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ABSTRACT
Recently, cross-modal hashing has attracted much attention in
large-scale image retrieval scenarios. However, most existing
methods ignore the potential higher-order relationships and
label semantic information between heterogeneous modality
data. Besides, the imbalanced training samples could bias
the learning process in most classes and affect the retrieval
performance. To solve the above problems, we proposed a
Joint-semantics Multi-Similarity Hashing method for cross-
modal retrieval (JMSH). We first construct a joint semantic
similarity matrix, which supervises hash learning by integrat-
ing multi-modal features and semantic labels. This method
generates higher-order semantic features that maintain se-
mantic correlation effectively. Then, we propose a multi-
similarity loss based on adaptive margin, which can collect
and weight informative pairs efficiently and accurately, thus
producing more discriminative hashing code and improving
retrieval performance. Extensive experiments on two bench-
mark datasets show the superiority of JMSH in cross-modal
retrieval tasks.

Index Terms— cross-modal hashing, supervised learn-
ing, cross-modal retrieval, multi-similarity loss

1. INTRODUCTION

With the rapid development of online social media, data from
various modalities has proliferated, including images, text,
audio, and videos. In the real world, users often need to
use data from one modality (e.g., text) to retrieve the most
potentially similar instances from another modality (e.g., im-
age) and vice versa. Benefiting from the low storage costs
and high retrieval efficiency, cross-modal hashing has been
widely used in large-scale heterogeneous data retrieval sce-
narios [1, 2, 3, 4, 5, 6, 7]. However, multi-modal data exist in
diverse formats and distributions, resulting in a heterogene-
ity gap. To bridge the heterogeneity gap among multi-modal
data, several supervised cross-modal hashing retrieval meth-
ods have been proposed [3, 8, 9, 10], which employ semantic
labels to guide the hashing learning process.

Corresponding author: guozhw@ouc.edu.cn. This work was supported
by the National Key RD Program of China under Grant 2020YFB1707701.

Although most of the existing methods achieve good per-
formance, there are still two shortcomings. Firstly, these
methods only use labels or text annotation information to
measure the semantic correlation between modalities. For
example, DCMH [3] exploited a semantic label similarity
matrix for supervised hashing learning, while SSAH [8] and
AGAH [10] learned high-order semantic features from multi-
label annotations and performed adversarial learning across
modalities. SRLCH [11] leveraged the relational labels in-
formation in the semantic space to learn more discriminative
hashing codes. CMMQ [12] jointly considered different
modalities, combated noisy labels, and guided the training
process by focusing on samples with small losses. CMHH
[9] introduced noise labels to associate different modality
features and designed a Hadamard product matrix to generate
proxy codes for each class. However, these methods almost
ignore the potential higher-order correlations between hetero-
geneous data, limiting the semantic representation capability.
Secondly, it is susceptible to the imbalance in the distribu-
tion of semantic labels of samples and samples concept drifts
[13], reduces the accuracy of cross-modal retrieval. There-
fore, ensuring a higher correlation between sample pairs and
preserving sufficient semantic information in a unified archi-
tecture is necessary to generate high-quality hashing codes.

In this paper, we propose a novel cross-modal hash-
ing method called Joint-semantics Multi-Similarity Hashing
(JMSH) for cross-modal retrieval. Our main contributions are
summarized as follows:

• We design a joint-semantic similarity matrix to super-
vise the generation of hashing code, integrating image
data features, text annotations features, and semantic
label information mindfully to preserve higher-order
semantic similarity in different modalities better.

• We propose an adaptive margin multi-similarity loss
based on the prior similarity of samples, which reduces
the influence of data imbalance and makes the gener-
ated hashing code more discriminative.

• Extensive experiments on two benchmark datasets
demonstrate that the proposed JMSH significantly out-
performs other cross-mode hashing methods.
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Fig. 1. The architecture of the proposed JMSH.

2. PROPOSED METHOD

The architecture of JMSH is shown in Fig. 1. For the training
process, we use pre-trained AlexNet and BoW as the back-
bone networks for ImgNet and TxtNet, respectively, for fea-
ture extraction of original image and text data.

Let O = {oi}ni=1 denote a dataset with n training in-
stances in a batch and oi = (vi, ti, li), where vi ∈ Rn×dv ,
ti ∈ Rn×dt , li ∈ {0, 1}n×c are the original image features,
text features and label of ith instance, respectively. dv and dt
denote the dimensions of the original image features and text
features, respectively. We use V = {vi}ni=1 and T = {ti}ni=1

to represent the image-feature and text-feature. Further, li =
[li1, li2, . . . , lic] denotes the multi-label annotations assigned
to instance oi, where c is the number of classes. If oi belongs
to the kth class, lik = 1, otherwise lik = 0. The goal of JMSH
is to learn hashing function H : O → {−1,+1}q that maps
the input instance oi to a q-bit binary code and maintains the
semantic similarity from different modalities.

