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Abstract—Unmanned aerial vehicles (UAVs) have 

significant prospects in military and civilian fields. Multi-UAVs 

can cooperatively complete tasks more efficiently and 

economically than a single UAV. As a typical coordination 

pattern for multi-UAVs, task allocation is a combinatorial 

optimization problem by which they are allocated to accomplish 

many tasks. To date, several algorithms have been proposed for 

varied scenario. In this paper, the task allocation problem for 

multi-UAVs with no-fly zone is studied. First, the no-fly zone is 

defined as a circular in 2D surface, and then two accurate and 

fast approaches are proposed respectively, in order to calculate 

the flight distance with no-fly zone. The original differential 

evolution (DE) cannot be directly applied to this optimization 

problem due to its discrete feasible solution. Therefore, some 

key operations of DE are modified to suit the needs of this 

optimization problem as follows: solution coding, mutation 

operation, crossover operation, etc. To verify the proposed 

algorithm, some experiments are done on 10 UAVs and 10 tasks. 

For both simple and complex cases, the experimental results 

confirm that the mathematical model constructed in this paper 

is reasonable, and the proposed DE is effective, especially for 

task allocation problem for multi-UAVs with no-fly zones. 

Keywords—unmanned aerial vehicle, task allocation, 

differential evolution, no-fly zone, flight distance 

I. INTRODUCTION 

Unmanned aerial vehicles (UAVs) have some marvelous 
advantages, for instance, low cost, no casualties, flexible 
operation and reliable performance. In recent years, with the 
rapid development of UAVs hardware equipment and its post-
processing software, it has attracted great attention all over the 
world [1], and has been widely applied in military and civilian 
fields, including target surveillance, remote sensing, multi-
target tracking and so on. With the significant increase in the 
number and complexity of tasks, a single UAV cannot easily 
accomplish multiple tasks simultaneously. Therefore, the 
coordination among multi-UAVs is a key issue in complex 
application scenario [2]. 

The typical coordination patterns for multi-UAVs are 
collision avoidance, task allocation, path planning and 
formation reconstruction. In task allocation, multiple sub-
tasks should be assigned to several UAVs in order to 
accomplish a complex task jointly under the task requirements 
and UAV performance [3]. To solve the task allocation 
problem for multi-UAVs, a number of approaches proposed 

can be divided into the following four categories: centralized 
algorithm, distributed algorithm, bio-inspired algorithm, and 
multi-fusion algorithm [4]. The differential evolution (DE) 
algorithm used in this paper belongs to the bio-inspired 
algorithm. 

In information warfare, the effectiveness of UAVs is 
remarkably affected by complex electromagnetic environment 
and complex natural environment. As a new mode of air 
operation, setting up “no-fly zones” in local war, which is 
emerged after the 1990s, has the following features. First of 
all, its success is based on the absolute superiority of air 
offensive power. Secondly, air strategic deterrence and air 
tactical attack are well combined in this mode. Lastly, the 
scale may be large or small, the process may be fast or slow, 
and the degree may be tight or loose. Therefore, as a new way 
to military intervention by powerful countries, the 
establishment of “no-fly zones” has aroused great attention in 
the military field. When multi-UAVs execute the 
reconnaissance or strike task, they may inadvertently enter the 
no-fly zone, affecting the task execution inevitably. Therefore, 
it is possible that the task allocation result is not the best 
optimal solution. 

The task allocation problem for multi-UAVs with no-fly 
zone is studied in this paper. The main contributions of this 
paper are as follows: (1) In order to calculate the flight 
distance with no-fly zone modeled as a circular in 2D surface, 
two accurate and fast approaches are proposed, respectively. 
(2) In order to suit the needs of the task allocation problem for 
multi-UAVs with/without no-fly zone, some key operations of 
the original DE are modified as follows: solution coding, 
mutation operation, crossover operation, etc. 

The main structure of this paper is organized as follows: 
Section II describes the basic mathematical model of task 
allocation for multi-UAVs and the original DE algorithm. In 
Section III, the no-fly zone is first defined as a circular in 2D 
surface, and then two accurate and fast approaches are 
proposed respectively, in order to calculate the flight distance 
with no-fly zone. Some key operations of the original DE are 
introduced in detail to solve task allocation for multi-UAVs 
with/without no-fly zone in Section IV. The simulation 
configuration, experimental results, and discussion are given 
for both simple and complex cases in Section V. Finally, the 
conclusions and future research of this study are presented in 
Section VI. 
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II. BACKGROUND 

A. Mathematical Model of Task Allocation for Multi-UAVs 

A significant feature of task allocation problem for multi-
UAVs is that there are many constraints, such as UAV 
capability constraints, tactical constraints, battlefield 
environment constraints, and task constraints. Therefore, as an 
optimization problem, the key of mathematical model 
construction is the reasonable definition of objective function 
and the corresponding constraints. 

