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PAPER
Physical Layer Security Enhancement for mmWave System with
Multiple RISs and Imperfect CSI

Qingqing TU†∗a), Member, Zheng DONG††, Xianbing ZOU†, and Ning WEI†, Nonmembers

SUMMARY Despite the appealing advantages of reconfigurable intel-
ligent surfaces (RIS) aided mmWave communications, there remain prac-
tical issues that need to be addressed before the large-scale deployment of
RISs in future wireless networks. In this study, we jointly consider the non-
neglectable practical issues in a multi-RIS-aided mmWave system, which
can significantly affect the secrecy performance, including the high com-
putational complexity, imperfect channel state information (CSI), and finite
resolution of phase shifters. To solve this non-convex challenging stochas-
tic optimization problem, we propose a robust and low-complexity algo-
rithm to maximize the achievable secrete rate. Specially, by combining the
benefits of fractional programming and the stochastic successive convex ap-
proximation techniques, we transform the joint optimization problem into
some convex ones and solve them sub-optimally. The theoretical analy-
sis and simulation results demonstrate that the proposed algorithms could
mitigate the joint negative effects of practical issues and yielded a trade-
off between secure performance and complexity/overhead outperforming
non-robust benchmarks, which increases the robustness and flexibility of
multiple RIS deployments in future wireless networks.
key words: reconfigurable intelligent surfaces (RIS), physical layer secu-
rity, millimeter wave (mmWave), imperfect CSI, robust beamforming

1. Introduction

The millimeter wave (mmWave) communications can sig-
nificantly boost network capacity to make ubiquitous and
on-demand interconnection possible in future wireless net-
works [1]–[3]. However, owing to the propagation loss
of the mmWave band and the broadcast nature of wireless
channels, mmWave communication suffers from the risk of
information leakage in the presence of eavesdroppers, espe-
cially when the legitimate and wiretap channels are highly
correlated, which makes security an indispensable pursuit
for system development. In this context, physical layer se-
curity (PLS) has drawn significant research interest in re-
cent years [4], [5]. Compared with traditional cryptography,
the PLS techniques enable secrecy communication indepen-
dently of the higher layers by taking advantage of the in-
herent randomness of noise and communication channels,
such as cooperative relaying schemes, artificial noise-aided
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beamforming, and cooperative jamming [6]–[9]. However,
enhancing the PLS by deploying a large number of relays or
other active nodes will inevitably increase the cost and com-
plexity of the communication systems. To solve this prob-
lem, reconfigurable intelligent surfaces (RIS) have recently
been introduced to provide a new paradigm for the PLS en-
hancement [10], [11]. Unlike active components that for-
mulate active beamforming to transmit signal, such as base
stations, the RIS achieves passive beamforming through its
passive planar surface. This surface consists of a large num-
ber of passive reflecting elements, each capable of induc-
ing a controllable amplitude [12] and/or phase [13] changes
to the incident signal. Thus, it incurs lower energy costs
compared to active antenna arrays. With this property, the
RIS can serve as an auxiliary device flexibly deployed in
wireless networks to boost or suppress the received signals
and also improve the network coverage by creating virtual
LOS links, especially in the higher frequency bands like
mmWave [14] to deal with the severe path loss and the sig-
nal blockage problem. These unique merits stimulate the
increasing interest in RIS-aided PLS enhancement research.
As illustrated in [15]–[17], the secure performance is inves-
tigated in the RIS-aided wireless communication systems
with both legitimate receivers and eavesdroppers existing.
By developing various non-convex optimization techniques,
such as the successive convex approximation (SCA)-based
method, the semidefinite relaxation (SDR)-based method,
and the manifold optimization (MO)-based method, it re-
vealed that the secure performance of the system with RIS
outperforms the case without RIS, which proves the advan-
tage of deployment of the RIS in the secure transmission.

However, the low-rank channel of a single RIS to AP
is hard to support secure transmissions in the existence
of eavesdroppers, especially when the wiretap channel is
stronger than the legitimate user channel. To conquer this
issue, multiple RIS deployment is investigated to further
enhance the secure performance of ubiquitous wireless net-
works [18], [19]. Furthermore, the benefits brought by the
multiple RIS deployment also perfectly match with the se-
cure mmWave communications. To circumvent the inherent
disadvantages of mmWave, typical multiple-input multiple-
output (MIMO) technologies with massive array antennas
are deployed to cope with the high path-loss problem [20]–
[22]. However, continuous increment in antenna number is
impractical due to the high hardware complexity and power
consumption [23] and the blockage-prone issue has still not
been well addressed. A more feasible solution is to in-
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troduce distributed RISs to aid secure communication in
the mmWave system, which provides a more cost-efficient
way to compensate for the limited secure propagation dis-
tance problem by forming virtual line-of-sight (LoS) paths
as proved in [24], [25]. By jointly optimizing active and pas-
sive beamformers, the author in [26] maximized the secrecy
rate and proved the significant secure performance gains of-
fered by the multiple RISs deployment when the eavesdrop-
per exists. However, the multi-RIS-aided PLS enhancement
performance for the mmWave system is still restricted by
practical issues.

The first challenging issue lies in the acquisition of ac-
curate channel state information (CSI) of the RIS due to its
passive operation and a large number of reflecting elements.
In general, the performance of the joint optimization for pas-
sive beamforming and active beamforming is highly depen-
dent on the quality of the acquired CSI. Despite the various
methods for the RIS channel estimation [27]–[29], the esti-
mation error is still inevitable because of the channel back-
ground noise, time-varying characteristics, and more impor-
tantly, the fundamental limitation of no active transmitting
elements on the RIS [30]. Although the previous works on
RIS aided secure transmission treating the estimated chan-
nels as perfect ones achieved encouraging results, it will in-
evitably lead to system performance loss and weaken the
generality and practicality of the systems and algorithms.
Hence, it is crucial to consider the CSI uncertainties for the
RIS-aided PLS enhancement scheme. In the recent work to
deal with the imperfect CSI problem, one way is to intro-
duce artificial noise (AN) to deliberately destroy the wiretap
channel and reduce the dependency on CSI by optimizing
the power fraction of AN and the RIS phase shifts [31]–
[33]. However, the extra power is located to transmit the
AN signal, which is not cost-efficient. Another way is to
use the imperfect CSI to design the joint beamforming in
the RIS-aided system. To model the uncertain CSI error, the
bounded error model is commonly used in existing works
[34]–[36], which proposed a worst-case robust beamform-
ing design and obtained a suboptimal solution by setting the
channel quantization error within a bounded region. How-
ever, this model may not adapt to apply in the realistic chan-
nel, since the estimation error is Gaussian due to the lin-
ear channel estimator under Gaussian noise. This problem
can be handled in the Gaussian CSI error model (or sta-
tistical CSI error model), which could introduce stochastic
optimization in the secure design for RIS-aided networks.
Specifically, the authors in [30] showed that better perfor-
mance could be obtained in a robust beamforming design
under this type of CSI error model in terms of convergence
speed and complexity. To make the secure transmission de-
sign more practical, the authors of [37]–[40] investigated
different performance metrics for RIS-aided systems under
imperfect CSI of eavesdroppers, such as the average se-
crecy rate, energy efficiency, and secrecy outage probability,
which proposed different algorithms to improve the security
performance. However, we note that all these secure works
only considered the scenarios with the imperfect CSI of the

eavesdroppers, while no relevant research on analyzing the
secure performance of multi-RIS-aided systems consider-
ing imperfect CSI of both intended users and eavesdrop-
pers, which is more practical. Moreover, compared with
the previous work, this optimization problem is more dif-
ficult to solve, and the converged solution under alternating
optimization iteration is uncertain due to the random sys-
tem states introduced by the imperfect CSI of both the in-
tended user and the eavesdropper. Hence, due to the lack of
adequate material in the literature, the secure performance
of multiple RISs in mmWave systems under such imperfect
CSI cases is yet to be explored and utilized up to their full
potential.