2.1. Joint-semantic similarity matrix construction

Similar to [14], the joint-semantic similarity matrix is to fuse
the self-similarity matrix and the semantic labels from differ-
ent modalities, to capture the high-order semantic correlation
between different modality instances.

Firstly, we use V = {vi}ni=1 to construst image modality

cosine similarity matrix: SI = cos(vi, vj) =
viv

⊤
j

∥vi∥2∥vj∥2
∈

[−1, 1]n×n, as well, we adopt T = {ti}ni=1 to construct the
text modality cosine similarity matrix: ST = cos(ti, tj) =

tit
⊤
j

∥ti∥2∥tj∥2
∈ [−1, 1]n×n, where || · ||2 denotes L2 norm.

Then, we merge the image modality feature matrix SI

and text modality feature matrix ST , to construct a fusion
similarity matrix SF , which can be expressed as:

SF = η · cos (SI ,ST ) + (1− η) · cos(SI ,ST )⊤ (1)

where η ∈ [0, 1] is a trade-off parameter, following [15], we
set η to 0.5.

Then, we fuse the SI , ST , and SF with a weighted sum-
mation manner as follows:

S′ = γ1S
I + γ2S

T + γ3S
F , γ1 + γ2 + γ3 = 1 (2)

where S′ as a weighted similarity matrix, which records the
similarity between the samples corresponding to each row and
each column. γ1, γ2 and γ3 are the trade-off parameters con-
trolling the importance of the similarity information from the
different modalities, respectively.

By the way, we calculate S′ · (S′)⊤ to obtain the higher-
order similarity and use γ2 to adjust the relationship between
the lower-order and higher-order similarity matrices.

S′′ = γ4S
′ + (1− γ4)

S′ · (S′)⊤

n
(3)

where n denotes the batch size used to normalize the higher-
order similarity. γ4 represents a parameter to balance the ef-
fects of different modalities.

To construct the similarity matrix, we should consider
both high-level semantic information (i.e. semantic labels)
and low-level information (i.e. multimodal features). There-
fore, a combination function φ is introduced to generate the
joint semantic similarity matrix S, which is defined as:

S = φ(SI ,ST ,SL,SF ) = SL(γ5 ·SL+(1−γ5) ·S′′) (4)

where γ5 balances the importance of each parameter, SL de-
notes the label-guided similarity matrices.

By combining the similarity information of different
modalities into a unified matrix, the training process can
fully excavate the high-order semantic similarity of potential
modalities between instances, and complement the neighbor-
hood relationship between the two modalities, which helps to
generate higher-quality hashing codes.

Suppose bi and bj are both binary code from the given
pair Ii and Ij , the hamming distance between bi and bj can be
expressed as: DHam(bi, bj) =

1
2 (k−⟨bi, bj⟩) [16, 17], where

⟨·, ·⟩ is inner product. In this work, we adopt inner product
Θ(Ii, Ij) = ⟨bi, bj⟩ to quantify the pairwise similarity.

On the basis of similarity quantization by inner product,
the optimization similarity of pairwise is obtained by multi-
plication with joint-semantic similarity matrix: Ω

(
Ii, Ij

)
=

Si,jΘ
(
Ii, Ij

)
.

2.2. multi-similarity loss with adaptive margin

For cross-modal retrieval tasks, we add an adaptive margin
into the General Pair Weighting (GPW) framework [18],
which combines three types of similarities: self-similarity,
positive relative similarity, and negative relative similarity,
aiming to pair mining and pair weighting.

Pair Mining: As shown in Fig. 2, set Ii as an anchor, Pi

and Ni represent the set of positive and negative of the Ii.
A negative and positive pair {Ii, Ij} are selected if the pair
optimization similarity Ω(Ii, Ij) satisfies the following con-
ditions: Ω+(Ii, Ij) < max

(
Ω(Ii, Ik)

)
+ ϵ and Ω−(Ii, Ij) >

min
(
Ω(Ii, Ik)

)
− ϵ, where ϵ is a given margin.

To calculate the relative similarity between sample pairs,
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Fig. 2. Comparison of traditional pair mining and proposed
methods. The left half employs a fixed margin, while the right
half with an adaptive margin.

the given margin ϵ is usually fixed [19, 20], this way, the se-
lection of sample pairs close to the margin of the similarity
threshold is unfriendly. On the contrary, sample pairs with
informative information should be selected heuristically to
maintain the relative similarity between sample pairs dynami-
cally. Similar to the previous work BLEU [21], we calculated
the similarity margin ϵad according to the prior similarity of
the sample pairs, which used the similarity of text annotations
ST (Ii, Ij) between the sample pairs to determine the distance
between the sample pairs, so as to more finely distinguish the
positive and negative samples with different similarity.

