
An Empirical Analysis of Code Clone Authorship
in Apache Projects

Reishi Yokomori
Dept. of Software Engineering

Nanzan University
Nagoya, Japan

yokomori@nanzan-u.ac.jp

Katsuro Inoue
Dept. of Software Engineering

Nanzan University
Nagoya, Japan

inoue599@nanzan-u.ac.jp

Abstract—Many studies have been conducted to identify var-
ious types of code clones with a focus on accuracy, scalability,
and performance. However, there has been limited exploration
into the nature of code clones. Even fundamental questions, such
as whether authors who write many non-clone lines also tend
to write many clone lines, or whether code snippets in the same
clone set were written by the same author or different authors,
have not been thoroughly investigated.

In this paper, we explore such fundamental questions regard-
ing code clone authorship. We analyzed Java files from 153
Apache projects on GitHub, with a focus on line-level granularity.

The analysis results showed that for 150 out of the 153 projects,
the numbers of non-clone lines and clone lines contributed by
each author are linearly correlated. We also found that two-thirds
of the clone sets in all projects are primarily contributed to by
single leading authors.

These results confirm our intuitive understanding of clone
characteristics, even though no previous publications have pro-
vided empirical validation data from multiple projects. Since
these results could assist in designing better clone management
methods, we will explore the implications of developing an
effective clone management tool.

Index Terms—authorship, git blame, single-leader clone set,
multi-leader clone set

I. INTRODUCTION

Research on code clones has been conducted since the

1990s, and since then, a large number of studies have been

carried out and published [3], [11], [19]. Many of these

studies have focused on algorithms, performance (such as

recall and precision), and scalability of code clone detection

tools. There have been also empirical studies on code clones,

which mainly focus on the evolution of clones and the relation

to fault proneness [13], [22]. These studies have only revealed

a small portion of the characteristics of code clones. Knowing

when, by whom, in what context, and how code clones

were created is important information for managing code

clones and supporting developers. As a part of understanding

the characteristics of code clones, we became interested in

investigating the authors of code clones.

Author information of code is a valuable resource for effec-

tive software maintenance. For example, Linares-Vásquez et

al. proposed an approach to identifying expert developers with

the author’s information for software change requests [16].

Author information is also used for plagiarism detection and

copyright infringement [23]. However, there is limited knowl-

edge about the authorship of clones. Even the fundamental

questions, such as whether authors who write many non-clone

lines also tend to write many clone lines, or whether code

snippets in the same clone set were written by the same author

or different authors has not been thoroughly investigated.

Previous research on clone authorship has primarily focused on

a small set of projects, with an emphasis on change proneness

and reusability [8], [18].

In this paper, we conduct an empirical study on the au-

thorship of clones in the context of OSS project collections,

specifically focusing on 153 Apache projects written in Java on

GitHub. Our analysis for those target projects mainly focuses

on two aspects: (1) correlation between the author’s contribu-

tions to clone and non-clone lines, and (2) characteristics of

single and multiple author clone sets.

Through the analysis, we found that the number of non-

clone lines and clone lines contributed by each author have

a linear correlation in most projects and one-third of clone

sets are mainly contributed by multiple leading authors. These

findings highlight the necessity of code clone management

tools for the safe and consistent treatment of code clones.

Sec.II describes the terms and Sec.III discusses related

work. Sec.IV presents two research questions and Sec.V shows

the analysis result. Sec.VI discusses implications, and Sec.VII

mentions the threats to the validity. Sec.VIII concludes the

discussion with future work.

II. DESCRIPTION OF TERMS

A code snippet, or simply a snippet, is part of a source code

file within a software system. Sometimes, we duplicate a code

snippet by copying and pasting it, then modify the pasted part

by changing the variable names or literals, within the same

software system or across different ones.