The second non-neglectable practical issue is the high
computational complexity in multi-RIS-aided systems due
to the large-scale reflection coefficients optimization [41].
The number of reflection elements on RIS is typically much
larger than that of the antennas on the access point (AP),
and the reflection coefficients optimization on the RISs is
computationally prohibitive, especially when multiple RISs
are deployed. In addition, the complex methods applied to
address the non-convex joint optimization problem result in
increased complexity, such as the SDR-based method [13],
SCA-based method [42], and MO-based method [26], [43],
which will further restrict the realization of the full poten-
tial of RIS. Thus, reducing the computational complexity of
joint beamforming design is essential for the practical de-
ployment of multiple RISs.

The third practical issue is the adoption of phase
shifters with a finite resolution on the RIS to strike a balance
between hardware cost and system performance. For sim-
plicity, many aforementioned RIS-aided security schemes
implicitly assume that infinite-resolution phase shifters are
available on the RIS, which are arguably prohibitive to im-
plement [44]. On the other hand, applying finite-resolution
phase shifters will inevitably incur a notable secrecy perfor-
mance loss [41]. Previous studies have focused on address-
ing issues such as transmitted power minimization, sum-
rate maximization, and coverage improvement using the
finite-resolution phase shifters in the specific terminal set-
tings [45]–[48], which encompass parameters like RIS size,
power constraint, rate constraint. The work in [48] further
investigated the required number of phase shifts under a rate
constraint. Nevertheless, the RIS-aided PLS enhancement
scheme under the finite-resolution phase shifters case still
needs further investigation.

In summary, with the increased demands for the RIS
deployment scale in the future, it is worth extending the
secure transmission designs to more practical setups in the
mmWave systems. However, jointly considering these non-
neglectable practical issues leads to a more challenging
stochastic optimization due to more coupled variables, com-
plex objective functions, non-convex constraints, and ran-
dom system states. To our best knowledge, this is still an
open problem and requires new solution approaches.

In this paper, we consider an mmWave system with
multiple RISs deployed against eavesdroppers and investi-
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gate the secrecy performance gain jointly affected by these
practical issues. To address this challenging non-convex
stochastic optimization problem, we propose a robust and
low-complexity method to provide trade-offs concerning se-
crecy performance, complexity, and cost. The main contri-
butions of this paper are summarized as follows.

• We formulate a robust secure beamforming problem to
maximize the worst-case achievable SR under the joint
effects of non-neglectable practical issues. Different
from the existing RIS-aided work under the imperfect
CSI of eavesdroppers [37]–[40], our design simulta-
neously considers the imperfect CSI of both intended
users and eavesdroppers and also expanded to the low-
resolution shifters case.
• To solve this challenging non-convex stochastic op-

timization problem, we expressed the imperfect CSI
model with the random system states and propose ro-
bust and low-complexity methods to transform the ob-
jective problem into simplified and convex subprob-
lems by combining the benefits of the fractional pro-
gramming and the stochastic successive convex ap-
proximation techniques. We mathematically prove that
the convergence conditions are satisfied in each sub-
problem optimization, and the resulting achievable SR
under alternating optimization iteration is guaranteed
to converge.
• The proposed method exhibits a robustness improve-

ment over the non-robust benchmarks and achieves a
close secure performance gain to that of perfect CSI
performance when the estimation error is bounded,
while at a lower computational complexity via theo-
retical analysis and simulations. Furthermore, the RIS
of 3-bit phase adjustable elements achieves the equiva-
lent value as the continuous phase shift. These proved
that the proposed method can reduce the demand for
perfect CSI and infinite hardware resolution, which in-
creases the flexibility and robustness of multiple RIS
deployment in various practical scenarios.

Notations: Variables, vectors, and matrices are respec-
tively written as lower-case letters, bold lower-case letters
and bold upper-case letters. Am,n is the the m-th row and
n-th column element of the matrix A. tr(·), (·)T , and (·)H

stand for the trace, the transpose, and the conjugate trans-
pose, respectively, while (·)∗ donates the conjugate. ‖·‖ and
‖·‖F is the Euclidean norm and the Frobenius norm of a com-
plex vector and matrix, respectively. diag(·) represents the
diagonal matrix whose diagonals are the elements of the in-
put vector. j denotes the imaginary unit. [·](1:m) returns the
vector that contains the first m elements. Finally, log(x) rep-
resents base 2 logarithm of x.

2. System Model and Problem Formulation

This section describes a multi-RIS-aided downlink mmWave
system with both the intended user and eavesdropper. In ad-
dition, the channel model, which considers the CSI uncer-

Fig. 1 The multi-RIS-aided secure mmWave system.

tainties, is also discussed.

2.1 System Model

We consider the downlink of a TDD-based multi-RIS-aided
mmWave system where the eavesdropper (Eve) attempts to
eavesdrop on the confidential message sent from an access
point (Alice) to the receiver (Bob), which is under a worst-
case assumption that near-end Eve tries to intercept the in-
formation of far-end Bob, which could lead to the zero se-
crecy rate (SR) problem [41]. Specially, we assume that
both Eve and Bob are regular users of the system and hence
know the communication protocols. In addition, a set of L
RISs are distributively deployed [49] to enhance the SR as
well as the network coverage by reflecting the received sig-
nals, as depicted in Fig. 1.

We assume that Alice has N antennas, and each RIS is
equipped with M = M1 × M2 reflecting elements arranged
in a uniform planer array (UPA) with M1 elements horizon-
tally and M2 elements vertically. Following [41], the phase
shifter matrix of the l-th RIS is Θl = diag(θl) ∈ CM×M ,
θl =

√
η[θ1,l, · · · , θM,l]T , in which η is the amplitude reflec-

tion coefficient, and θm,l = e jφm,l ,m = 1, · · · ,M, l ∈ L. We
can adjust the phase shifts φm,l ∈ [0, 2π) of each reflecting
element to create a virtual line-of-sight (LoS) link.

The channel matrix between Alice and the l-th RIS is
represented by Gl ∈ C

M×N . The channel vector between the
l-th RIS and Bob is denoted by hl ∈ C

M×1, while gl ∈ C
M×1

is the channel vector between the l-th RIS and Eve. The LoS
channel vectors, the Alice-Bob link and the Alice-Eve link,
are represented by hdu ∈ C

N×1 and hde ∈ C
N×1, respectively.

Now, the received signal at Bob over the cascaded channel
via the RIS can be modeled by

yu =

 L∑
l=1

hH
l ΘlGl + hH

du

 ws + n, (1)

where s is the confidential transmitted signal such that
E[|s|2] = 1, and w ∈ CN×1 is the beamforming vector sub-
ject to a total transmit power constraint tr(wwH) ≤ P. In
addition, n ∼ CN(0, σ2) is an additive zero-mean Gaussian
noise at Bob. Likewise, the signal received at Eve can be
given by
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ye =

 L∑
l=1

gH
l ΘlGl + hH

de

 ws + ne, (2)

where ne ∼ CN(0, σ2
e) is the additive complex Gaussian

noise at Eve. The signal-to-interference-plus-noise ratio
(SINR) of the received signal of Bob is formulated by

γu =
‖(
∑L

l=1 hH
l ΘlGl + hH

du)w‖2

σ2 . (3)

The SINR for Eve is given in a similar fashion by

γe =
‖(
∑L

l=1 gH
l ΘlGl + hH

de)w‖2

σ2
e

. (4)

Therefore, achievable SR between Alice and Bob can be
written as

Rs(w,Θ) =
[

log (1 + γu) − log (1 + γe)
]+
, (5)

where [x]+ , max {0, x}. It is worth pointing out that the
optimal value of Rs is always non-negative by adjusting the
beamforming vectors. This can be shown by contradiction.
If we assume that the optimal value Rs(w∗,Θ∗) is negative
and w∗ is the optimal value. Then, by setting ‖w‖ = 0, we
can obtain Rs = 0, which contradicts our assumption.

