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Abstract—Achieving state-of-the-art results in face verifica-
tion systems typically hinges on the availability of labeled face
training data, a resource that often proves challenging to acquire
in substantial quantities. In this research endeavor, we proposed
employing Siamese networks for face recognition, eliminating
the need for labeled face images. We achieve this by strategically
leveraging negative samples alongside nearest neighbor counter-
parts, thereby establishing positive and negative pairs through
an unsupervised methodology. The architectural framework
adopts a VGG encoder, trained as a double branch siamese
network. Our primary aim is to circumvent the necessity for
labeled face image data, thus proposing the generation of
training pairs in an entirely unsupervised manner. Positive
training data are selected within a dataset based on their highest
cosine similarity scores with a designated anchor, while negative
training data are culled in a parallel fashion, though drawn from
an alternate dataset. During training, the proposed siamese
network conducts binary classification via cross-entropy loss.
Subsequently, during the testing phase, we directly extract face
verification scores from the network’s output layer. Experi-
mental results reveal that the proposed unsupervised system
delivers a performance on par with a similar but fully supervised
baseline.

Index Terms—biometrics, deep learning, face recognition,
siamese network, unsupervised method

I. INTRODUCTION

In today’s increasingly digital world, safeguarding per-
sonal information and ensuring security has become a top
priority [1]–[10]. One of the most cutting-edge technologies
addressing this concern is face verification, a powerful tool
that leverages facial recognition to authenticate individuals
[11]. This technology offers immense potential across vari-
ous industries, from financial services to law enforcement,
and even everyday consumer applications.

Deep learning methods are successful in image appli-
cation specifically in face recognition [12]–[16]. These ap-
proaches excel in learning deep features and bottleneck
features (BNF) [17], which are used within a conventional
GMM-UBM framework [18]. However, these deep learning
approaches typically rely on labeled training data.

The authors in [19] reported that PLDA is the efficient
back-end for image recognition [19], [20]. Previous works
reported PLDA provide a superior performance than cosine
scoring. But, this improvement comes with the cost of
labeled training data. However, previous works show that

it is not usually easy to have access to large amounts of
labeled training data. Thus, the lack of labeled training data
results in a significant performance gap between cosine
and PLDA scoring techniques [21], [22] in face recognition.
Although the authors in [23] proposed automatic labeling
techniques, they could not appropriately estimate the true
labels. Although these approaches perform reasonably well,
the results are still compared to that PLDA that uses
actual labels [24]. Whereas, the authors in [25] proposed
autoencoder based unsupervised method improve the per-
formance of face recognition systems. Previous studies
show that these approaches mainly aim at increasing the
discriminative power of face image embeddings. Thus, they
can be applied as a back-end in face verification task.

In our proposed work, the main goal is to reduce the
reliance on labeled training data for a face verification sys-
tem. We aim to obtain end-to-end face verification scores
without using face image labels. We propose a siamese
network [26] consisting of double-branch networks, each
with two branches that are CNN encoders. These encoders
are inspired by the VGG architecture and adapted for face
verification [27]. Traditionally, Siamese networks are trained
using pairs of training samples, such as anchor-positive
and anchor-negative pairs. However, to avoid using face
image labels, we generate these training sample pairs in
an unsupervised manner. Positive training data are chosen
within one dataset based on their highest cosine scores with
the anchor sample. In contrast, negative training data are
selected in a similar manner from another dataset, ensuring
that the two datasets do not include face images from the
same identity.

In our study, we introduced the utilization of a two
branch Siamese network. The network processes positive
and negative samples, individually paired with anchor sam-
ples, and computes the binary cross-entropy loss based
on their binary labels. Following the training process, de-
cision scores for face verification trials are derived from
the last layer of the network, resulting in an end-to-end
face verification system. Our evaluation was performed on
the Labeled Faces in the Wild (LFW) dataset [28]. Despite
being unsupervised, our results show significant promise,
approaching the performance of a fully supervised baseline.
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The remainder of this paper is organized as follows:
Section 2 explains the proposed method, Section 3 provides
details on the experimental setup and data, Section 4
discusses the results, and we conclude in Section 5.