Before building a mathematical model, several 
assumptions are made as follows. (1) Once a certain task is 
assigned to a UAV, this task will definitely be accomplished. 
(2) The number of UAVs is exactly the same as the number of 
target tasks. (3) The battlefield area is empty, and the UAVs 
can fly directly to the task area assigned in advance. 

Suppose there are n UAVs and n tasks to be accomplished, 
and exactly one UAV is required for each task. Thus, the task 
allocation problem for multi-UAVs is to determine which 
UAV to accomplish which task so that the total cost is the 
lowest or the total benefit is the highest after completing those 
tasks. In this paper, the total cost is directly described as the 
sum of the distances between each UAV and the 
corresponding task. Therefore, the objective function is 
defined as follows: 

min� = � � ��	
�	
�

	�

�

��
 (1) 

where xij indicates whether the ith UAV accomplishes the jth 
task. If it does, xij = 1, otherwise xij = 0. And dij represents the 
Euclidean distance between the ith UAV and the jth task. 

In this mathematical model, the constraints are defined as 
follows: 

� ��	
�

��
= 1 (2) 

� ��	
�

	�
= 1 

(3) 

Equation (2) indicates that each UAV only needs to 
execute one task, and Equation (3) indicates that each task 
only needs one UAV to execute. 

B. Differential Evolution 

DE algorithm was proposed by Storn and Price in 1995 
[5]. At first, it was designed to solve the Chebyshev 
polynomial problem, and then its advantages were gradually 
discovered, such as simple principle, few control parameters 
and convenient implementation [6]. The standard DE consists 
of the following steps: 

(1) Population initialization. Suppose there are Np 
individuals in the population, and each is a D-dimensional 
vector. Then, the initial population is randomly generated as 
follows: 

��,	 = ��_��� + ���
 × (��_��� − ��_���) (4) 

where xi,j represent the jth dimensional component of the ith 
individual, and xi_min and xi_max represent the lower and upper 
bounds of each dimensional component of each vector, 
respectively. 

(2) Mutation operation. The mutation vector is calculated 
as follows: 

�� = ��� + �(�� − ���) (5) 

where xi1, xi2 and xi3 are three different individuals randomly 
selected from the current population, and F is the scale factor. 
As a results, vi is the newly generated mutation vector. 

(3) Crossover operation. Each vector selects its component 
from the mutation vector or the original vector according to a 
certain probability, as shown in Equation (6). 

 �,	 = !��	        #�(���
 < %&  '�  ( = ())��	                '*ℎ,�-#.,  (6) 

where CR is the crossover probability and jr is a random 
component, ensuring that, after crossover operation, at least 
one dimension of each individual is provided by the mutation 
vector. 

(4) Out-of-bounds processing. When applying the 
mutation operation, it is possible that some dimensions of an 
individual are out of the bounds of feasible solutions. 
Therefore, it is generally necessary to reassign a feasible value 
to make it within the boundary range. 

(5) Selection operation. Greedy selection operation is 
generally utilized. According to their fitness value, the better 
individual is selected from the original vector and the test 
vector into the next generation. 

��/0 = 1 �/        #�(�( �/) < �(��/))��/              '*ℎ,�-#.,  (7) 

C. Related Works 

An on-line predictor-corrector reentry guidance algorithm 
was proposed to satisfy path and no-fly zone constraints for 
hypersonic vehicles [7]. L1-Penalized Sequential Convex 
Programming (LPSCP) method was proposed to solve the 
UAV trajectory optimization problem when there are several 
no-fly zones along the trajectory [8]. The discrete path 
decision and continuous trajectory optimization for no-fly 
zones avoidance was integrated as a mixed-integer optimal 
control problem (MIOCP) [9].  