2.2 Channel Model

In our system, there are two types of channels: the direct
channel between Alice and Bob (or Eve) hd,i, i = {u, e}, and
the RIS-aided cascaded channel G, g, and h. We assume
that the direct channel hd,i, i = {u, e} with rich scatters are
Rayleigh distributed, while the channel G, g, and h follow a
Rician fading, since the LoS components are generally con-
tained in the RIS-aided cascaded channel, which is similar
to the model described in [40], [43], [50]. More specifi-
cally, the Alice-to-RIS, the RIS-to-Bob, and the RIS-to-Eve
mmWave channels are expressed as followed

G =

√ κ1

κ1 + 1
Ḡ +

√
1

κ1 + 1
Ĝ

 LAR, (6a)

h =

√ κ2

κ2 + 1
h̄ +

√
1

κ2 + 1
ĥ
 LRU , (6b)

g =

√ κ3

κ3 + 1
ḡ +

√
1

κ3 + 1
ĝ
 LRE , (6c)

where Ḡ, h̄ and ḡ are the corresponding LoS components,
which remains unchanged within the channel coherence
time. The Rician factors in each channel are represented
by κ1, κ2, κ3, respectively. Also, Ĝ, ĥ, ĝ are the channel error
terms corresponding to the non-line-of-sight (NLoS) com-
ponents, and each of their elements is i.i.d. CSCG random
variable with zero mean and unit variance. The path-loss
terms are captured by LAR, LRU , and LRE .

Based on the mmWave channel model in [51], The LoS
component of the channel between the Alice and the RIS

with LG scatters can be formulated by

Ḡ =
1
√

LG

LG∑
lG=1

ut

(
ϕt

lG

)
ur

(
ψr

lG , ϕ
r
lG

)
. (7)

The array response vector at Alice is denoted by ut such that

ut(ϕt
lG ) =

1
√

N

[
1, e

j 2πd
λc

sin
(
ϕt

lG

)
, · · · , e

− j(N−1) 2πd
λc

sin
(
ϕt

lG

)]
, (8)

where λc is the wavelength, d is the antenna spacing, and
ϕt

lG
∈ [0, 2π) represents the angle of departure. For a typical

UPA, array response at RIS ur is expressed as

ur(ψr
lG , ϕ

r
lG ) =

1
√

M

[
1, · · · , e

− j 2πd
λc

(M1−1) cos
(
ϕr

lG

)
sin

(
ψr

lG

)]
⊗

[
1, · · · , e

− j 2πd
λc

(M2−1) cos
(
ψr

lG

)]
,

(9)

where ψr
lG

and ϕr
lG
∈ [0, 2π] represent the elevation and az-

imuth angle of arrival at the l-th RIS, respectively. The cas-
caded channel between the RISs to Bob h and Eve g is de-
fined similarly and omitted for simplicity.

With the limited propagation range due to the strong
path loss and fading effects encountered by millimeter-wave
signals during transmission, the spatial correlation between
the eavesdropping channel and the legitimate channel sig-
nificantly influences the security performance of the system,
particularly when the eavesdropper is in close proximity to
the legitimate communication devices. Therefore, we intro-
duce a correlation coefficient to describe the different spatial
correlations on the receiver sides of Bob and Eve follow-
ing [52], [53], which is expressed as

ρr =
E{hH

duhde}√
E{hH

duhdu}E{hH
dehde}

. (10)

Therefore, the RIS-to-Bob and the RIS-to-Eve mmWave
channels can be expressed as hd,i =

√
ρrhd,0 +

√
1 − ρrhd,i,1.

hd,0 is the correlated component referring to the determinis-
tic part of the channels. For ρr ∈ [0, 1], hd,i,1 donates the un-
correlated components representing random variations due
to fading, shadowing, and noise. When the correlation co-
efficient approaches 1, there is a strong spatial correlation
between the eavesdropping and legitimate channels, while
the spatial correlation of channels is weak when close to 0.

For our design, the CSI mismatch is taken into consid-
eration in the joint optimization problem. Since both Bob
and Eve are assumed to be regular users of the system as
mentioned above, in a TDD-based transmission frame struc-
ture [43], Alice can estimate the CSI of Bob (BCSI) and
the CSI of Eve (ECSI) through the transmission of pilot se-
quences with a linear estimator, e.g., by using a minimum
mean square error (MMSE) method [54], [55]. However,
the estimated BCSI and ECSI will become outdated during
transmission due to the time-varying characteristics of the
channel and the large number of links that need to be esti-
mated in a multiple RISs deployed system. From the pre-
vious work, RIS mainly focuses on scenarios characterized
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by low coverage and directed eavesdropping to support low-
mobility users in its neighborhood, which predominantly in-
volves slow-fading channel conditions [40], [45], [49], [56].
Following the work in [30], [40], [43], we consider the SR
maximization problem under a statistical CSI error model.
Through the estimation, we assume the channels expressed
as

G = G̃ + ∆G,h = h̃ + ∆h, g = g̃ + ∆g,hdi = h̃di + ∆hdi, (11)

where G̃, h̃, g̃ and h̃di donate the estimated channels,
i = {u, e}, while ∆G, ∆h, ∆g and ∆hdi are the estima-
tion error parts, which follow zero-mean complex Gaus-
sian distribution. The quality of the channel estimation
is indicated by εG = E

[
‖∆G‖22|G̃

]
, εh = E

[
‖∆h‖22|h̃

]
,

εg = E
[
‖∆g‖22|g̃

]
and εdi = E

[
‖∆hdi‖

2
2|h̃di

]
as considered

in [30], [43], [55]. Then, to simplify the description of
the uncertain channel model, we follow the methods de-
scribed in [43] and define a sample space of the channels
as Ω , {Gl(δ),hl(δ), gl(δ),hdi(δ),∀δ,∀l ∈ L}, based on the
description of imperfect CSI and statistic CSI errors. δ de-
notes the index of the random realizations of G, h, g, and
hdi drawn from the sample space Ω. Specially, these real-
izations keep constants for varied δ when under perfect CSI
setting.

2.3 Problem Formulation

In this work, we aim to maximize the achievable SR,
Rs(w,Θ) via a joint design of the active beamforming vec-
tor w at Alice and the passive beamforming matrix Θ at the
RIS. Assuming perfect CSI of Bob and Eve are available at
Alice, the optimization problem is formulated by

(P1) max
w,Θ

Rs(w,Θ), (12a)

s.t. tr(wwH) ≤ P, (12b)
Θ ∈ M, (12c)

where (12b) is the transmitted power constraint, and (12c)
is the unit-modulus constraint on each element, i.e., M ={
Θ|

∣∣∣θm,l

∣∣∣ = 1,∀m = 1, . . . ,M, l ∈ L
}
.

Next, we extend our design to a practical scenario with
CSI error on both the BCSI and ECSI. Based on the channel
model under imperfect CSI, we can see that the SR maxi-
mization problem is highly dependent on the random sys-
tem state. From the channel model discussed above and the
properties of transmission frame in RIS-aided system de-
scribed in [43], [56], we assume that w is adaptive to the
real-time CSI since the channel associate with the active
beamforming

(
hH

l ΘlGl + hH
du

)
∈ C1×N with N � M, l ∈ L,

is of low-dimension. While the channel associated with the
passive beamforming design Gl diag (hl) ∈ CN×M , l ∈ L
is high-dimensional, which is assumed to remain approxi-
mately constant within the transmission frame and can be
adjusted to the statistics of the random states. This assump-
tion is also valid as RIS is generally used to support low-
mobility users in its neighborhood [40], [45], [49], [56]. In

other words, we can optimize the active beamforming and
passive beamforming at different levels. The expectation of
the achievable SR over the channel statistics from the sam-
ple space Ω is formulated as

(P2) max
Θ,{w(δ),∀δ}

Eδ [Rs (Θ,w(δ); δ)] , (13a)

s.t. tr
(
w(δ)w(δ)H

)
≤ P, ∀δ, (13b)

θ ∈ M. (13c)

The problem (P2) is intractable due to the uncertain system
state in the coupled variables. To tackle this problem, we
decompose problem (P2) into two simplified subproblems
as [57], which can be solved alternately. Based on the solu-
tion of the first subproblem associated with the current ran-
dom state, the second subproblem is optimized recursively
to obtain the maximum achievable SR, which results in a
two-level stochastic optimization procedure as elaborated
explicitly later in Sect. 4.

3. The LCFP Algorithm for Secrecy Rate Optimization

In this section, we aim to solve the SR maximization prob-
lem by taking both the computational complexity and the
extension to complex scenarios into consideration.