II. PROPOSED METHOD

The training of a DNN in an end-to-end fashion typically
requires access to labeled training data, which can be chal-
lenging in real-world scenarios. To address this, especially
when labeled data is unavailable, we propose the use of
siamese networks [26], characterized by a double-branch
architecture. Each branch features a CNN encoder that is
motivated by the VGG network [29], which has recently
shown promise in face verification [30]. Given our objective
of avoiding reliance on face image labels, we introduce
a novel approach to generate pairs of training data in
an unsupervised manner [31], [32]. Specifically, positive
training data are chosen within one dataset based on their
similarly score with the anchor. Similarly, negative training
data are selected using the same criterion, but from a
separate dataset, ensuring that the two datasets do not
contain face images from the same identity. This innovative
training methodology circumvents the need for labeled
data, making the process more accessible and adaptable
to real-world scenarios.

The proposed work utilizes a siamese network. It is
trained by minimizing binary cross-entropy loss. This net-
work selects the pair of negative-anchor and positive-
anchor face images samples, and processes them to gener-
ate binary labels of 1 (positive match) or 0 (negative match)
at the output. These labels are used to compute the loss
during training. Once the network is trained, we can obtain
decision scores for face recognition evaluations directly
from the network’s output. In summary, our proposed
siamese network constitutes an end-to-end face recognition
system, capable of making binary classification decisions
with respect to facial similarity.

A. Training Pairs Selection

The procedure for selecting negative and positive images
involves utilizing two datasets, denoted as X and X. Let
CX and CY represent the individuals in datasets X and Y,
respectively. It’s assumed that individuals in dataset X are
distinct from those in dataset Y, i.e., CX ∩CY =φ. Algorithm
1 provides an overview of how the selection of negative and
positive face image vectors is conducted in an unsupervised
manner.

To begin, we extract the face embedding vectors for all
face images in datasets X and Y. Next, we compute similarity
scores among all face embedding vectors within dataset X
by using cosine distance metrics. For each face embedding
vector in X, we select a fixed number k of neighbor
face embedding as a potential positive face embeddings.
Subsequently, we introduce a threshold to select potential
k positives face images.

Input Face Image
(Anchor)

Input Face Image
(Clients/Impostor)

DNN DNN

FC (1024)

FC (300)

FC (1024)

FC (300)

    (300)

FC (300)

FC (300)

FC (1)

Binary Cross-Entropy Loss

 Evaluation Phase

Fig. 1: The architecture of the proposed siamese network.
FC denotes fully connected layer. In evaluation phase,
decision scores for face recognition are obtained directly
from the last layer of the network. This layer computes
the final representation of the features extracted from the
input face images, which is then used to make binary
classification decisions regarding facial similarity.

Algorithm 1 The proposed algorithm to select positive and
negative face images for each face image in the training
dataset.
Require: Training face images ti , 1 < i < n, xi ∈ X &yi ∈ Y ,

1 ≤ i ≤ n, and threshold
Ensure: Positive and Negative face images Pi j and Ni j , 1 ≤

i ≤ mand1 ≤ j ≤ k
for each training face image xi do

for each training face image xp , 1 < p < m do
Compute Positive Scores i ,p = cosine

(
xi , xp

)
end for
From Positive Scores i ,p , select k highest face images.
if Positive Scores i ,p < threshold

Pi , j = xp

for each training face image ym , 1 < n < m do
Compute Negative Scores i ,n = cosine

(
yi , yn

)
end for
From Negative Scores i ,n , select k highest face images.
if Negative Scores i ,n < threshold

Ni , j = yn

end for
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To select the negative face image embeddings, we score
all the face embeddings in X with those in Y , by using
cosine similarity scores. For each face embedding in X ,
we select k number of face embeddings from Y that by
using their cosine distance scores. Given that the person in
dataset X does not appear in dataset Y , the k selected face
embeddings are considered potential negative face images.
Subsequently, we apply a threshold to their corresponding
cosine scores to identify the most challenging negative face
images. This process ensures that each face embedding in
X is paired with k most positive and k negative face image
embeddings.

Assuming there are n face images in each dataset X
and Y , then we will have a total of n plus n times k
face image training data. For example, if we have 100
training data in each datasets with k=10, then we will have
(100+100)*10 = 1000 training data. This way, we were able
to increase intrinsically the number training dataset. In our
experiments, training pairs consist of two samples, namely
anchor-positive and anchor-negative.