ϵad = α
−eβS

T (Ii,Ij) + eβ

−1 + eβ
, 0 < α < 1 (5)

where α is the maximum margin and β denoted the decay
coefficient, therefore, the ϵ can be replaced by ϵad.

Moreover, self-similarity is derived by directly computing
pairwise similarity, which can be written as: φS

i,j = Ω
(
Ii, Ij

)
.

Since negative relative similarity takes account of relative
similarity between negative pair (Ii, Ij) and other remaining
negative pairs, the other negative pair (Ii, Ik) need to be com-
pared, and the relative similarity is defined, as shown below
φN
ijk = Ω(Ii, Ik)− Ω(Ii, Ij).

Pair Weighting: Following [18, 19], we introduce three
hyperparameters µ, ρ, and λ into the measurement of self-
similarity, relative similarity, and weight both similarities.

For the positive pair, the weights ω+
ij for the positive pairs

are calculated:

ω+
ij =

1

e−µ(λ−φS
ij) +

∑
k∈Ni

e
−µ

(
φN
ijk

) (6)

Further, the Eq. (6) can be written as:

ω+
ij =

eµ(λ−Ω(Ii,Ij))

1 +
∑

k∈Pi
e(µ(λ−Ω(Ii,Ik)))

(7)

For the negative pair, weightes ω−
ij can be written as:

ω−
ij =

eρ(Ω(Ii,Ij)−λ)

1 +
∑

k∈Ni
e(ρ(Ω(Ii,Ik)−λ))

(8)

Finally, the multi-similarity loss, shown as Eq. (9), the
partial derivatives of the multi-similarity loss function respect

Table 1 Mean Average Precision (MAP) comparison results.

Task Method MIRFLICKR-25K NUS-WIDE
16-bits 32-bits 64-bits 16-bits 32-bits 64-bits

I→T

DCMH [3] 0.7410 0.7465 0.7485 0.5903 0.6031 0.6093
SSAH [8] 0.7890 0.8005 0.8060 0.6160 0.6360 0.6370
CMHH [9] 0.7334 0.7281 0.7444 0.5530 0.5698 0.5559
AGAH [10] 0.7923 0.7945 0.8069 0.6455 0.6600 0.6512
SRLCH [11] 0.7300 0.7289 0.7713 0.6529 0.6658 0.6690
CMMQ [12] - 0.7370 0.7420 - 0.6010 0.6060

JMSH 0.8145 0.8219 0.8301 0.6611 0.6630 0.6751

T→I

DCMH [3] 0.7825 0.7900 0.7932 0.6398 0.6511 0.6571
SSAH [8] 0.7820 0.7970 0.7990 0.6530 0.6760 0.6830
CMHH [9] 0.7320 0.7183 0.7279 0.5739 0.5786 0.5639
AGAH [10] 0.7887 0.7904 0.8049 0.6313 0.6422 0.6336
SRLCH [11] 0.7111 0.7120 0.7527 0.6108 0.6231 0.6254
CMMQ [12] - 0.7230 0.7250 - 0.6000 0.6040

JMSH 0.7985 0.8011 0.8135 0.6656 0.6735 0.6841

to Ω+(Ii, Ij) and Ω−(Ii, Ij) is identical to the weight in
Eq. (7) and Eq. (8) respectively. Though gradient descent
optimization, loss could be minimized by exploiting the pair
mining and weighting iteratively.

Lms =

m∑
i=1

 1

µ
log

1 + ∑
k∈Pi

eµ(λ−SikΘ(Ii,Ik))


+

1

ρ
log

1 + ∑
k∈Ni

eρ(SikΘ(Ii,Ik)−λ)


(9)

3. EXPERIMENTS

3.1. Experimental Setting

We evaluated the proposed JMSH on MIRFlickr-25K [22]
and NUS-WIDE [23] datasets. MIRFlickr-25K contains
25,000 multi-label images and 24 classes, while NUS-WIDE
has 269,648 multi-label images and 81 classes. Each image
is tagged with at least one semantic label.

Two cross-modal retrieval tasks are performed, includ-
ing image-to-text retrieval (I→T) and text-to-image retrieval
(T→I). Mean Average Precision (MAP) and Precision-Recall
(PR) are used to evaluate the retrieval performance. For all
metrics, a higher value indicates better retrieval performance.