3.1 Problem Transformation

We note that (P1) is challenging to solve, where the objec-
tive function is not jointly concave with respect to both the
coupled variables (w,Θ), and it contains the unit-modulus
constraint (12c). To address the non-convex SR maximiza-
tion problem with the assumption that the BCSI and ECSI
are available at Alice, we aim to develop a low-complexity
PLS enhancement algorithm based on the fractional pro-
gramming (FP) technique, the prox-linear BCD updating
technique, and the SCA method. For clarity, a summary
of the algorithm, referred to as the LCFP algorithm, is given
in Algorithm 1.

To deal with the logarithms and fractions parts of the



TU et al.: PHYSICAL LAYER SECURITY ENHANCEMENT FOR MMWAVE SYSTEM WITH MULTIPLE RISS AND IMPERFECT CSI
435

objective function, we first reformulate the objective func-
tion by letting Rs = RU +RE , where RU and RE are expressed
as

RU = log
(
1 +

∥∥∥∥(∑L
l=1 hH

l ΘlGl + hH
du

)
w
∥∥∥∥2

σ2

)
,

RE = − log
(
1 +

∥∥∥∥(∑L
l=1 gH

l ΘlGl + hH
de

)
w
∥∥∥∥2

σ2
e

)
.

(14)

To construct a more tractable surrogate function to ap-
proximate the original non-convex objective function, with
h̄u,l = diag

(
hH

l

)
Gl and h̄e,l = diag

(
gH

l

)
Gl we introduce

auxiliary variables γu,1, γu,2, γe,2, and γe,p defined as

γu,1 =
∥∥∥∥( L∑

l=1

θH
l h̄u,l + hH

du

)
w
∥∥∥∥2
, (15a)

γu,2 =
∥∥∥∥( L∑

l=1

θH
l h̄u,l + hH

du

)
w
∥∥∥∥2

+ σ2, (15b)

γe,2 = 1 +

∥∥∥∥(∑L
l=1 θ

H
l h̄e,l + hH

de

)
w
∥∥∥∥2

σ2
e

, (15c)

γe,p = 1 +

∥∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥∥2

F
P

σ2
e

. (15d)

Next, by taking advantage of the Lagrangian dual trans-
form technique as [58], RU can be reformulated by

RU = log(1 + a1) − a1 + (1 + a1)
γu,1

γu,2
, (16)

where a1 is the auxiliary variable introduced by the transfor-
mation. We note that RE contains a negative logarithm func-
tion and is thus difficult to solve directly via the Lagrangian
dual transformation. Then, we introduce the auxiliary vari-
ables γe,p and γe,2 to construct an equivalent expression of
RE , which is given by

RE = log
(
1 +

γe,p − γe,2

γe,2

)
− log(γe,p). (17)

From the Cauchy-Schwarz inequality, it holds γe,2 =∥∥∥∥(∑L
l=1 θ

H
l h̄e,l + hH

de

)
w
∥∥∥∥2
≤

(∥∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥∥2

F
‖w‖2

)
≤(∥∥∥∑L

l=1 θ
H
l h̄e,l + hH

de

∥∥∥2
F P

)
= γe,p, and thus the fractional

terms in logarithm is non-negative. Then, by applying
the Lagrangian dual transform technique again, RE can be
rewritten in the following form

RE = log(1 + a2) − a2 + (1 + a2)
γe,p − γe,2

γe,p
− log(γe,p),

(18)

where a2 is the auxiliary variable. Noting that the objec-
tive is still non-convex, we transform the original objective
into the problem (P1.1) based on the idea of decoupled op-
timization of numerators and denominators in the quadratic

transform technique [58].

(P1.1) max
w,θ,a1,a2,ρ

R̃s = log(1 + a1) + log(1 + a2)

− log(1 +

∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥2
F P

σ2
e

)

+ 2ρ
√

(1 + a1)<

( L∑
l=1

θH
l h̄u,l + hH

du

)
w


− ρ2

(∥∥∥∥( L∑
l=1

θH
l h̄u,l + hH

du

)
w
∥∥∥∥2

+ σ2
)
− (a1 + a2) + (1 + a2)

×

∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥2
F P −

∥∥∥∥(∑L
l=1 θ

H
l h̄e,l + hH

de

)
w
∥∥∥∥2

σ2
e +

∥∥∥∑L
l=1 θ

H
l h̄e,l + hH

de

∥∥∥2
F P

,

s.t. (12b), (12c),
(19)

where ρ is the new auxiliary introduced by transformation.

3.2 Active Beamforming Design

We fix the passive beamforming variable θ. Note that R̃s
is convex with the w, a1, a2, ρ when other variables are
fixed. Hence, we can employ the block coordinate descent
method [59] to attain the optimal values of a1, a2 and ρ by
setting the derivative to zero, while keeping other variables
fixed. The closed-form solution for updating the variable
a1, a2 and ρ at the t-th iteration can be given by

a(t)
1 =


√

1 +
4

ϑ(t−1)
1

+ 1

 ϑ(t−1)
1

2
, (20a)

a(t)
2 =

γ(t−1)
e,p − γ

(t−1)
e,2

γ(t−1)
e,2

, (20b)

ρ(t) =

√
1 + a(t−1)

1 <
{
ϑ(t−1)

2

}
γ(t−1)

u,2

, (20c)

where ϑ1 = ρ2γu,1 and ϑ2 =
(∑L

l=1 θ
H
l h̄u,l + hH

du

)
w. For the

variable w, the dual variable λ̂ is introduced to deal with
the power constraint. When other variables are given, by
constructing a Lagrangian function of the objective function
in the problem (P1.1), the closed-form solution to the active
beamforming subproblem is

w(t) =

√
1 + a(t−1)

1 <
{ L∑

l=1

b̄(t−1)
u,l + hdu

}[ (
ρ(t−1)

)2
B̄(t−1)

u

+
(
1 + a(t−1)

2

) B̄(t−1)
e∥∥∥∥∑L

l=1 b̄(t−1)
e,l + hde

∥∥∥∥2

F
P + σ2

e

+ λ̂IN

]−1
ρ(t−1),

(21)

where B̄u =
∑L

l=1 b̄H
u,lb̄u,l +

∑L
l=2

∑l−1
i=1 b̄H

u,lb̄u,i + 2hdub̄u,l +
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hduhH
du, B̄e =

∑L
l=1 b̄H

e,lb̄e,l +
∑L

l=2
∑l−1

i=1 b̄H
e,lb̄e,i + 2hdeb̄e,l +

hdehH
de, b̄u,l =

∑L
l=1 θ

H
l h̄u,l and b̄e,l = θH

l h̄e,l. To obtain the
optimal value of the Lagrangian multiplier, the binary search
method is a possible solution which, however, could greatly
increase the complexity. Thus, inspired by [43], we use the
prox-linear BCD updating technique to reduce the iteration
times for searching λ̂.

Note that the block for w is a convex problem while
all other blocks are fixed at their last updated values, which
satisfies the constraint required for convergence in the prox-
linear BCD updates [60]. Then, we attain the optimal solu-
tion of w at each iteration by updating

w(t+1) =arg minw

(〈
− ∇R̃s(w̃(t)),w − w̃(t)〉

+
Ct

2

∥∥∥w − w̃(t)
∥∥∥2 )

,

s.t. (12b),

(22)

where the Lipschitz constant of the block-partial gradient is
expressed as

C =

∥∥∥∥∥∥(2ρ2B̄u + 2 (1 + a2)
B̄e∥∥∥∑L

l=1 b̄e,l + hde

∥∥∥2
F P + σ2

e

)∥∥∥∥∥∥
F

.

(23)

The extrapolated point w̃(t) = w(t) + ς
(
w(t) − w(t−1)

)
, where

the extrapolation weight ς(t) = min(ς̂(t), δ
√

(C(t−1))/C(t)) sat-
isfies δ < 1 and ς̂t =

(
e(t−1) − 1

)
/e(t) with e0 = 1, and

e(t) = (1 +
√

1 + 4(e(t−1))2)/2. From (19), the block-partial
gradient at w̃(t) can be obtained as

∇R̃s(w̃(t)) =2ρ
√

1 + a1<

 L∑
l=1

b̄u,l + hdu

 − 2ρ2B̄uw̃(t)

− 2(1 + a2)
(

B̄ew̃(t)∥∥∥∑L
l=1 b̄e,l + hde

∥∥∥2
F P + σ2

e

)
.

