
IEICE TRANS. COMMUN., VOL.E107–B, NO.4 APRIL 2024
349

PAPER
Overfitting Problem of ANN- and VSTF-Based Nonlinear
Equalizers Trained on Repeated Random Bit Sequences

Kai IKUTA†a), Student Member, Jinya NAKAMURA††, Nonmember, and Moriya NAKAMURA†, Member

SUMMARY In this paper, we investigated the overfitting characteris-
tics of nonlinear equalizers based on an artificial neural network (ANN)
and the Volterra series transfer function (VSTF), which were designed to
compensate for optical nonlinear waveform distortion in optical fiber com-
munication systems. Linear waveform distortion caused by, e.g., chromatic
dispersion (CD) is commonly compensated by linear equalizers using digital
signal processing (DSP) in digital coherent receivers. However, mitigation
of nonlinear waveform distortion is considered to be one of the next impor-
tant issues. An ANN-based nonlinear equalizer is one possible candidate
for solving this problem. However, the risk of overfitting of ANNs is one
obstacle in using the technology in practical applications. We evaluated
and compared the overfitting of ANN- and conventional VSTF-based non-
linear equalizers used to compensate for optical nonlinear distortion. The
equalizers were trained on repeated random bit sequences (RRBSs), while
varying the length of the bit sequences. When the number of hidden-layer
units of the ANN was as large as 100 or 1000, the overfitting character-
istics were comparable to those of the VSTF. However, when the number
of hidden-layer units was 10, which is usually enough to compensate for
optical nonlinear distortion, the overfitting was weaker than that of the
VSTF. Furthermore, we confirmed that even commonly used finite impulse
response (FIR) filters showed overfitting to the RRBS when the length of
the RRBS was equal to or shorter than the length of the tapped delay line of
the filters. Conversely, when the RRBS used for the training was sufficiently
longer than the tapped delay line, the overfitting could be suppressed, even
when using an ANN-based nonlinear equalizer with 10 hidden-layer units.
key words: optical nonlinear compensation, nonlinear equalizers, artificial
neural network, Volterra series transfer function, overfitting

1. Introduction

Data traffic through communication systems has been contin-
uing to grow exponentially with the technological develop-
ment of cloud computing and fifth-generation (5G) mobile
communications. Increasing the capacity further will re-
quire optical fiber communications technology that supports
these services. To meet this demand, multi-level modu-
lation, including quadrature amplitude modulation (QAM),
is an important technology that can increase the spectral
efficiency in the limited optical bandwidth. However, a
QAM signal has a large peak-to-average power ratio (PAPR)
and is susceptible to nonlinear waveform distortion caused
by optical nonlinear effects such as self-phase modulation
(SPM) and cross-phase modulation (XPM). Techniques to
compensate for the nonlinear waveform distortion using dig-
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ital signal processing (DSP), digital backpropagation (DBP)
and nonlinear equalizers based on the Volterra series trans-
fer function (VSTF) have been studied [1]–[4]. However,
the significant computational complexity of these methods
poses a technical barrier to their practical implementation.
On the other hand, nonlinear equalizers based on artificial
neural networks (ANNs) are attracting attention as another
possible candidate. ANN-based nonlinear equalizers have
been experimentally demonstrated with various modulation
formats, including intensity modulation and direct detection
(IM/DD), QAM, and orthogonal frequency-division multi-
plexing (OFDM) [5]–[7]. The effectiveness of the equal-
izers has been verified not only in laboratory experiments
but also with an 11,000-km live-traffic carrying submarine
cable [8]. Recently, several field-programmable gate array
(FPGA) implementations of ANN-based nonlinear equaliz-
ers have been demonstrated [9], [10]. One implementation
realized both the equalization and training stages within the
same FPGA simultaneously [11]. In our research group, we
demonstrated complex-valued ANN-based nonlinear equal-
izers, which showed improved learning speed and reduced
computational complexity compared to a conventional real-
valued ANN [12]. Furthermore, we clarified the necessary
number of ANN units for compensating for chromatic dis-
persion (CD) and SPM [13]. We also reported that an ANN
can effectively compensate for nonlinearities using signifi-
cantly less computational effort compared to DBP and the
VSTF [14], [15].

An issue that has been pointed out with the ANN-based
nonlinear equalizers is overfitting. In particular, when a
pseudo-random binary sequence (PRBS) is used in the train-
ing, the ANN configures a logic circuit that is optimized
for the specific PRBS [16]–[18]. Consequently, the ANN
predicts the incoming PRBS signals, resulting in overesti-
mation of the compensation performance. Conversely, when
the compensation performance is evaluated using a PRBS
different from the one used in the training, the compensation
performance is underestimated. Some reports investigated
the dependence of the tap length of the ANN and the length
of the PRBS on the overfitting characteristics [19], [20]. It
is also reported that the overfitting becomes stronger when
the number of hidden-layer of the ANN is increased from
three to four [21]. We evaluated the overfitting character-
istics of VSTF-based nonlinear equalizers using the same
method that has been employed to evaluate the overfitting of
ANN-based nonlinear equalizers. As a result, we revealed
that the overfitting of the ANN- and VSTF-based nonlinear
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equalizers occurs under the same conditions when PRBSs
are used in the training [22]. This is because the VSTF has
a high function representation capability and thus acquires
the logic circuit of the PRBS as well as the ANN. We should
consider that the overfitting is not a problem that is unique
to ANN-based nonlinear equalizers but possibly occurs with
any equalizers using learning algorithms.