A pair of two code snippets that are the same or similar is

called a clone pair, and each snippet of the pair is referred to

as a code clone or clone [11]. In this paper, we use the term

‘clone’ to mean a code snippet that has another code snippet

of a clone pair in the same file or different files in the same

project. We do not consider here inter-project clone pairs. The

length of a clone (or clone length) is the lines of code (LOC)

of the clone, which may include non-executable lines such as

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

1

2023 IEEE 17th International Workshop on Software Clones (IWSC)

DOI 10.1109/IWSC60764.2023.00008

20
23

 IE
EE

 1
7t

h
In

te
rn

at
io

na
l W

or
ks

ho
p

on
 S

of
tw

ar
e

Cl
on

es
 (I

W
SC

) |
 9

79
-8

-3
50

3-
44

42
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IW
SC

60
76

4.
20

23
.0

00
08

comments or blank lines. A clone set (or clone class) is a set

of code snippets in which any two elements form a clone pair.

The size of a clone set is the number of elements (instances)

of the clone set. The length of a clone set (or clone set length)

is the average length of each clone in the clone set. A clone
line is a line that is involved in a clone. Conversely, non-clone
line is a line that is not involved in any clone.

A clone pair is generally categorized into type-1 to 4 by its

similarity levels [11]. In this paper, type-1, type-2, and type-3

clones are our targets. Type-4 clones are interesting, but since

their possibility of being created by the copy-and-paste actions

is low, they were excluded from the scope of this study. The

author of a line in a file is the author name given by the git
blame command [6]. git blame is a command in Git that

allows us to see who last modified each line. It shows each

line of the file with a commit hash, the name of the author who

last modified the line, and the date and time the modification

was made. Only the name of the author is used here.

Ann
Ann
Ann
John
John
Ann
...

Clone Information

Author Information

CCFinder-
SW

git blame

4) Clone Line
Matching &
Metrics
Measurement

Output
Report

GitHub

Downloaded
Repositories

(153 Java Projects)
Clone Authorship

Information

�������
��������

�������
��	
���
�
������

2) Clone Detection

3) Author
Extraction

�������	�
�

Fig. 1. Overview of Analysis Method

III. RELATED WORK

A. Empirical Studies on Code Clones

Numerous studies on code clones have been performed and

presented [3], [11], [19]. Among those, there were empirical

studies on code clones. Goon et al. examined the ratio of code

clones in C and C++ programs in OSS projects over time [7].

Barbour et al. analyzed faults in inconsistent clone changes

[2]. Honda et al. investigated the change in code clone ratio

from the initial development phase to maturity, finding that

roughly 20% of the entire code consists of clones [9].

Harder investigated code clone authorship and changeability

of clones for their clone detection tool as the analysis target

[8]. His study found that the clone sets (classes) with a

single author accounted for 66.3% of all clone sets, and

that clone sets with multiple authors were twice as likely to

be changed as those with a single author. While this study

provides specific information on the authorship of clones for

the targeted project, they do not give us a general idea of the

relationship between clones and their authors for many other

projects. Therefore, in this study, we conducted a detailed

investigation on code clones and their relationship to the

authors for many OSS projects.

Moriwaki et al. made an inter-project analysis of OSS

projects and identified who reused whose source code across

multiple repositories [18]. Although it provides an interest-

ing perspective on the propagation of code snippets through

projects and repositories, no detailed analysis of the authorship

of clones inside a single project. In this paper, we are interested

in the details of code clone authorship only within each

project.

B. Code Authorship

Attributing code authorship is emerging research topics in,

say, code security [12], plagiarism detection [15], and bug

triaging [10]. These works mainly focus on identifying the

authors of code snippets in source or binary forms by using

comprehensive methods with the characteristics and statistics

of codebases and their archives.

Using version management systems to identify the nature of

clones can be seen in [14], in which they classify clones and

identify copies from the originals. In our study, we rely on the

feature of git blame [6] to attribute the authorship of code,

although it might sometimes produce incorrect information [4].

We will discuss the threats of relying on the git blame
command for code authorship attribution in Sec.VII.

IV. RESEARCH APPROACH

A. Research Questions

First, we examine the fundamental characteristics of authors

who contributed to code clones.