(24)

Since the problem (P1.1) is convex with respect to w,
based on the Lagrange multiplier method, the optimal active
beamforming solution can be obtained

w(t+1) =
1

C(t) − 2λ̂

(
C(t)w̃(t) + ∇R̃s(w̃(t))

)
, (25)

where the Lagrange multiplier for the power constraint
(12b) can be updated by

λ̂∗ =
C(t)

2
−

∥∥∥C(t)w̃(t) + ∇Rs(w̃(t))
∥∥∥2

2P
. (26)

By reducing the iteration times for searching λ, and
utilizing a more efficient technique than the original BCD
technique as proved in [60], the complexity of the algorithm
for active beamforming optimization can be greatly reduced,
which will be further discussed in Sect. 5.

3.3 Passive Beamforming Design

After updating the value of w according to (25), we aim
to optimize the passive beamforming variable θ. Unfortu-
nately, the subproblem of passive beamforming optimiza-
tion is non-convex and more difficult than directly optimiz-
ing the active beamforming due to the unit-modulus con-
straint. To address this difficulty, we first reformulate the
expressions of the objective function RS in terms of θ by
constructing Θ̂ = [θ1, · · · , θL], Vi =

[
vi,1, vi,2, · · · , vi,L

]
,

i ∈ {u, e}, where vu,l = diag(hH
l )Glw, ve,l = diag(gH

l )Glw.
We also denote θ̂ = vec(Θ̂), vi = vec(Vi), and

γ̄u,1 =
∥∥∥∥hH

duw + θ̂
Hvu

∥∥∥∥2
, (27a)

γ̄u,2 =
∥∥∥∥hH

duw + θ̂
Hvu

∥∥∥∥2
+ σ2, (27b)

γ̄e,2 = 1 +

∥∥∥∥hH
dew + θ̂

Hve

∥∥∥∥2

σ2
e

, (27c)

γ̄e,1 = 1 +

(∥∥∥hH
dew

∥∥∥ +
√

M ‖tr(Ve)‖
)2

σ2
e

. (27d)

Then, RU in (14) is equivalent to

RU = log(1 + a1) + (1 + a1)
γ̄u,1

γ̄u,2
− a1. (28)

Based on the triangle inequality and the constraint
(12c), we can obtain ‖hH

dew+ θ̂
Hve‖

2 ≤ (
∥∥∥hH

dew
∥∥∥+‖θ̂

Hve‖)2 ≤

(
∥∥∥hH

dew
∥∥∥ +

√
M ‖tr(Ve)‖)2, which shows that the function

(γ̄e,1−γ̄e,2) is non-negative. Again, by constructing an equiv-
alent expression to RE and applying the Lagrangian dual
transform technique, we can obtain

RE = log(1 + a2) − log(γ̄e,1)

+ (1 + a2)
(
γ̄e,1 − γ̄e,2

γ̄e,1

)
− a2.

(29)

After dropping the constant terms and applying the
quadratic transform technique, the original optimization
problem can be reformulated into (P1.2), where Di =

hH
diw, i ∈ {u, e}.

(P1.2) max
θ,a1,a2,ρ̂

R̂s = 2ρ̂
√

(1 + a1)<
{
Du + θ̂

Hvu

}
− ρ̂2

(∥∥∥∥Du + θ̂
Hvu

∥∥∥∥2
+ σ2

)
+ (1 + a2)

( (‖De‖ +
√

M ‖tr(Ve)‖)2 −

∥∥∥∥De + θ̂
Hve

∥∥∥∥2

σ2
e + (‖De‖ +

√
M ‖tr(Ve)‖)2

)
,

s.t. (12c).
(30)

Note that problem (P1.2) is convex with the auxiliary
variable when other variables are fixed. Hence, the auxiliary
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variables introduced by transformation techniques at the t-th
iteration are given by

ρ̂(t) =

√
(1 + a(t−1)

1 )<
{

D(t−1)
u +

(
θ̂

(t−1)
)H

v(t−1)
u

}
‖D(t−1)

u + (θ̂
(t−1)

)Hv(t−1)
u ‖2 + σ2

.
(31)

It can be found that the problem (P1.2) is non-convex with
respect to θ when fixing all other variables, because of the
unit-modulus constraints. To handle this problem, we let the
phase shift as a substitute for θm,l = e jφm,l , and construct Φ̂ =

[φ1, · · · ,φl, · · · ,φL], where φl =
[
φ1,l, · · · , φM,l

]T . Then, the
objective function can be transformed into a quadric form
by letting

U = ρ̂2vuvH
u + (1 + a2)

vevH
e

σ2
e + (‖De‖ +

√
M ‖tr(Ve)‖)2

,

(32)

z = ρ̂
√

(1 + a1)<{vu} − ρ̂
2 (Duvu)

− (1 + a2)
Deve

σ2
e + (‖De‖ +

√
M ‖tr(Ve)‖)2

.
(33)

Therefore, the passive beamforming optimization subprob-
lem can be reformulated as

(P1.3) min
φ̂

[(
ejφ̂

)H
Uejφ̂ − 2<

{
(ejφ̂)Hz

}]
, (34)

where φ̂ = vec(Φ̂). To solve the non-convex problem
in (34), we apply an inexact BCD method called the block
successive convex approximation (BSCA) method [61] to
guarantee convergence. Following the updating rule, we
construct a convex second-order approximation of the ob-
jective function R̂s at φ̂

(t)
as the surrogate function, which is

expressed as

R̂s(φ̂|φ̂
(t)

) = R̂s

(
φ̂

(t)
)

+ ∇R̂s

(
φ̂

(t)
) (
φ̂ − φ̂

(t)
)

+
1
2τ

∥∥∥∥φ̂ − φ̂(t)
∥∥∥∥2
.

(35)

Since the surrogate function (35) is a local approximation
of the original function (34), to search for an optimal value
with sufficient decrease, we adopt the line search with the
Armijo step size selection rule, where the step size τ is the
largest element in {τ0βr}r=0,1,···, τ

0 > 0, β ∈ (0, 1), satisfying

R̂s

(
φ̂

(t)
)
− R̂s(φ̂) ≥ −ετ

∥∥∥∥∥∇R̂s

(
φ̂

(t)
)∥∥∥∥∥2

, (36)

where ε ∈ (0, 1), and the gradient with respect to φ̂ is given
by

∇R̂s(φ̂) = 2<
{
− je− jφ̂

(
Ue jφ̂ − z

)}
. (37)

Based on the minimum value of the surrogate function in
(35), the gradient projection updating for the optimization
variable φ is quadratic programming with a closed-form so-
lution

φ̂
(t)

= φ̂
(t−1)
− τ∇R̂s. (38)

With the function (34) continuously differentiable, τ
can be properly chosen to make the surrogate function sat-
isfy the following constraint

R̂s

(
φ̂|φ̂

(t)
)
≥ R̂s(φ̂), (39)

which guarantees the convergence of the algorithm based on
the proposition in [61]. The equality can be obtained, when
φ̂ = φ̂

(t)
.

The LCFP algorithm also can be easily extended to
a RIS-aided SR maximization optimization problem asso-
ciated with CSI errors, since the coordinated optimization
algorithms for subproblems satisfy the convergence condi-
tions to solve a two-level stochastic non-convex optimiza-
tion problem [62]. Therefore, considering reducing the
complexity and the cost of obtaining CSI, we extend the
LCFP algorithm to a more practical scenario in the next sec-
tion.

4. The LCRFP Algorithm for Secrecy Rate Optimiza-
tion with Imperfect CSI

In this section, we investigate the SR maximization problem
under a more practical scenario where both the CSI of Bob
and Eve are imperfect.