In [10], to cover all feasible avoidance paths by virtual 
waypoints, the mission space with no-fly zones was 
transformed into a directed-graph. Therefore, a no-fly zones 
avoidance path decision problem was modeled and solved as 
a path search problem. In [11], a novel Tabu search algorithm 
was designed to solve VRT-TDR (Vehicle Routing Problem 
with Truck and Drone Considering Regional Restriction). 
This algorithm stimulates human brain’s short-term memory 
function to gradually seek the optimal solution. 

A novel collision avoidance algorithm was presented to 
ensure minimum separation between the vehicles considering 
no-fly zones [12]. The proposed algorithm has been addressed 
in two steps: conflict detection and resolution. A hybrid 
particle swarm algorithm was also designed that combined 
obstacle avoidance and path planning [13]. Specifically, an 
improved A* algorithm was added to solve the obstacle 
avoidance. 

Recently, a rigorous mathematical model was conducted 
for the UAV-assisted item delivery scenario in the presence of 
a number of no-fly zones [14]. The original problem was 
converted into an equivalent problem with a difference-of-
convex structure and then solved by the penalty convex-
concave procedure method. 
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III. MATHEMATICAL MODEL OF NO-FLY ZONE AND 

CALCULATION OF FLIGHT DISTANCE 

A. Mathematical Model of No-fly Zone 

In [15], the no-fly zone of obstacles or threats can be 
approximated by irregular convex polygons at the same 
horizontal height. In this case, UAVs need to avoid the space 
field above it, and there is enough distance between some no-
fly zones for UAVs to pass. In [7, 9], no-fly zones are modeled 
as a cylinder with its center at the specified longitude and 
latitude and a given radius. In [16], the no-fly zone was 
defined as a circular zone of infinite height, and determined 
the no-fly zone by giving the central coordinates and radius of 
the no-fly zone. Recently, dynamic no-fly zone was designed 
based on a sphere centered on the current flight with a radius 
[17]. 

In this paper, the no-fly zone is defined as a circular in 2D 
surface. As shown in Fig. 1, the center and radius of this 
circular are O and R, respectively. The UAV is located at U, 
the target point to execute the reconnaissance or strike task is 
located at T1 or T2. 

 
Fig. 1 Schematic figure of no-fly zone 

Obviously, if there is no no-fly zone in the battlefield, the 
flight path of this UAV is a line segment between the UAV 
(located at U) and the target point (located at T1 or T2). 

If the distance d from the center O to the flight trajectory 
of the UAV is greater than the radius R (as shown by the red 
line U-T1), the flight of UAV is considered as safety. 
Conversely, if the distance d is less than the radius R (as shown 
by green line U-T2), the flight of UAV is considered as 
unsafety and then the UAV needs to fly in another way to 
avoid the no-fly zone. At this time, the flight trajectory of this 
UAV needs to be replanned, and the flight distance also needs 
to be recalculated. 

B. Accurate Calculation Method of Flight Distance 

In this section, the accurate method is put forward to 
calculate the flight distance for two cases: a no-fly zone and 
two no-fly zones. 

(1) A no-fly zone. Suppose there is only one no-fly zone. 
In Fig. 2, U is a UAV, T is a target task, and circle O is a no-
fly zone in the battlefield. 

As shown in Fig. 2, the shortest path between the UAV 
and the target task is line segment U-A + arc A-B + line 
segment B-T. Among them, U-A and B-T are two tangent 
lines of the circle O. Obviously, the flight distance between U 
and T is the sum of the lengths of line segment U-A, line 
segment B-T and arc A-B. Therefore, the specific calculation 
process can be described as follows: 

 

Fig. 2 Case 1: A no-fly zone 

Step 1: In the right triangle OAU, given the radius O-A 
and length of line segment O-U, the length of line segment U-
A can be calculated easily based on the Pythagorean theorem, 
and the angle AOU can also be calculated easily based on the 
cosine theorem. 

Step 2: Similarly, it is easy to obtain the length of line 
segment B-T and the angle BOT. 

Step 3: In the triangle UOT, the length of the three sides 
(U-O, O-T, and T-U) is known, and then the angle UOT can 
further be obtained based on the cosine theorem. 

Step 4: Calculate angle AOB = angle UOT - angle AOU - 
angle BOT. 

Step 5: In the circle O, it is easy to obtain the length of arc 
A-B = the radian of angle AOB × the radius R. 

Step 6: The flight distance between U and T = length of 
line segment U-A + length of line segment B-T + length of arc 
A-B. 