RQ1: What is the correlation between the number of
non-clone lines and clone lines contributed by each author?

This research question arises from an intuitive curiosity as

to whether an author who writes many non-clone lines also

writes clone lines. This might seem very obvious; however,

there is little empirical data presented in previous literature to

validate this assumption. We will analyze the contribution ratio

of each author to clone lines compared to non-clone lines, and

examine if there is a linear relationship between the clone and

non-clone lines.

Next, we examine the authorship of clones within a single

clone set.

RQ2: Are the clones in a clone set contributed by the
same author, or are they contributed by different authors?

We will conduct an analysis of the authorship of clones

within clone sets, by identifying clone sets contributed mainly

by a single author. We will also examine the characteristic

difference of clone sets contributed by single authors or

multiple authors.

B. Method

Fig.1 shows an overview of our analysis method, which is

described in the following steps.

1) First, we have downloaded repositories to analyze from

GitHub. The target repositories are mentioned in the following

Sec.IV-C. The following steps are executed for each repository.

2) Clone detection is performed by CCFinderSW [20], which

is a token-based clone detector with a flexible tokenizer

adaptable to many languages. It detects type-1 and 2 clones

thoroughly and parts of type-3 clones (see the discussion in

Sec.VII). CCFinderSW was chosen because it is written only

2

in Java and it works on various environments with high relia-

bility and performance. We ran it with the default parameters,

minToken=50 (the minimum number of tokens to detect) and

tks=12 (the minimum number of different tokens in the clone

fragments), and with a little higher rnr=0.5 (the minimum rate

of non-repeating parts in the clone fragments, default=0.3)

to reduce simple repeated statements. These parameters have

been chosen to filter out smaller and accidental similar code

snippets from the output. The output of CCFinderSW is

composed of the target file information and the clone set

information, both of which are used for the following steps.

3) git blame commands are executed for all source files to

extract author information for each line from the repository.

4) The location of code clones obtained from CCFinderSW

and the author information obtained from git blame are

matched, and then the author information for the clone lines

is obtained. Various statistics are measured and reported.

After completing step 1), the total execution time for steps

2)-4) to analyze the Apache Ant project was 226 seconds

on a Ryzen 9-5900HX 32GB Windows 10 machine. Out of

this total time, 28 seconds were spent on the clone detection

step 2), 193 seconds were used for git blame in step 3),

and 5 seconds were spent on clone line matching and metrics

measurement in step 4), respectively.

C. Target Selection

We selected the Apache project’s repositories on GitHub as

the analysis target for the following reasons:

• Apache projects are open-source and typically supported

by a community of contributors, making them suitable

for our empirical investigation. We anticipated that the

clones of these repositories would exhibit distinct char-

acteristics compared to the previous research that was

mostly developed by a single author.

• The Apache projects on GitHub encompass a diverse

range of repositories, varying in size from small to large

with a small to large number of contributors.

• Many Apache projects host their repositories on GitHub

and are easily downloadable for coherent analysis.

We have identified and selected 166 Apache-owned projects

on GitHub, meeting specific criteria including repository sizes

between 100MB and 1GB, more than 100 followers, and

written in the Java programming language. These constraints

were used to match computing resource limitations and to

exclude projects that are small or not popular. 13 projects

were excluded because they had only a single author, leaving

us with 153 projects for the subsequent analysis. To analyze

each project, we chose the latest Java files in March 2023 from

its project repository, excluding test files that contain the term

”test” in their file or path names.