To select the negative face embedding vectors, we com-
pute cosine similarity scores between all face embedding
vectors in set X and those in set Y . For each face em-
bedding vector in X , we choose K face embedding vectors
from Y that have the closest scores. Given that individuals
in X do not appear in Y , these K selected face embeddings
represent potential negative face images. Subsequently, we
apply a threshold to the corresponding cosine scores to
identify the most challenging negatives face images among
them. As a result, each face embedding vector in X is
assigned K positive and K negative face embedding vectors.

B. Proposed Siamese Network

The training of a DNN in an end-to-end manner usually
requires labeled face images for the training data, which
can be challenging to obtain in practical scenarios. When
such labels are unavailable, we propose the use of siamese
networks. These networks operate in a fully unsupervised
manner, distinguishing them from a typical DNN classifiers.
Traditionally, a siamese network is trained using pairs of
samples, consisting of an anchor, a positive, and negative.
To bypass the need for face image labels, we propose gener-
ating these training pairs in an unsupervised manner, which
are then fed into the network. Specifically, we advocate
for a siamese network utilizing binary cross-entropy loss.
Following the training process, we extract decision scores
from the output of the proposed network for the evaluation.
This approach allows us to perform face verification in an
unsupervised manner.

C. End-to-End Face Verification System

Figure 1 depicts the architecture of the proposed siamese
network. This network comprises two identical branches,
both acting as CNN encoders. During training, a pair
consisting of an anchor face image along with either a
positive or negative face image is inputted into each branch

of the network respectively. These two branches share the
same parameters. Following the CNN encoder, the encoded
vectors output from the two branches are concatenated.
Then, the concatenated vector is fed into the FC layers. The
last layer is a binary class layer. It will be one for the case of
anchor and positive face images, whereas it will be zero for
the case of anchor and negative face images. Throughout
the training process, the network minimizes binary cross-
entropy loss.

After training with selected positive and negative samples
in an unsupervised manner, evaluations are conducted in
an end-to-end way. During evaluation, airs of test face
images are inputted into the network, and decision scores
are directly obtained from the last layer. This approach
establishes an unsupervised end-to-end face verification
system using the proposed Siamese network.

D. DNN Encoder

The DNN encoder block draws inspiration from the
VGG architecture [33], which has been recently tailored
for face verification in [27]. This encoder is structured
with three primary blocks, with each block comprising two
convolutional layers and one max-pooling layer. Following
these blocks, there are two Fully Connected (FC) layers,
having 1024 and 300 neurons, respectively. The function
of the DNN encoder is to encode the input face image,
reducing it to a 300-dimensional vector.

III. EXPERIMENTAL SETUP AND DATASET

A. Experimental Setup

The training phase utilized the CelebA dataset [34], while
the evaluation was conducted on the Labeled Faces in the
Wild (LFW) dataset [28]. The performance metrics assessed
were EER and accuracy.

During the selection of positives and negatives, we di-
vided the validation partition of the CelebA dataset into
two equal parts, creating datasets denoted as A and B, as
explained previously. The CNN encoder was identical for
both networks. The threshold values for the selection of
positive and negative samples were 0.3 and 0.1, respec-
tively. The activation function used for both the DNN and
fully connected layers was ReLU, while the final layer of
the network employed sigmoid activation function. The
network is trained for 300 epochs or until the error is
no longer decreasing using a batch size of 64 images. It
uses stochastic gradient descent, momentum of 0.91, weight
decay of 0.00001 and a logarithmically decaying learning
rate from 10−2 to 10−8.

The baseline system underwent training utilizing the
entire validation partition of the CelebA dataset. Its archi-
tecture entails a DNN encoder followed by a classification
layer. To ensure an equitable comparison, the architecture
of the CNN encoder was precisely replicated from that of
the siamese networks. The training process involved min-
imizing cross-entropy loss, employing the Adam optimizer
with identical parameters as those in the siamese networks.
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TABLE I: It presents a comparison of the proposed method
with different values of k and the baseline methods. The
evaluation metrics used is Equal Error Rate (EER). The re-
sults demonstrate the performance of the proposed method
across various k values, showcasing its effectiveness com-
pared to the baseline methods.

Model k EER

Baseline - 7.93
Proposed 2 7.91
Proposed 5 7.83
Proposed 10 6.90
Proposed 12 7.01
Proposed 15 8.02

During evaluation, face image embeddings were extracted
from the CNN encoder of this network.