(2) Two no-fly zones. Suppose there are two no-fly zones. 
As shown in Fig. 3, the UAV is located at U, and the target 
task is located at T. Two no-fly zones are circle O1 and circle 
O2, respectively. And, their center O1, O2 and radius R (the 
same radius for tow circles) are known in advance. In addition, 
lines A1-A2 and B1-B2 are two common tangents to circles O1 
and O2. 

It is obvious that, the UAV will pass through two no-fly 
zones at the same time only if U and T are located on line 
segments A1-B1 and A2-B2, respectively. In other cases, 
UAV can only cross one of two no-fly zones. 

If the UAV only passes through one of two no-fly zones, 
the calculation process of the flight distance is described in 
case 1. Thus, we will not repeat it here. 

Next, we will present the accurate method in detail where 
the UAV must pass through two no-fly zones simultaneously. 
According to the elementary geometry, the shortest path 
between the UAV and the target task is line segment U-Q1 + 
arc Q1-P1 + line segment P1-P2 - arc P2-Q2 + line segment Q2-
T. Thus, the flight distance between U and T is the sum of the 
lengths of line segment U-Q1, arc Q1-P1, line segment P1-P2, 
arc P2-Q2 and line segment Q2-T. Therefore, the specific 
calculation process can be described as follows: 

Step 1: Obviously, the length of line segment P1-P2 is the 
length between center O1 and center O2. 

Step 2: The calculation process of line segments U-Q1 and 
Q2-T is similar to the first case (a no-fly zone). 

Step 3: According to the coordinates of U and O1, the 
coordinates of tangent point Q1 can be obtained. 

3



O1

U

T

A2

O2

A1

B1

B2

P1

Q1

P2

Q2

C1

C2

 

Fig. 3 Case 2: Two no-fly zones 

Step 4: In the triangle C1O1Q1, given three sides (C1-O1, 
O1-Q1, and Q1-C1), the angle C1O1Q1 can be obtained based 
on the cosine theorem. 

Step 5: The angle Q1O1P1 = angle C1O1P1 (90 degrees) - 
angle C1O1Q1. Then the length of arc P1-Q1 = the radian of 
angle P1O1Q1 × radius R. 

Step 6: Similarly, the length of arc P2-Q2 can be obtained. 

Step 7: The flight distance between U and T = length of 
line segment U-Q1 + length of arc Q1-P1 + length of line 
segment P1-P2 + length of arc P2-Q2 + length of line segment 
Q2-T. 

Note that the accurate calculation process of flight distance 
described in this section is relatively complex and cannot 
automatically be applied to more complex situations. 
Therefore, this method is only suitable for some simple 
situation where there are 1 or 2 no-fly zones, and not for the 
complex situation where there are more than 2 no-fly zones. 
In addition, in the actual battlefield, whether the accurate 
flight distance has practical military significance is also 
debatable in most cases. 

C. Fast Calculation Method of Flight Distance 

From a historical viewpoint, the UAVs can encounter a 
very limited number of no-fly zones over the whole flight 
course. Therefore, in order to simplify the calculation process 
of flight distance, in this paper the maximal detour distance is 
utilized no matter how the UAV flies realistically. 

As shown in Fig. 1, the maximal detour distance MaxD for 
a no-fly zone is calculated as follows: 

2��3 = 4& − 2& = (4 − 2)& (8) 

Therefore, the flight distance DUT between U and T can be 
calculated as follows: 

367 = 3#.67 + 8 × 2��3 (9) 

where DisUT represents the Euclidean distance between U and 
T, and m is the number of no-fly zones encountered during 
the whole flight course. This calculation method can quickly 
calculate the flight distance between U and T, even if there 
are multiple no-fly zones. As a result, it can meet the realistic 
needs for complex battlefield in most cases. 

IV. DIFFERENTIAL EVOLUTION FOR TASK ALLOCATION 

PROBLEM 

A. Task Allocation Problem for Multi-UAVs 

The goal of task allocation problem for multi-UAVs is that 
the total flight distance of all UAVs is minimized when each 
target task can be executed. However, the original DE 
described in Section II.B cannot be directly applied to this 
optimization problem due to its discrete feasible solution. 
Therefore, it is necessary to make some changes to the 
traditional DE based on the features of task allocation 
problem. The key operations of DE are described as follows. 