Tab.I summarizes the characteristics of all 153 projects. For

example, the size of the target Java files, measured in lines

of code (LOC), ranges from 1.1K to 723.7K lines, with an

average size of 125.9K lines. The ratio of clone lines to non-

clone lines ranges from 4.2% to 178.0% with an average of

TABLE I
BASIC STATISTICS OF ALL 153 PROJECTS

Repositories (153 in total) apache/accumulo ˜
apache/velocity-engine

Repo’s size 0.66- 3660 (74.8) MB
Number of target Java files (excl. test files) 7-3770 (791.5)
Total lines of target Java files 1.1-723.7 (125.9) K
Clone line ratio to total 4.1-64.1 (18.5)%
Non-clone line ratio to total 35.9-95.9 (81.5) %
Clone lines ratio to non-clone lines 4.2-178.0 (24.6) %
Number of clone set 4-11358 (1274)
Average clone length 9.1-45.7 (17.3)
Average clone set size 2.1-15.2 (3.3)
Num. of different authors in total lines 3-368 (56.0)
Num. of different authors in clone lines 2-225 (34.5)
Num. of different authors in non-clone lines 3-361 (55.0)

(The values inside parentheses are the average for all projects)

24.6%, showing the existence of projects with clone lines more

than non-clone lines (> 100%).

V. RESULT

As an example of a single project analysis, we will first

present the results of the Apache Ant project, followed by the

analysis of the set of all projects1.

A. RQ1: What is the correlation between the number of non-
clone lines and clone lines contributed by each author?

(Ant Project) The repository size of Ant is 97.2MB and

the total LOC for all Java files is 235,939 with 33,064 clone

lines (14.0%). There are 87 different authors in the total lines,

with 86 in the non-clone lines and 59 in the clone lines in

the target Java files. Fig.2 shows the ratio of the contributed

clone lines (upper figure) and non-clone lines (lower figure)

contributed by each author whose names are anonymized by

symbols A, B, C,

As can be seen from these figures, although there are

some differences in the order of contribution ratio, the dis-

tribution of the authors seems similar. This suggests that the

contributions of the non-clone lines and clone lines by each

author would be strongly correlated. We plotted the amount

of author contribution to non-clone lines and clone lines as

shown in Fig.3 where each dot represents one author with the

number of contributed non-clone lines on the x-axis and that

of contributed clone lines on the y-axis. Since this plot shows a

strong linear correlation between non-clone and clone lines by

authors, we fitted a linear regression as seen in Fig.3 where the

coefficient is 0.164 and the coefficient of determination R2 is

0.96. The regression coefficient of 0.164 indicates that authors

are contributing to the creation of clone lines that account for

16.4% of non-clone lines.

To determine if two variables (the number of non-clone lines

and the number of clone lines by each author) are linearly

correlated, we calculated the Pearson correlation coefficient

and obtained a p-value of 0.0. This means that we can reject

1All data can be seen from https://tinyurl.com/4d28dtev

3

Fig. 2. Ratio of Contributed Clone and Non-Clone Lines by Authors

Fig. 3. Correlation of Author Contribution to Clone and Non-Clone Lines in
Ant

the null hypothesis that the two variables are not linearly

correlated, and therefore, the linear regression is validated.

(All Projects) We are interested in determining whether

other projects exhibit a linear correlation between the number

of non-clone lines and clone lines contributed by each author.

As was done for the Ant project, we calculated the Pearson

correlation coefficients to test the linear correlation between

the two variables for all 153 projects.

The result shows that the null hypotheses were rejected for

150 projects with p-values less than 0.05. This means that, with

three projects being the exception, we can say that authors who

contribute to many non-clone lines also tend to contribute to

many clone lines, and the number of clone lines contributed by

an author can be simply predicted by the number of non-clone

lines contributed by the same author.

Answer to RQ1: For 150 projects out of all 153 projects,
the numbers of non-clone lines and clone lines contributed
by each author have a linear correlation. In the Ant
project, each author created clone lines at a rate of 16.4%
of the non-clone lines.

B. RQ2: Are the clones in a clone set contributed by the same
author, or are they contributed by different authors?

To perform this analysis effectively, we define two types of

clone sets: single-leader clone set and multi-leader clone set.

For a code snippet s, the leading author or simply leader ls of

s refers to the author who has committed the most lines in s,

i.e., the top contributor in the snippet2. For a clone set C with

clones c1, c2, . . . , cn if all leaders of c1, c2, . . . , cn are the

same, then we say C is a single-leader clone set. Otherwise,

it is called a multi-leader one.