4.1 Active Beamforming Design at the First Level

As analyzed in Sect. 2, problem (P2) is a two-level stochas-
tic non-convex optimization problem containing expectation
operators with respect to the random system state, which
is more difficult to solve compared with (P1). To address
this challenging problem, we propose a robust and low-
complexity PLS enhancement algorithm based on the sta-
tistical CSI error model to maximize the SR. Our method
can reduce the impact of the CSI mismatch by combining
the benefits of the stochastic non-convex optimization tech-
niques [62] and the LCFP algorithm, which is referred to
as the LCRFP algorithm, as presented in Algorithm 2. This
algorithm consists of three major steps. First, based on the
problem transformation technique in the LCFP algorithm,
the problem (P2) is decoupled into two subproblems, which
can be optimized at different levels. Next, in the case of
given θ̄, we have the first-level subproblem with respect
to w(δ), which is the first-level optimization variable un-
der the system state. To deal with the random system state
and satisfy the assumptions when employing the stochastic
successive convex approximation techniques [62], we ini-
tially transform the objective into a minimization problem.
Then, following a similar approach used in the LCFP algo-
rithm (Sect. 3.1) for active beamforming design, we employ
the FP transformation technique to address logarithmic and
fractional components by introducing auxiliary variables ā1,
ā2 and ρ̄. The first-level optimization subproblem can be re-
formulated as
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(P2.1) min
w(δ),ā1,ā2,ρ̄

− R̃s

(
θ̄,w (δ) , ā1, ā2, ρ̄; δ

)
, (40a)

s.t. tr
(
w (δ) w (δ)H

)
6 P, ∀δ, (40b)

where R̃s is the same form as in (P1.1). As problem (P2.1)
is convex with the ā1, ā2, ρ̄ when other variables are fixed,
we can obtain a similar closed-form solution of auxiliary
variables ā1, ā2 and ρ̄ as in (20a) (20b) (20c). To derive a
closed-form solution to w(δ), we first construct a Lagrangian
function of the objective to deal with the power constraint.
Then, by employing the prox-linear BCD updating tech-
nique, which is the same as Algorithm 1 and omitted for
simplicity, we obtain the optimal active beamforming solu-
tion as depicted in (25). Therefore, during the t-th iteration,
after realizing the channel about δ(t), the auxiliary variables
and the optimal solution w(δ) can be updated, respectively.

To obtain a stationary solution for the first-level sub-
problem, we analyze the convergence of the algorithm de-
vised for handling this subproblem. It has been established
in [62] that the algorithm design must adhere to three con-
ditions to guarantee convergence. The first condition is
met by properly selecting the initial point. Subsequently,
the updating equation for each variable within w(δ), a1, a2
exhibits Lipschitz continuity when the other two variables
are held constant, satisfying the second convergence crite-
rion. Lastly, we fulfill the third convergence requirement by
leveraging the verified global convergence of the prox-linear
block coordinate method as outlined in [60]. Therefore, by
adhering to these conditions, the optimization algorithm for
the first-level subproblem is capable of converging, leading
to the stationary solution w(δ)∗.

4.2 Passive Beamforming Design at the Second Level

After obtaining the corresponding first-level variable w(δ)(t)

with respect to a new realization of the channel realizations
about δ(t) by running the first-level algorithm in the t-th it-
eration, we have the second-level subproblem (P2.2) as fol-
lowed

(P2.2) min
φ̂

k(φ̂) = Eδ
[
−R̃s

(
φ̂,w (δ) ; δ

)]
, (41)

where φ̂ is the second-level optimization variable, which is
a substitute for θ̂

(t)
to deal with the non-convex constraint,

which is constructed in the method of Sect. 3.3. As in the
passive beamforming design of the LCFP algorithm, the sur-
rogate function k̄(φ̂) is designed as a convex approximation
of the objective function of the problem (P2.2). Therefore,
the optimal solution φ̂

(t)
is solved as

φ̂
(t)

= arg min
φ̂

k̄(t)(φ̂), (42)

To obtain a stationary solution to the second-level subprob-
lem, we first design a convex surrogate function k̄(φ̂) based
on the method in (35) of the LCFP algorithm, and this surro-
gate function satisfy the assumptions of the stochastic non-
convex optimization to ensure the convergence of the algo-
rithm, as shown in (39). The approximation of the objective
function is expressed as

k̄(t)(φ̂) = k(φ̂)(t) + k(t)
φ̂

(
φ̂ − φ̂

(t)
)

+ τ
∥∥∥∥φ̂ − φ̂(t)

∥∥∥∥2
. (43)

Then, we construct the recursive approximation of
the second-level subproblem to adapt to the properties of
the first-level subproblem solution with the help of the
key theorem for surrogate function design in the stochas-
tic non-convex optimization [62]. Therefore, with the initial
value k−1

φ̂
= 0, the approximation of the partial derivative

∇φ̂k
(
φ̂
,w(δ); δ

)
, kφ̂ in (43) updates recursively as

k(t)
φ̂

= (1 − %(t))k(t−1)
φ̂

+ %(t)∇φ̂k
(
φ̂

(t)
,w(δ)(t); δ(t)

)
, (44)

where %(t) ∈ (0, 1] is a sequence satisfying
∑

t %
(t) = ∞,∑

t

(
%(t)

)2
< ∞. And the gradient of k(φ̂,w(δ); δ) with re-

spect to φ̂ in (44) is given by

∇φ̂k
(
φ̂,w(δ); δ

)
= 2<

{
− je− jφ̂

(
Ue jφ̂ − z

)}
. (45)

As such, the constant k(φ̂)(t), with the initial value k−1
φ̂

= 0,
can be calculated via a recursive formula as

k(φ̂)(t) = (1 − %(t))k(φ̂)(t−1) + %(t)k
(
φ̂

(t)
,w(δ)(t); δ(t)

)
.

(46)

With the expression of U and z already given in the
previous section, the approximation of the problem (P2.2)
is quadratic programming with respect to the passive beam-
forming variable φ̂, which leads to a closed-form solution
given by
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φ̂
(t+1)

= φ̂
(t)
−

k(t)
φ̂

2τ
. (47)

As described above, with the convergence conditions
satisfied in each level of subproblem optimization, the
LCRFP algorithm can obtain a stationary solution by solv-
ing the non-convex stochastic joint optimization problem
(P2) under the impact of imperfect BCSI and ECSI in a RIS-
aided mmWave system.

5. Complexity Analysis

In this section, we analyze the complexity of the proposed
algorithms and compare them with some widely used meth-
ods for SR maximization in RIS-aided systems. First, in the
LCFP algorithm, the complexity to update auxiliary vari-
ables and the active beamforming variable w is O(2LMN +

N2), and the updating loop for this part is Iw = 1, since
the closed-form solutions can be obtained. The complexity
of solving (32) and (33) in the passive beamforming opti-
mization is at most O(L2M2), and IA is the updating loop for
step searching due to applying the Armijo-type line search.
Therefore, the entire complexity of the LCFP algorithm is
O(IL(IA(2MN + N2) + (LM)2)), where IL is the integral up-
dating loop required for the optimization algorithm conver-
gence. Then, we consider the complexity of the PLS en-
hancement algorithm based on other existing methods. In
an SCA-based [42] PLS enhancement algorithm, the com-
plexity of solving the passive beamforming subproblem is
O((LM)3.5). The MO method can address the unit-modulus
constraint in the RIS-aided system, and the complexity of
passive beamforming optimization based on the MO method
[43] in the PLS enhancement algorithm is O(IM,θL2M2). At
the same time, the SCA technique is used to optimize the
active beamforming as in [42]. We also analyze the com-
plexity of the SDR-based [63] PLS enhancement algorithm.
Table 1 summarizes the complexity comparison of the pro-
posed algorithms and the aforementioned algorithms.