(1) Solution coding and population initialization. The 
individuals in DE adopt the integer coding mechanism in this 
paper. The code length is the number of tasks to be executed, 
and each gene of the individual is an integer value, 
representing the task sequence number. 

Suppose that there are 5 UAVs and 5 target tasks to be 
executed. As shown in Fig. 4, this vector indicates that the 1st 
UAV executes the 3rd task, the 2nd UAV executes the 5th 
task, the 3rd UAV executes the 1st task, the 4th UAV executes 
the 4th task, and the 5th UAV executes the 2nd task. 

 

Fig. 4 Example of coding of an individual 

According to the above coding method, Np individuals can 
be randomly generated and then constitute the initial 
population. 

(2) Mutation operation. Since the scale factor F is usually 
a decimal, the mutation vector vi is no longer a feasible 
candidate solution. In this paper, a repair strategy of mutation 
operation is proposed in order to obtain a feasible solution 
quickly. 

First, a temporary mutation vector v’i is calculated 
according to the DE/rand/1 mutation strategy. Then, each 
dimension of v’i is sorted in ascending order. Finally, the order 
number is assigned to the corresponding dimension, and then 
a feasible mutation vector vi is obtained in this way. 

For example, three vectors xi1 = [3 5 1 4 2], xi2 = [1 5 4 2 3 
3], and xi3 = [4 1 2 3 5] are randomly selected, and the scale 
factor F = 0.5. According to the repair strategy proposed 
above, v’i = [5 1 0.5 4 4.5] is firstly calculated by Equation (5). 
Then, all dimensions are sorted in ascending order and a 
feasible mutation vector vi = [5 2 1 3 4] is obtained. 

(3) Crossover operation. Generally, DE adopts the 
binomial crossover strategy as shown in Equation (6). Note 
that the crossover operation in this paper is no longer applied 
to each dimension of the mutation vector, but to each mutation 
vector as a whole as follows. Obviously, this crossover 
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method can effectively exclude the infeasible solution, leading 
to improve the algorithm efficiency. 

 � = 9��     #�(���
 < %&）
��     '*ℎ,�-#.,  (8) 

(4) Out-of-bounds processing. After the mutation 
operation and crossover operation, the newly generated test 
vector is still a feasible solution. It is an important distinction 
compared with the traditional DE. Therefore, no additional 
out-of-bounds processing is required in this paper. 

(5) Selection operation. DE in this paper still selects 
vectors into the next generation based on the greedy selection 
principle, as shown in Equation (7), without any modification. 

(6) Fitness calculation. Because the integer coding 
mechanism is utilized in this paper, the fitness of each 
individual cannot be directly calculated. Therefore, the fitness 
can be calculated by mapping different attribute values of 
individuals into the distance matrix. Note that, for task 
allocation problem for multi-UAVs without no-fly zones, the 
values in distance matrix D are the Euclidean distances 
between all UAVs and all tasks. 

For example, there are 5 UAVs and 5 tasks. The distance 
matrix D is first constructed, where Dij represents the distance 
between the ith UAV and the jth target task. Suppose that the 

distance matrix 3 =
⎣⎢
⎢⎢
⎡9 5 3 2 33 5 6 7 23 2 8 9 64 1 3 7 43 7 8 3 1⎦⎥

⎥⎥
⎤

, where the 

elements in the first row indicates that the distance from the 
first UAV to 5 tasks, respectively. For example, the distance 
to the 1st task is 9, the distance to the 2nd task is 5, the distance 
to the 3rd task is 3, etc. Therefore, the fitness of individual x = 
[3 5 1 4 2] is the sum of the value with underline in the distance 

matrix 3 =
⎣⎢
⎢⎢
⎢⎡
9 5 3 2 33 5 6 7 23 2 8 9 64 1 3 7 43 7 8 3 1⎦⎥

⎥⎥
⎥⎤
. Finally, we can obtain 

the fitness f(x) = 3 + 2 + 3 + 7 + 7 = 22. 

The pseudo-code of DE for task allocation problem for 
multi-UAVs is given in Algorithm 1 as follows. 