The leader is the most contributing author. A single-leader

clone set means that the leaders of each clone in the clone set

are the same, even if there are different authors for a small

portion of the clones. The reason for using leader to investigate

the authorship of clones is that we want to know an overview

of the dominant authors of clones, without being affected by

minor contributions.

(Ant Project) Firstly, we analyze the proportion of single-

leader and multi-leader clone sets in the Ant project. Out of

exactly 1,000 clone sets found in the project, 527 (52.7%) are

classified as single-leader, while 473 (47.3%) are multi-leader.

Therefore, it can be concluded that approximately half of the

clone sets in the project have multiple leaders. Fig.4 shows

the breakdown of the number of leaders in each clone set, and

it is clear that most multi-leader clone sets have two leaders.

Next, we conducted an investigation into the characteristics

of single- and multi-leader clone sets in the Ant project.

The lengths of the single- and multi-leader clone sets were

measured and depicted as box plots in Fig.5. The average

lengths of the single- and multi-leader clone sets were found to

be 19.9 and 23.9 lines, respectively, with median values of 16

and 21 lines, respectively. The Mann-Whitney U-test revealed

2Note that if there are two or more such authors with the same number of
committed lines, the leader is randomly selected from them.

4

Fig. 4. Number of Leaders in Clone Set in Ant

Fig. 5. Length of Single and Multi-Leader Clone Sets in Ant

a significant difference in clone length (p = 2.14E − 06)

between the two sets, indicating that clones in multi-leader

clone sets tend to be longer than those in single-leader sets.

Similarly, we examined the sizes of single- and multi-leader

clone sets, as illustrated in Fig.6. The average sizes of the

single- and multi-leader clone sets were found to be 2.23 and

Fig. 6. Size of Single-and Multi-Leader Clone Sets in Ant

3.15, respectively, with both having median values of 2. The

Mann-Whitney U-test showed a significant difference (p =
4.89E−17) between the two sets, indicating that multi-leader

clone sets tend to be larger in size than single-leader sets.

(All Projects) We have extended the analysis to all

projects. The ratio of single-leader clone sets to all clone sets

for each project ranges from 17.3% to 99.2%, with both an

average and median of 66.7%. This means that an average of

33.3% of clone sets are multi-leader and composed of different

leader authors. We had expected that the ratio of the multi-

leader clone sets to all clone sets, ranging from 0.8% to 82.7%,

would correlate to the size of the project (total lines of code) or

the total number of authors. However, we found no correlation

between them. This means that an increase in total lines or

committed authors does not necessarily lead to an increase in

multi-leader clone sets.

We have examined the difference in clone lengths between

single- and multi-leader clone sets for all projects, as we did

for the Ant project. The Mann-Whitney U-test was performed

independently for each project to determine if there was a

significant difference in clone lengths. Our analysis confirmed

that out of all 153 projects, 34 had longer multi-leader clone

sets than single-leader sets. For the remaining 119 projects,

which comprise the majority, there was no significant differ-

ence in the lengths of the single- and multi-leader clone sets.

We performed the Mann-Whitney U-test for each project

to determine if there was a significant difference in the clone

set sizes between single- and multi-leader sets. Our analysis

revealed that 105 out of 153 projects (68.6%) showed larger

sizes of the multi-leader clone sets with significant differences.

This means that in two-thirds of the projects, the sizes of the

multi-leader clone sets, which is the number of instances of

each clone set, are larger than those of the single-leader sets.

Answer to RQ2: For all projects, an average of one-
third (33.3%) of the clone sets are contributed by multiple
leaders, while two-thirds (66.7%) are contributed by a
single leader. An increase in total lines or committed
authors does not necessarily lead to an increase in multi-
leader clone sets. In approximately two-thirds (68.6%) of
all projects, multi-leader clone sets have larger clone set
sizes compared to single-leader ones.