Evidently, the proposed algorithm has lower computa-
tion complexity than other algorithms. Since N � M, the
main computational complexity of schemes lies in the pas-
sive beamforming optimization part. Therefore, the com-
plexity of the SCA-based algorithm and the SDR-based al-
gorithm is higher than the LCFP algorithm. Although the
similar computational complexity in the passive beamform-
ing optimization part O((LM)2), the active beamforming
optimization part in the LCFP algorithm O(N2) still has
a slightly higher complexity than the MO-based algorithm
O(N3). The comparison shows that the proposed algorithm

Table 1 Comparison of algorithm complexity.

has lower computation complexity than benchmark algo-
rithms. The complexity of the SCA-based algorithm and
the SDR-based algorithm increases faster than the LCFP al-
gorithm with the number of reflecting elements M increas-
ing. Although there is similar computational complexity in
the passive beamforming optimization part, the active beam-
forming optimization part in the LCFP algorithm O(N2) still
has a slightly higher complexity than the MO-based algo-
rithm O(N3). Moreover, with the variable w, θ coupled, the
MO-based algorithm optimizes the subproblems indepen-
dently, which is hard to extend to the imperfect CSI case. In
summary, the LCFP algorithm has advantages in extending
to some complex scenarios and low complexity, especially
when M is relatively large, conforming to the practical com-
munication system.

Next, we analyze the complexity of the LCRFP algo-
rithm. Besides the advantage of the low complexity of each
algorithm to optimize the active beamforming or passive
beamforming at different levels due to the basis of the LCFP
algorithm, the updating method utilized in this algorithm
also brings benefits in reducing the complexity. Compared
with other updating methods to solve a two-level stochastic
optimization problem, i.e., batch alternating optimization al-
gorithm, which needs to minimize a sample average approx-
imation function as k(t)

SAA(φ) ,
∑t

r=1 k(φ,w(φ(t), δr)∗, δr),
where t is the iteration times, the updating method we ap-
plied needs fewer iterations. Since it only needs to solve the
first-level problem with respect to the current system state
δ(t), batch alternating optimization needs to solve t times as-
sociated with all the previous system states to obtain the av-
erage approximation. The total complexity of the LCRFP
algorithm is O(IR(IAI f (2LMN + N2) + (LM)2)), where I f
denotes the iterative numbers of the first-level optimization
subproblem to find a stationary solution.

6. Numerical Results

In this section, we evaluate the effectiveness of our pro-
posed algorithms via simulation to verify the utility of
the PLS enhancement in a RIS-aided mmWave system
when jointly considering the non-neglectable practical is-
sues. The schematic system model for the simulated RIS-
aided mmWave system is shown in Fig. 1, where both Bob
and Eve are regular users of the system. Alice serves as the
transmitter equipped with N = 4 antennas and is situated
at (0 m, 0 m). The location of the legitimate receiver (Bob)
is (D1 m, 0 m). Eve moves along a circular path with a ra-
dius of R m around Bob. Here, R, the distance between Bob
and Eve, is initially set as 8 m, and the receiving distance
denoted by D1 is predefined as 70 m. To enhance the com-
munication secrecy between Alice and Bob, L RISs are de-
ployed around Bob. The number of the reflecting elements
on each RIS is initially set as M = 50. The amplitude re-
flection coefficient is set as η = 1 to maximize the reflection
strength. Assuming the channel hd,k follows Rayleigh fad-
ing and G, g, and h follow Rician fading as in [43]. In the
cascade channels of Alice-to-RIS, RIS-to-Bob, and RIS-to-
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Fig. 2 Convergence of the LCPF algorithm versus different RIS size and
transmit antennas.

Eve, the Rician factor is set as κ = 10. The path loss expo-
nent of the RIS-related channels is set to 2.2, and that of the
direct Alice-Bob and Alice-Eve channels is set to 3.67. The
spatial correlation between Bob and Eve is initialized to a
low level with ρ = 0.1. The total transmit power constraint
is set to P = 5 dBm.

Firstly, we discuss the convergence behavior of the
LCFP algorithm. As illustrated in Fig. 2, the proposed algo-
rithm converges in the limit iterations by assuming the per-
fect CSI is obtained. Then, we set the random passive beam-
forming on RIS as a benchmark scheme. It can be seen that
the SR of the random phase setting is very low (SR value is
0.36 bps/Hz) due to the more advantageous position of Eve.
With a proper passive beamforming optimization of multiple
distributed RISs, the proposed algorithm can achieve a se-
crecy performance gain that outperforms the random phase
setting.

Secondly, we show the security performance of the
LCFP algorithm versus different numbers of reflecting el-
ements M and antennas N. It can be observed from Fig. 2
that the optimal SR increases with the number of reflecting
elements or antennas increasing. Specially, by increasing
the reflection number up to 50%, where M = 75,N = 4, the
achievable SR increases by 49.6%. On the other hand, the
achievable SR only increases by 27.5% when increasing the
antenna number up to 50%, where M = 50,N = 6. There-
fore, with the benefits of array gain, increasing the RIS size
can provide a more obvious performance improvement than
increasing the antenna number.

Next, we illustrate the variation of the achievable SR
with the different number of RISs under different RIS-aided
PLS enhancement schemes. By increasing the number of
the RIS L from 1 to 5 with P = 5 dBm,M = 50,N = 4,
we compare the secrecy performance achieved by the LCFP
algorithm with the widely used SCA-based algorithm and
MO-based algorithm mentioned in Sect. 5. The SDR-based
algorithm is excluded from the simulation due to the high
complexity, and the convergence is hard to be guaranteed.
By setting the random passive beamforming RIS setting as
the lower bound, we treat the MO-based [43] PLS enhance-
ment algorithm and the SCA-based [42] PLS enhancement

Fig. 3 The algorithms versus different RIS numbers.

Fig. 4 The algorithms versus different spatial correlation.

algorithm as benchmarks. Figure 3 shows that the achiev-
able SR increases as the number of RISs increases under
all the algorithms, except the random phase setting scheme.
From the results, we can also obtain that the LCFP algorithm
can achieve a better secrecy performance compared with the
MO-based algorithm. In addition, with the RIS number in-
creasing, the LCFP algorithm can achieve a better secrecy
performance than the SCA-based algorithm. Therefore, the
proposed LCFP algorithm outperforms the benchmarks in
security performance.

Figure 4 evaluates the impact of spatial correlation be-
tween the eavesdropping and legitimate channels on security
performance. By increasing the spatial correlation coeffi-
cient ρr from 0.1 (indicating a low level) to 0.9 (indicating
a high level), with parameters set as P = 5 dBm, M = 50,
and N = 4, we observe a decline in the achievable SR as
the spatial correlation grows. Furthermore, this reduction in
SR exhibits an amplified trend with increasing spatial cor-
relation. Specifically, compared to a scenario with a low
spatial correlation between Bob and Eve (ρr = 0.1), there
is a 10.4% security performance loss as the spatial corre-
lation escalates to 0.3. This reduction becomes more sub-
stantial, reaching 33.7%, as the spatial correlation is ele-
vated to 0.5. Notably, an even more pronounced drop of
60.5% is observed with a spatial correlation of 0.7. This
is attributed to the reduced channel capacity difference re-
sulting from the decreased spatial correlation between le-
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Fig. 5 The performance of proposed algorithm versus different resolu-
tion phase shifters.

gitimate and eavesdropping users. However, the proposed
LCFP algorithm outperforms the random phase scheme by
optimizing the passive beamforming to deal with the perfor-
mance loss caused by spatial correlation between the eaves-
dropping and legitimate channels.

Also, we study the impact of the different resolution
phase shifters of the RIS on system secrecy performance.
Herein, the infinite-resolution-continuous-phase shifter set
is defined asΩc for θm,l, while the finite-resolution-discrete-
phase shifter set as Ωd, which are expressed as

Ωc =
{
θm,l = e jφm,l |φm,l ∈ [0, · · · , 2π)

}
, (48)

Ωd =

{
θm,l = e jφm,l |φm,l =

2πn
2B , n ∈ [0, · · · , 2B − 1)

}
,

(49)

where B is the number of quantization bits. As shown
in Fig. 5, we exploit the secrecy rate gap between finite-
resolution phase shifters and infinite-resolution phase
shifters. The secrecy rate is plotted versus a range of dis-
tances D1 from 50 m to 100 m between the transmitter (Al-
ice) and receivers (Bob and Eve) with M = 50,N = 4, L = 2,
and R = 8 m. As the phase shifter resolution B increases
from 1 to 5, the secrecy rate gap in comparison to infinite-
resolution phase shifters diminishes. Specially, at a distance
D1 = 70 m, this secrecy rate gap reduces from 0.21 bps/Hz
to 0.02 bps/Hz when B varies from 2 to 4. Notably, this se-
crecy performance enhancement in finite-resolution phase
shifters setting exhibits a diminishing trend once B exceeds
a value of 3, suggesting a proper threshold for phase reso-
lution. Figure 5 also indicates that increasing the distance
D1 has a detrimental effect on the secrecy performance.
Nonetheless, when D1 remains below a certain threshold,
i.e., D1 ≤ 77 m, the system is capable of sustaining a secrecy
rate above 1.0 bps/Hz, and this remains effective even when
Bob and Eve are in a close distance of R = 8 m. Therefore,
both spatial parameter D1 and resolution B play pivotal roles
in security performance, necessitating proper design based
on practical scenarios. Building on the results of the dimin-
ishing returns observed beyond a certain resolution, a 3-bit
setting appears as a practical choice, yielding near-optimal

Fig. 6 The performance of proposed algorithm under different spatial po-
sitioning.