Algorithm 1: Differential evolution for task allocation 
problem for multi-UAVs 

Input: population size Np, scale factor F, crossover 
probability CR, maximum function evaluation times 
MaxNFE 
1. Initialization parameter: generation t = 0; 
number of function evaluation NFE = 0 
2. Construct the distance matrix D according to the 
coordinates of the UAVs and the target tasks 
3. Randomly generate the initial population P0 
4. while the termination condition is not meet do 
5.  Calculate the fitness of each individual 
6.  Perform DE/rand/1 mutation operation 
with the repair policy described in this section to generate 
a mutation vector 

7.  Perform crossover operation to generate 
test vector 
8.  Calculate the fitness of the test vector 
9.  Perform the selection operation to 
generate the population Pt+1 in the next generation 
10.  Update parameters: t = t + 1; NFE = 
NFE + Np 
11. end 
Output: Optimal individual xopt and the corresponding 
fitness in population Pt 

B. Task Allocation Problem for Multi-UAVs with No-fly 

Zones 

When solving the task allocation problem for multi-UAVs 
with no-fly zones, the key modification of DE is the 
calculation method of the flight distance. In order to construct 
the distance matrix D, DE needs to quickly calculate the flight 
distances between all UAVs and all target tasks according to 
the Equation (9). This is the key difference of DE algorithm 
for two kinds of task allocation problem. 

The rest part of DE is the same as Algorithm 1, described 
in Section IV.A. Thus, the details of DE are not repeated here. 

V. SIMULATION EXPERIMENTS 

In this section, we will examine the reasonableness of the 
mathematical model constructed in Section III and the 
effectiveness of DE for task allocation problem for multi-
UAVs described by Algorithm 1 in Section IV. In the 
proposed DE algorithm, some key operations of the original 
DE is modified to suit the needs of task allocation problem for 
multi-UAVs with/without no-fly zones. Note that, the goal of 
this paper is not to propose an efficient new algorithm for task 
allocation problem. Therefore, we will not compare it with the 
state-of-the-art bio-inspired algorithms in this section. 

A. Set Up 

Suppose that our army has a total of 10 UAVs in the 
battlefield. And there are 10 different tasks to be executed by 
them. For a simple description, these UAVs and target tasks 
are both numbered 1 to 10, respectively. Furthermore, our 
army can determine the geographical coordinates of these 
target tasks with the help of some technical means. The 
problem we faced is how to assign these tasks to different 
UAVs. Two supposed cases are considered in this paper. For 
each case, those coordinates for UAVs and tasks are known in 
advance and chosen randomly in this section. 

(1) Simple case. Tables 1 and 2 show the coordinates of 10 
UAVs and 10 target tasks, respectively. In this battlefield, 
there are two no-fly zones with the centers are (-50, 50) and (-
60, 60), and the radius R is 5. 

Table 1 Coordinates of the UAVs for simple case 

UAV 
number 

Coordinates 
UAV 

number 
Coordinates 

1 (100, 10) 2 (100, 20) 

3 (100, 30) 4 (100, 40) 

5 (100, 50) 6 (100, 60) 

7 (100, 70) 8 (100, 80) 

9 (100, 90) 10 (100, 100) 

Table 2 Coordinates of the tasks for simple case 

Task 
number 

Coordinates 
Task 

number 
Coordinates 

1 (-100, 5) 2 (-100, -15) 
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3 (-100, -25) 4 (-100, -35) 

5 (-100, -45) 6 (-100, -55) 

7 (-100, -65) 8 (-100, -75) 

9 (-100, -85) 10 (-100, -95) 

(2) Complex case. Tables 3 and 4 list the coordinates of 10 
UAVs and 10 target tasks. In this battlefield, there are two no-
fly zones with the centers are (0,0) and (1000,1000), and the 
radius R is 200. 

Table 3 Coordinates of the UAVs for complex case 

UAV 
number 

Coordinates 
UAV 

number 
Coordinates 

1 (2000, 1920) 2 (1900, 1720) 

3 (1990, 1430) 4 (1720, 2020) 

5 (1840, 1630) 6 (1660, 1850) 

7 (1850, 1740) 8 (1970, 1540) 

9 (2090, 1510) 10 (2320, 1920) 

Table 4 Coordinates of the tasks for complex case 

Task 
number 

Coordinates 
Task 

number 
Coordinates 

1 (-2000, -1920) 2 (-1320, -1630) 

3 (-2360, -1580) 4 (-1770, -1690) 

5 (-1880, -1450) 6 (-1480, -1750) 

7 (-1950, -1660) 8 (-1920, -1620) 

9 (-1380, -1530) 10 (-1860, -1430) 

For population-based intelligent algorithm, parameter 
selection can greatly affect its performance. However, the 
purpose of this paper is not to find the optimal parameters for 
DE algorithm. Therefore, some parameters of DE algorithm 
are borrowed directly from [18], and used to solve the task 
allocation problem for multi-UAVs in both cases as follows: 
population number Np = 100, dimension of variables D = 10, 
maximum generation G = 200, scale factor F = 0.5, crossover 
probability CR = 0.9. Note that, the theoretical meaning of 
these main parameters can be found in Section II.A. In order 
to eliminate the random of population-based DE, the 
algorithm run independently 30 times for each case. 