VI. DISCUSSIONS

A. Contribution to Clone Lines (RQ1)

The answer to RQ1 states that authors who contributed non-

clone lines also contributed clone lines. This result aligns very

well with our natural intuition for code clone authors and it

is statistically validated with 98% projects (150 out of 153

projects). The outlier projects had authors who created mainly

code clones but no other code. This might happen if there are

developers contributing only to maintenance or refactoring.

B. Different Authors in a Clone Set (RQ2)

The answer to RQ2 states that two-thirds of clone sets

are mainly contributed by single leading authors, while the

remaining one-third are mainly contributed by multiple leading

5

������������������������������� ���������!"�#�$
�������� ��%&���& ����������!��� �'������� �%�(�

)�������������������#�*��� ��!����+����*,,�-
)��� �%&	� ����.�*
���/�
��0���� ��!����������1
) ��� ��!��,2
) 3�� ���-
4 ��*5���& ����� ��������� ��! "�� �'��������

���

������������������������������� ���������!"�#�$
�������� ��%&��������� �'������� �%�(�

4 �#�*���������+����*,,�-
4 �%&	� ����.�*
���/�
��0���
��/��1��������,2
4 3�� ���-
4 ��*5���& ����� ������������"�� �'��������

���

Fig. 7. An Example of Multi-Leader Clone Set

authors. Fig.7 depicts a case of the multiple leading authors

found in the Ant project. In this example, a type-2 clone pair

is presented, with the left column showing the authors of the

lines in the right column. By the analysis of timestamps, the

upper snippet, which was mainly contributed by author X, is

earlier than that of the lower snippet contributed by author Y.

It appears that the upper snippet or another clone snippet was

copied and pasted to create the lower one.

It is important to recognize a case such that an author A
creates a code snippet SA earlier and a different author B later

copies and makes a snippet SB so that a code clone pair SA,

SB is formed. In this case, author A might modify SA to a

new snippet S′
A without knowing the existence of SB , and

inconsistency between S′
A and SB would easily happen. We

will discuss this issue later in VI-D.

C. Multi-Leader Clone Set (RQ2)

As stated in the answer to RQ2, we employed a method

called single- and multi-leader to measure the major contribut-

ing authors of a clone set. This method helps to understand

the majority of the clone’s contributors, suppressing small

contributor effects. We also measured the number of clone

sets committed by a purely single author, without using the

concept of the leader, and calculated the ratio of purely single-

author clone sets to all clone sets. Our results showed that

the average ratio of the purely single-author clone set for all

projects was 34.4%, which is far less than the 66.7% of the

single-leader clone set ratio. This indicates the presence of

minor contributions from non-leading contributors that have

affected the ratio.

In a previous study, the ratio of purely single-author clone

sets (classes) was reported as 66.3% [8]. This value is higher

than our purely single-author clone set average of 34.4%,

which can be attributed to the fact that the previous study

is an analysis result of a closed development project with lim-

ited members, whereas our study analyzed open development

projects with the participation of many developers.

D. Implication for Code Clone Management System
Tab.I shows that approximately 18.5% of the source code

is composed of code clones, which is consistent with previous

research findings [9]. RQ1 suggests that no special but ordi-

nary developers or maintainers would easily create, delete, or

change code clones during their daily activities. These facts

indicate that code clones have a fairly large presence in the

source code. As code clones establish logical dependencies

between code snippets, special attention must be given to them.

Previous research has addressed this topic, suggesting features

to identify, track, and report code clones and their changes,

with a focus on possible bug-inducing activities [5], [17], [22].

