPENDIX

For reproducibility, all the datasets used in Section VII
are publicly available at https://archive.ics.uci.edu/ in the
following folders:

Dataset Path
DSDD /dataset/325/dataset+for+sensorless+drive+diagnosis
LDPA /dataset/196/localization+data+for+person+activity
UIWA /dataset/286/user+identification+from+walking+activity
GSATM /dataset/487/gas+sensor+array+temperature+modulation

We used WEKA for all our machine learning experi-
ments, publicly available at https://waikato.github.io/weka-
wiki/downloading weka/. The ML algorithms mentioned in
Section VII were run using the default hyper-parameters in
WEKA. The preprocessing stage that converts a time series
into artificial documents is easy to implement. The code
that implements Algorithm 3, together with the library that
implements the parallel LZ-complexity algorithm, will be
made available upon request.