We set the batch size as 256 and employ Adam optimizer
to optimize the ImgNet and TxtNet. The learning rate of
ImgNet and TxtNet are both set to 1e-4. Besides, we cross-
validate the parameters γ1, γ2, γ3, γ4, γ5, µ, ρ, λ and set
{γ1 = 0.6, γ2 = 0.2, γ3 = 0.2, γ4 = 0.7, γ5 = 0.4, µ = 0.8,
ρ = 0.6, λ = 0.4}.

3.2. Comparison

We compare six state-of-the-art cross-modal hashing methods
as baselines, including DCMH [3], SSAH [8], CMHH [9],
AGAH [10] , SRLCH [11] and CMMQ [12].

Table 1 shows the performance comparison of all the
methods, we can observe that the JMSH almost outperforms
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Fig. 3. Precision-Recall curves with 16 bits on two datasets.

all the baselines, achieving better MAP results on different
hashing codes for all datasets. This is because the proposed
JMSH combines multi-modal features and semantic label
information, effectively preserving higher-order similarity
relationships within multi-modal data and reducing modal-
ity gaps. Furthermore, the multi-similarity loss mitigates
training issues arising from sample imbalances, optimiz-
ing the training process and enhancing cross-modal retrieval
performance. Notably, for NUS-WIDE, a complex dataset
containing more training samples, the JMSH can still achieve
significant results in all situations.

We plot the Precison-Recall curve with code length 16
among the compared methods on two datasets. As we can
from Fig. 3, our proposed JMSH achieves the best precision
results at all recall levels, which further proves the superiority
of JMSH in the tasks of supervised cross-modal retrieval. In
addition, the results of other code lengths (32 bits and 64 bits)
can always obtain a satisfying performance on two datasets.

3.3. Ablation Studies

In this section, we conduct ablation studies to evaluate the
effectiveness of various components. JMSH-1 stands for an
architecture with labels, text and image fusion similarity S =
φ(SI ,ST ,SL) without higher-order semantic features S =
φ(SI ,ST ,SL,SF ). JMSH-2 uses multi-similarity loss with
a fixed margin instead of an adaptive margin.

As shown in Table 2, the results of JMSH-1 suggests that
the joint semantic similarity matrix can effectively fuse im-
portant modality information and bridge the modality gap.
Meanwhile, the results of JMSH-2 show that the multi-
similarity loss with adaptive margin has better performance
than the conventional multi-similarity loss function, which is
due to its ability to distinguish samples close to the margin
of the similarity threshold more finely through the improved
sampling and weighting scheme.

Table 2 MAP results of proposed JMSH and its variants.

Task Method
MIRFlickr-25K NUS-WIDE

16-bits 32-bits 64-bits 16-bits 32-bits 64-bits

I→T
JMSH-1 0.7580 0.7638 0.7529 0.5866 0.5942 0.6110
JMSH-2 0.8085 0.8118 0.8200 0.6379 0.6435 0.6479
JMSH 0.8145 0.8219 0.8301 0.6611 0.6630 0.6751

T→I
JMSH-1 0.7281 0.7910 0.7813 0.6418 0.6571 0.6630
JMSH-2 0.7905 0.7813 0.8042 0.6564 0.6600 0.6713
JMSH 0.7985 0.8011 0.8135 0.6656 0.6735 0.6841

Fig. 4. MAP results of different maximum margin α and de-
cay coefficient β for JMSH on two datasets with 16-bits.

3.4. Sensitivity to the Hyper-Parameters

For the multi-similarity loss with adaptive margin, the max-
imum margin α and the attenuation coefficient β are deter-
mined according to the prior similarity of the sample pairs,
which can reflect the semantic relationship between the dif-
ferent modalities. Specifically, we set α = {0.2, 0.4, 0.6, 0.8,
1.0}, and β = {1, 2, 3, 4, 5}, respectively. The effect of two
hyperparameters on multi-similarity loss of adaptive margin
is investigated. As we can see from the Fig. 4, the multiple
similarity loss of our design adaptive margin is the most use-
ful predictor of image similarity when α = 0.6 and β = 4.

4. CONCLUSION

We propose a novel cross-modal hashing retrieval method
called JMSH. JMSH combines different modalities’ features
and semantic labels to capture the higher-order semantic re-
lationships between each modality, for supervised learning
of compact hashing code. Meanwhile, we design a multi-
similarity loss based on an adaptive margin, which jointly
considers self-similarity, positive, and negative relative simi-
larity to mitigate the accuracy loss due to sample imbalance.
Extensive experiments on two benchmark datasets demon-
strate that the JMSH outperforms other baselines.
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