Therefore, we consider that source code management tools

must have features that can effectively search, trace, and report

these logical dependencies generated by code clones.
In addition, a monitoring feature of the clone’s consistency,

which continuously watches addition, deletion, and changes

to all source code, and identifies changes in code clone sets,

is important. As mentioned in Sec.VI-B, the author of the

original snippet might not know the existence of the clones

created by other authors, the continuous monitoring by tools

would help to happen inconsistency between logically aligned

code snippets.
Based on RQ2, one-third of code clone sets are contributed

by multiple leaders, i.e., multiple authors. It is intuitive to

assume that multiple-author code snippets require more atten-

tion than single-author snippets because inconsistent editing

may easily occur due to the involvement of multiple indi-

viduals. While validating the impact on the code quality of

single versus multiple authors on code snippets would be an

interesting future research topic, a bug prediction system that

incorporates clone information associated with their authorship

could expedite software maintenance tasks.

VII. THREATS TO VALIDITY

A. Internal Validity
We have used a clone detector CCFinderSW in our study.

As reported by other researchers [3], [19], different code

clone detectors may report clones differently for the same

target, which could potentially affect our results. Although

the accuracy of CCFinderSW has been confirmed by its

developer [20], it would be worthwhile to explore the use of

other detectors such as NiCad, CCFinderX, or SourcererCC

to strengthen our result. NiCad or SourcererCC, for example,

are capable of detecting type-3 clones directly, which could

expand our analysis to include type-3 clones, even though

many parts of those could be detected and included as type

1 or 2 clones by our approach. We have primarily used the

default parameters of CCFinderSW, but altering them could

affect the analysis results. Investigating how the results vary

with different combinations of parameters is an avenue for

future work.
The target projects may include machine-generated code in

their code base and it might affect our result. This would be

mitigated by introducing an automatic identification method

for the machine-generated code [21].

6

We have relied on the author’s information provided by Git

for this analysis. However, Git’s author information may not

always be reliable [4]. For example, if the original author used

multiple names, they may be recognized as different individ-

uals. Additionally, author information might be overridden by

Git commands by intention or accidentally. To mitigate these

risks, we would employ approaches to identify and merge the

author information with email addresses or other associated

information [1].

B. External Validity

In this research, we analyzed 153 repositories from Apache

projects, which might be a smaller size sample compared to

the gigantic real-world OSS projects. However, our sample

includes repositories of various sizes with a range of clones,

as discussed in Sec.IV-C and V. As such, we believe that

our findings could be applicable to other OSS projects or

software products, although further research would be needed

to validate this. Our analysis focused only on Java programs in

Java-oriented projects. Different programming languages with

different project structures may exhibit distinct characteristics

in terms of code clones. Exploring languages and project struc-

tures for the characteristics of clones would be an interesting

direction for future research.

VIII. CONCLUSION

We have presented our analysis of 153 Apache projects

aimed at characterizing the authors of code clones within

these projects. our validation has revealed a linear correlation

between the contributions of non-clone lines and clone lines,

meaning that authors who contribute to many non-clone lines

also tend to contribute to many clone lines. In addition, we

have discovered that two-thirds of clone sets are contributed

by single leaders, while the remaining are contributed by

multiple leaders which might increase potential inconsistency

risks. These results confirmed our intuitive understanding of

code clone characteristics with empirical evidence, and we

have explored the implications of developing an effective clone

management tool.

In our future work, we plan to continue our empirical

investigation of clone authorship in relation to code quality

and faults. Previous research has shown that clones with

multiple authors are more frequently changed [8]. However,

the analysis in their study was limited to only one project,

and no relation to faults was shown. Therefore, we aim to

extend our analysis to multiple target projects and specifically

investigate the relationship between clone authorship and the

occurrence of faults. Additionally, a detailed analysis of clone

authorship, including non-leading authors excluded in this

study and authors who disappeared during code evolution,

would be an interesting topic for future study.

ACKNOWLEDGMENT

This work is supported by JSPS Grants-in-Aid for Scientific

Research, Category (B), 23H03375, and Nanzan University

Pache Research Subsidy I-A-2 for the 2023 academic year.

We are grateful to Ayu Kojima and Yuka Sato for their

contributions to the clone data analysis.

REFERENCES

[1] S. Amreen, A. Mockus, R. Zaretzki, C. Bogart, and Y. Zhang, “ALFAA:
active learning fingerprint based anti-aliasing for correcting developer
identity errors in version control systems,” Empir. Softw. Eng., vol. 25,
no. 2, pp. 1136–1167, 2020.