Fig. 7 The secure locations of Eve under different angles.

results compared to an infinite-resolution phase shifter set-
ting.

Furthermore, we investigate the impact of the spa-
tial parameters, including the eavesdropping distance be-
tween Eve and Bob R and the receiving distance D1, on
security performance. As delineated in Fig. 6, the secrecy
rate increased with the extension of R or a decrease in D1
attributable to the reduced correlation between legitimate
and eavesdropping channels. This observation aligns with
Fig. 4, establishing that enhanced spatial correlation reduces
secrecy rates. Such an observed trend provides opportuni-
ties for maintaining secure transmissions even when dis-
tances D1 exceed 77 m. For systematic analysis on se-
cure locations of Eve, we set a fixed receiving distance
D1 = 77 m, and vary the location of Eve around a cir-
cle centered at Bob, utilizing predefined angles φABE ∈

{0, π6 ,
π
3 ,

π
2 ,

2π
3 ,

5π
6 , π,−

5π
6 ,−

2π
3 ,−

π
2 ,−

π
3 ,−

π
6 }. This configura-

tion facilitates the systematic evaluation of the impact of
eavesdropping distance (corresponding to the radius R of
the circle) on the secrecy rate. With a threshold secrecy
rate defined at 1.0 bps/Hz, we can obtain the secure loca-
tions of Eve. As illustrated in Fig. 7, the secure locations of
Eve expand as φABE increases from 0 to π, the angle rela-
tive to the line between Bob and Alice. Notably, when Eve
is located between Bob and Alice (φABE = 0), a minimal
secure location range of Eve is observed, confined between
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(59 m, 0 m) and (69 m, 0 m). Two factors influence this be-
havior. First, as Eve moves away from Bob, the spatial cor-
relation of the channels reduces, enhancing the secrecy rate.
Then, as Eve moves closer to Alice while away from Bob,
its eavesdropping capability increases, eventually offsetting
the benefits garnered from spatial channel variations and re-
ducing the secrecy rate below the threshold. In addition,
the augmentation of φABE can diminish the eavesdropping
capability, thereby expanding the secure location range of
Eve. For instance, when φABE = π

6 , the secure locations of
Eve lie between (59.6 m, 10 m) and (70.9 m, 3.5 m), a range
nearly 13 m wider than the range at φABE = 0◦. For angles
in the domain π

2 ≤ φABE ≤ π and − π2 ≥ φABE ≥ −π, the se-
cure eavesdropping range broadens, extending radially. Fig-
ure 7 also shows that the symmetrical nature of the observed
trends for both positive (0 ≤ φABE ≤ π) and negative angles
(−π ≤ φABE ≤ 0). Therefore, the spatial topological rela-
tionship between network nodes is essential for optimizing
system security performance to construct secure transmis-
sion.

In addition, we evaluate the robustness of the LCRFP
algorithm by comparing it with other benchmarks with
channel mismatch. We assume that the statistical CSI er-
ror models of both Bob and Eve follow the CSCG dis-
tribution and set the relative amount of CSI uncertainty
ε = εG = εh = εg = εdi, i = {u, e} and ε = {0.1, 0.3, 0.6} to
characterize the estimated precision, and the transmit power
P = 5 dBm. Figure 8 compares the LCRFP algorithm with
the non-robust algorithm (LCFP algorithm) in terms of se-
crecy rate versus the iteration number under the imperfect
CSI (ε = 0.1) setting. It shows that only the LCRFP algo-
rithm achieves almost sure convergence to a solution after a
few iterations, demonstrating the robustness of our proposed
algorithm. Then, we depict the achievable SR versus differ-
ent CSI uncertainty in Fig. 9. The non-robust algorithm un-
der the perfect CSI setting is set as the upper bound, and the
random phase scheme under the perfect CSI setting is set
as the lower bound. It shows that increasing channel uncer-
tainty ε leads to more iteration times to obtain the stationary
solution by analyzing the achievable SR versus different CSI
uncertainty. Furthermore, it can be seen that there has been
an increasing secrecy performance loss with the CSI uncer-

Fig. 8 Convergence of algorithms under imperfect CSI.

tainty increasing compared with the upper bound. However,
the secrecy performance of our proposed algorithm is al-
ways over the lower bound. In particular, the proposed algo-
rithm can increase up to 54.6% SR compared with the lower
bound when CSI uncertainty is as low as 40%, demonstrat-
ing that the LCRFP method can mitigate the loss of the se-
crecy performance caused by the random system state. In
addition, there is only 10.2% secrecy performance loss on
the LCRFP algorithm when ε = 10% (with a secrecy rate
of 1.07 bps/Hz) compared with the upper bound. Therefore,
we can achieve a close solution by the proposed algorithm
with imperfect CSI to that in the case of perfect CSI when
the estimation error is in a certain region, and the LCRFP al-
gorithm can improve system secrecy performance compared
with the non-robust benchmark schemes.

Finally, we delve into a more practical scenario char-
acterized by imperfect CSI and finite-resolution phase
shifters, offering a comprehensive understanding of how
these factors impact secrecy performance. As presented
in Fig. 10, we examine the impact of CSI uncertainty (ε ∈
{0.1, 0.3, 0.6}) across various finite-resolution settings B.
Compared with the infinite-resolution setting, we observe
that secrecy performance loss amplifies as resolution B di-
minishes. Specifically, a marked decline is evident as res-
olution transitions from 1-bit to 3-bit, followed by a more

Fig. 9 The LCRPF algorithm versus different CSI uncertainty.

Fig. 10 The performance loss varies with CSI uncertainty under differ-
ent finite resolution phase shifters compared with infinite resolution phase
shifters.
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modest reduction as the transition advances from 4-bit to
5-bit. Furthermore, as ε increases, the gradual increase
in security performance loss becomes evident, which sig-
nifies that the SR achieved with a finite-resolution setting
gradually falls behind the performance level of the infinite-
resolution setting. This trend is attributed to the impact of
quantization error, which degrades performance as CSI un-
certainty intensifies. Building upon these observations, we
provide a threshold for quantitative analysis. Notably, to
ensure a security performance loss below 10%, when the
channel uncertainty is 0.3 or lower, a choice of B = 3 is
adequate. However, when the uncertainty escalates to 0.6,
a value of B = 5 is suggested. Therefore, after making a
trade-off, we can obtain that the greater resolution B is nec-
essary to keep the performance loss in a certain range as
CSI uncertainty increases. This underscores the practical-
ity of adopting a finite-resolution phase shifter setting in the
RIS-aided mmWave system for optimal performance.

7. Conclusion

In this work, we investigated the secure transmission under
the effect of the non-neglectable practical issues in a mult-
RIS-aided mmWave system, including the high computa-
tional complexity, imperfect CSI acquisition, and finite res-
olution phase shifters limitation. A robust PLS enhancement
method was proposed to solve the challenging optimiza-
tion problem due to the coupled variables, complex func-
tions, non-convex constraints, and uncertain system states.
Both theoretical derivations and simulations demonstrated
that the proposed algorithms could mitigate the joint neg-
ative effects of practical issues and outperform the bench-
mark schemes in convergence. Moreover, it was illustrated
that there exists a tradeoff between secure performance and
complexity/overhead, which can help multiple RIS deploy-
ments potentially be extended to more practical secure com-
munication scenarios.
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