B. Datasets

The CelebA dataset [34], initially introduced by Liu et
al., comprises a vast collection of over 200,000 face images
showcasing 10,177 celebrities. This dataset incorporates
various elements like pose variations and background clut-
ter, offering a comprehensive representation of real-world
scenarios. To facilitate model training and evaluation, the
dataset is divided into distinct sets for training, validation,
and testing purposes. In this work, we utilized the training,
validation, and test segments of the CelebA dataset as our
unlabeled dataset for training the autoencoder.

The Labeled Faces in the Wild dataset (LFW) [28] is
a compilation of 13,233 images, featuring 5,749 distinct
individuals. For testing, the dataset is randomly and uni-
formly divided into ten subsets. Each subset consists of
300 matched pairs (depicting the same person) and 300
mismatched pairs (depicting different individuals), which
results in a total of 3,000 matched pairs and 3,000 mis-
matched pairs used for testing [28].

IV. RESULTS

A. Results on LFW

In Table I, we present a comprehensive comparison
between our proposed systems and the baseline, evaluating
them based on the Equal Error Rate (EER) expressed as
a percentage. The table encompasses results for different
values of k. Throughout the experimental trials, face recog-
nition scores are extracted from the output of the proposed
network. The findings reveal that increasing the value of
k leads to enhanced system performance. The optimal
EER of was achieved when k was set to 10. While higher
values of k were explored, no significant improvement has
been observed, suggesting a balance between performance
and computational cost. This underscores the promising
potential of the proposed approach, particularly in unsu-
pervised scenarios, demonstrating its effectiveness in face
verification tasks without the reliance on labeled training
data.

TABLE II: Comparison of the proposed method result with
some of state-of-the-art methods on LFW testing dataset.

Model
Training

size
Labeled/

Unlabeled
Testing

size Accuracy(%)

UniformFace 6.1M Labeled 6K 99.80 [35]
ArcFace 5.8M Labeled 6K 99.82 [36]
GroupFace 5.8M labeled 6K 99.85 [37]
CosFace 5M Labeled 6K 99.73 [22]
Marginal Loss 4M Labeled 6K 99.48 [38]
CurricularFace 3.8M Labeled 6K 99.80 [39]
RegularFace 3.1M Labeled 6K 99.61 [40]
MDCNN 1M Labeled 6K 99.38 [41]
PSO AlexNet TL 14M Labeled 6K 99.57 [42]
Ben Face 0.5M Labeled 6K 99.20 [43]
F2C 5.8M Labeled 6K 99.83 [44]
PCCycleGAN 0.5M Unlabeled 6K 99.52 [45]
CAPG GAN 1M Unlabeled 6K 99.37 [46]
UFace 200K Unlabeled 6K 99.40 [31]
Proposed 200K Unlabeled 6K 99.67

Table II provides a comprehensive comparison between
our proposed method and state-of-the-art approaches. It’s
important to note that our method is compared with both
supervised and unsupervised training techniques. Notably,
our proposed training method demonstrates competitive
performance without the need for an extensive labeled
dataset. While some methods like ArcFace, GroupFace,
Marginal Loss, and CosFace exhibit slightly higher accuracy,
it’s worth highlighting that our approach is trained on a
significantly smaller dataset (approximately 200K images),
whereas most state-of-the-art methods rely on millions of
training images. This showcases the efficiency and effec-
tiveness of our proposed method, especially in scenarios
where labeled data is limited.

V. CONCLUSION

In this work, we introduced a siamese network for face
verification that operates without the reliance on labeled
data. This network features two branches, each functioning
as a CNN encoder, and was trained as a binary classifier.
Given our objective of avoiding the need for face image
labels, the training sample pairs were generated using
an unsupervised approach. Positive training images were
selected within a single dataset based on the highest cosine
scores with a designated anchor, while negative training
images followed the same selection criteria but were drawn
from a different dataset.

Following the training process, decision scores were ob-
tained using the proposed network, and the evaluation was
conducted using the LFW dataset. Notably, our experimen-
tal results demonstrated that our proposed system, despite
being unsupervised, achieved results that closely paralleled
those of fully supervised baselines. This highlights the
effectiveness of our approach in face verification, even in
the absence of labeled data.
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