[2] L. Barbour, F. Khomh, and Y. Zou, “An empirical study of faults in late
propagation clone genealogies,” J. Softw. Evol. Process., vol. 25, no. 11,
pp. 1139–1165, 2013.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[4] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in 6th Int. Working
Conf. Mining Software Repositories, 2009, pp. 1–10.

[5] E. Duala-Ekoko and M. P. Robillard, “Tracking code clones in evolving
software,” in 29th ICSE, 2007, pp. 158–167.

[6] git-scm.com, “Show what revision and author last modified each line of
a file,” git–blame Manual Version 2.40.0, 06 2022.

[7] A. Goon, Y. Wu, M. Matsushita, and K. Inoue, “Evolution of code
clone ratios throughout development history of open-source c and c++
programs,” Int. Workshop on Software Clones (IWSC), pp. 47–50, 2017.

[8] J. Harder, “Code clone authorship — a first look,” Softwaretechnik
Trends, vol. 32, no. 2, pp. 25–26, 2012.

[9] A. Honda, H. Aman, T. Sasaki, and M. Kawahira, “Investigation of
convergence tendency of code clone ratio in open source development,”
IEICE Transactions D, vol. J97-D, no. 7, pp. 1213–1215, 2014.

[10] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based
on historical bug-fix information,” in 2014 IEEE 25th International
Symposium on Software Reliability Engineering, 2014, pp. 122–132.

[11] K. Inoue and C. K. Roy, Eds., Code Clone Analysis, Research, Tools
and Practices. Springer, 2021.

[12] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and A. Matyukhina,
“Code authorship attribution: Methods and challenges,” ACM Comput.
Surv., vol. 52, no. 1, feb 2019.

[13] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of
code clone genealogies,” ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pp. 187–196, 2005.

[14] J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Distinguishing copies from
originals in software clones,” in Proc. 4th International Workshop on
Software Clones, ser. IWSC ’10. ACM, 2010, p. 41–48.

[15] Z. Li, G. Q. Chen, C. Chen, Y. Zou, and S. Xu, “Ropgen: Towards robust
code authorship attribution via automatic coding style transformation,”
in 44th ICSE, ser. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1906–1918.

[16] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in 28th ICSM, 2012, pp. 451–460.

[17] M. Mondal, C. K. Roy, B. Roy, and K. A. Schneider, “Fleccs: A
technique for suggesting fragment-level similar co-change candidates,”
in 29th Int. Conf. Program Comprehension (ICPC), 2021, pp. 160–171.

[18] T. Moriwaki, H. Igaki, Y. Yamanaka, N. Yoshida, S. Kusumoto, and
K. Inoue, “Towards an analysis of who creates clone and who reuses
it,” in 8th Int. Workshop on Software Clones (IWSC), 2014, pp. 1–5.

[19] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470 – 495, 2009.

[20] Y. Semura, N. Yoshida, E. Choi, and K. Inoue, “Ccfindersw: Clone
detection tool with flexible multilingual tokenization,” in 24th Asia-
Pacific Software Engineering Conference (APSEC), 2017, pp. 654–659.

[21] K. Shimonaka, S. Sumi, Y. Higo, and S. Kusumoto, “Identifying auto-
generated code by using machine learning techniques,” in 7th Int. W.
Empirical Software Engineering in Practice (IWESEP), 2016, pp. 18–
23.

[22] S. Tokui, N. Yoshida, E. Choi, and K. Inoue, “Clone notifier: Developing
and improving the system to notify changes of code clones,” in 27th
Int. Conf. on Software Analysis, Evolution and Reengineering (SANER),
2020, pp. 642–646.

[23] C. Zhang, S. Wang, J. Wu, and Z. Niu, “Authorship identification of
source codes,” in Web and Big Data. Cham: Springer International
Publishing, 2017, pp. 282–296.

7