B. Experimental Results and Discussion 

(1) Simple case. Table 5 records the results of 30 
independent experiments. It can be seen that the global 
optimal solution xopt = [1 2 4 5 3 9 6 7 8 10], and the 
corresponding fitness (the sum of all flight distances) is 
2005.1105. Compared to the task allocation problem without 
no-fly zone, the optimal fitness is increased by 0.22%. 
Furthermore, we can find from Table 5 that DE has obtained 
the global optimal solution 13 times, and the success rate is 
43.33%. From another point of view, the worst fitness 
obtained is 2009.8237, which is 0.26% larger than the optimal 
fitness. In most cases, this tiny error can be neglected in the 
battlefield. Fig. 5 illustrates the convergence curve of the 
objective function during the whole evolution, and Fig. 6 
illustrates the optimal allocation scheme finally obtained by 
the proposed DE. These experimental results fully indicate 
that the proposed DE can effectively solve the task allocation 
problem for multi-UAVs with no-fly zones. 

Table 5 Results of 30 independent experiments 

Experiment Fitness Optimal solution 

1 2006.1052 [1 2 4 5 3 9 6 7 10 8] 

2 2006.1052 [1 2 4 5 3 9 6 7 10 8] 

3 2007.8268 [1 2 4 5 3 6 7 8 9 10] 

4 2005.6060 [1 2 4 5 3 9 6 8 7 10] 

5 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

6 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

7 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

8 2009.8237 [1 3 2 4 5 9 6 7 8 10] 

9 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

10 2006.1089 [1 4 2 5 3 9 6 7 8 10] 

11 2006.1052 [1 2 4 5 3 9 6 7 10 8] 

12 2006.1052 [1 2 4 5 3 9 6 7 10 8] 

13 2006.1052 [1 2 4 5 3 9 6 7 10 8] 

14 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

15 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

16 2007.8268 [1 2 4 5 3 6 7 8 9 10] 

17 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

18 2007.8268 [1 2 4 5 3 6 7 8 9 10] 

19 2007.1036 [1 4 2 5 3 9 6 7 10 8] 

20 2006.1052 [1 2 4 5 3 9 6 7 10 8] 

21 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

22 2007.8268 [1 2 4 5 3 6 7 8 9 10] 

23 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

24 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

25 2006.1089 [1 4 2 5 3 9 6 7 8 10] 

26 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

27 2009.8237 [2 1 3 4 5 9 6 7 8 10] 

28 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

29 2008.5939 [1 5 4 2 3 9 7 6 8 10] 

30 2005.1105 [1 2 4 5 3 9 6 7 8 10] 

 

Fig. 5 The convergence curve of the objective function 
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Fig. 6 The optimal allocation scheme obtained 

Next, the influence of the radius of the no-fly zone on the 
experimental results is studied. As can be seen from Table 6, 
when the radius of the no-fly zone increases from 5 to 20, the 
optimal solution varies, and the corresponding fitness 
increases slowly. We think that there are two reasons of the 
trend. Firstly, when the radius of the no-fly zone increases, the 
additional flight distance caused by no-fly zone will increase 
inevitably. Secondly, in order to avoid crossing the no-fly 
zone, the UAV will choose a relatively farther target task. As 
a result, the corresponding fitness of the optimal solution is 
larger and larger. 

Table 6 Experimental results of different radius of no-fly zone 

Radius of the 
no-fly zone  

5 10 15 20 

Fitness 2005.1105 2012.5257 2046.8170 2120.7490 

Optimal 
solution 

[1 2 4 5 3 
9 6 7 8 10] 

[2 3 5 4 1 
10 8 6 7 9] 

[1 4 5 2 3 
9 10 7 6 8] 

[1 5 3 4 2 
6 8 9 7 10] 

(2) Complex case. We conduct three groups of 
independent experiments with different number of no-fly 
zone: without no-fly zone, one no-fly zone (see Fig. 7), and 
two no-fly zones (see Fig. 8). DE algorithm runs 
independently 30 times for each group of experiments runs, 
and the experimental results are concluded in Table 7. 

Position of the UAVs and the tasks with one no-fly zone

 

Fig. 7 Position of the UAVs and the tasks with one no-fly zone 

Position of the UAVs and the tasks with two no-fly zones

 

Fig. 8 Position of the UAVs and the tasks with two no-fly 
zones 

Table 7 Results of 30 independent experiments for three 
groups of independent experiments 

Experiment 

Fitness for 
the first 
group of 

experiments 

Fitness for 
the second 
group of 

experiments 

Fitness for 
the third 
group of 

experiments 

1 50137.9711 51184.8429 52359.7537 

2 50146.1900 51159.2725 52407.5131 

3 50142.5623 51144.7466 52367.6354 

4 50140.1714 51182.5715 52452.6450 

5 50144.4083 51213.9848 52347.8558 

6 50140.9634 51185.2934 52328.9658 

7 50146.4763 51168.3267 52408.7941 

8 50143.4208 51152.3816 52362.3244 

9 50145.0041 51153.2295 52371.0100 

10 50144.2857 51149.2809 52424.7669 

11 50144.6146 51153.2295 52489.7243 

12 50143.8966 51155.5730 52421.0454 

13 50137.4074 51148.8370 52349.3961 

14 50146.0060 51207.0960 52346.0215 

15 50142.0659 51211.3227 52422.6191 

16 50141.0807 51161.0218 52419.3724 

17 50143.7502 51182.0808 52604.7398 

18 50139.5943 51164.2310 52349.3961 

19 50140.6821 51165.3466 52462.8439 

20 50144.5816 51306.7107 52332.1069 

21 50144.3752 51145.3425 52350.1896 

22 50143.9231 51182.4730 52515.0735 

23 50143.4946 51250.6854 52473.5691 

24 50141.0807 51179.0099 52384.1915 

25 50137.2444 51249.5388 52489.3112 

26 50141.9231 51202.8200 52403.8105 

27 50144.8039 51301.1561 52421.1017 

28 50143.2145 51183.4718 52423.0185 

29 50141.3555 51171.4958 52380.4611 

30 50139.0378 51156.4576 52496.6669 

Maximum 50146.4763 51306.7107 52604.7398 

Minimum 50137.2444 51144.7466 52328.9658 

Mean 50142.4783 51188.2277 52415.6134 

Median 50143.2145 51179.0099 52408.1536 

Variance 6.6128 1800.7718 4128.1977 

As can be seen from Table 7, when solving the task 
allocation problem for multi-UAVs with no-fly zones, the 
variance of fitness for different runs is very small. This results 
further indicates that the proposed DE in this paper runs stably 
and it can effectively solve the task allocation problem for 
multi-UAVs. 

In addition, when the number of no-fly zones increases, 
the fitness also happens a lot of changes. It is consistent with 
common sense. From this result we inferred that the 
mathematical model constructed in this paper is reasonable 
and has a significant role in future wars. 

VI. CONCLUSION 

Task allocation is a combinatorial optimization problem 
by which multi-UAVs is allocated to accomplish many tasks. 
Several algorithms have been designed for UAV networks. In 
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this paper, the no-fly zone is first defined as a circular in 2D 
surface, and then the accurate method and the fast method are 
proposed in order to calculate the flight distance. According 
to the feature of task allocation problem for multi-UAVs, 
some key operations of DE are modified as follows: solution 
coding, mutation operation, crossover operation, etc. 
Simulation experiments on 10 UAVs and 10 tasks are carried 
out for both simple and complex cases. The experimental 
results confirm that the mathematical model constructed in 
this paper is reasonable, and the proposed DE is effective, 
especially for task allocation problem for multi-UAVs with 
no-fly zones well. Although the number of UAVs and tasks in 
two cases studied in this paper is limited to 10, we have reason 
to believe that the proposed method can also be applied to a 
larger scale. 

In the future, one of our main research directions will be 
to further improve the efficiency of the proposed DE 
algorithm and compare it with other swarm intelligence 
algorithms [19]. It would also be interesting to explore ways 
to expand the applicability of our approach to a real-world 
optimization scenario. 
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