In addition to PRBSs, the overfitting characteristics of
the ANN-based nonlinear equalizers have also been inves-
tigated in a case where finite-length repeated random bit
sequences (RRBSs) were used in the training [16]–[18]. As
the number of input and hidden layer units in the ANN is in-
creased, the ANN-based nonlinear equalizers have a higher
function representation capability to memorize the random
bit sequence, resulting in overfitting. However, it is known
that the overfitting of ANN-based nonlinear equalizers with
an RRBS is weaker than that with a PRBS. On the other
hand, the overfitting characteristics of VSTF-based nonlin-
ear equalizers with an RRBS have not been investigated, to
the authors’ best knowledge. Therefore, it remains unclear
whether the overfitting of ANN-based nonlinear equalizers
with an RRBS is larger than that of the VSTF. This pa-
per focuses on comparing the overfitting characteristics of
the ANN- and VSTF-based nonlinear equalizers trained on
RRBSs, in contrast to the characteristics of the ANN trained
on PRBS, which were investigated in [19], [20].

In this study, we evaluated and compared the overfitting
characteristics of nonlinear equalizers based on the ANN
and VSTF which were trained on a finite-length RRBS. We
clarified that the overfitting characteristics of theANN-based
nonlinear equalizer were comparable to those of the VSTF
when the number of hidden-layer units of the ANN was as
large as 100 or 1000. However, when the number of hidden-
layer units was 10, which is usually enough to compensate
for optical nonlinear distortion, the overfitting was weaker
than that of the VSTF.

The remainder of this paper is organized as follows:
Section 2 summarizes the theory and computational com-
plexity of ANN- and VSTF-based nonlinear equalizers. In
Sect. 3, we explain the system setup for evaluating overfitting
characteristics. Section 4 offers a comparison between the
overfitting of the ANN and that of the VSTF. Finally, Sect. 5
provides the conclusion of this paper.

2. ANN- and VSTF-Based Nonlinear Equalizers and
Computational Complexity

2.1 ANN-Based Nonlinear Equalizer

Figure 1(a) shows the construction of theANN-based nonlin-
ear equalizer used for optical nonlinear compensation [12].
The ANN consists of three layers: an input layer, a hidden
layer, and an output layer. Input signal x(n) is fed to the
input layer through a feedforward tapped delay line, where n
represents the time index of the sampled signal with a sam-
pling interval of T . L = 2N + 1 expresses the tap length of
the tapped delay line. y(n) is the output signal of the ANN-

Fig. 1 ANN-based nonlinear equalizer and hidden-layer.

based nonlinear equalizer. x(n) and y(n) are real values,
while complex values are employed in [12]. This is because
binary signals are used in this investigation of the overfitting.
Therefore, we employed a real-valuedANN. Input-layer units
simply distribute the input signal to the hidden-layer units.
Figure 1(b) shows a hidden-layer unit used in the ANN.
The inner potential of the j-th hidden-layer unit, u j(n), is
described as

u j(n) =
N∑

i=−N

w
(1)
ji x(n + i) + b(1)j , (1)

where w(1)ji is the weight between the i-th input-layer unit and
the j-th hidden-layer unit, and b(1)j is the bias. The units in
the hidden layer have a sigmoid function expressed as

zj(n) =
1

1 + e−u j (n)
, (2)

where zj(n) is the output of the hidden-layer unit. The units
in the output layer have a linear function. The output of the
ANN-based nonlinear equalizer, y(n), is described as unit.

y(n) =
M∑
j=1

w
(2)
j zj(n) + b(2), (3)

where w(2)j is the weight between the j-th hidden-layer unit
and the output-layer unit, and b(2) is the bias. M is the number



IKUTA et al.: OVERFITTING PROBLEM OF ANN- AND VSTF-BASED NONLINEAR EQUALIZERS TRAINED ON REPEATED RANDOM BIT SEQUENCES
351

Fig. 2 VSTF-based nonlinear equalizer.

of hidden-layer units. We trained the ANN by using the error
backpropagation (EBP) method, a type of least mean square
(LMS) algorithm. We trained the ANN sample by sample.
We did not use batches or minibatches. The error function
is described as

e(n) = |y(n) − t(n)|2 , (4)

where t(n) is the ideal signal point at the time index n, namely
a supervised signal. The error, e(n), is minimized by updat-
ing the weights using the equation described as

w(n + 1) = w(n) − µ
∂e(n)
∂w

, (5)

where µ is the step size parameter which decides the learning
speed and its stability. w represents all the weights in the
ANN. The number of hidden layer units required to compen-
sate for SPM is about ten or less [13]. The required number
of input layer units, which is equal to the number of taps of
the tapped delay line, is decided by the amount of CD [13].

2.2 VSTF-Based Nonlinear Equalizer

Figure 2 shows the VSTF-based nonlinear equalizer. Here,
the Volterra kernels for the nonlinear compensation are ac-
quired using the LMS algorithm. Optical nonlinearity of the
optical fibers can be approximated by using only first- and
third-order Volterra kernels [3], [4]. We omitted second-
order Volterra kernels, because it is known that the second-
order terms of the VSTF are not effective in equalizing the
optical-fiber nonlinearity. The output of the VSTF is ex-
pressed as

y(n) =
N∑

m1=−N

hm1 x (n − m1) +

N∑
m1=−N

N∑
m2=m1

N∑
m3=−N

hm1m2m3 x (n − m1) x (n − m2) x∗ (n − m3) ,

(6)

where x(n) and y(n) are the real-valued input and real-valued
output of the VSTF at time index, n, respectively, hm1 and
hm1m2m3 are the first- and third-order Volterra kernels, re-
spectively, and L = 2N + 1 expresses the number of taps
of the tapped delay line. If we use only first-order Volterra
kernels, omitting third- order terms in Eq. (6), the equalizer
is equivalent to an FIR filter.

Fig. 3 Required number of multiplications versus the number of taps.

2.3 Computational Complexity of ANN- and VSTF-Based
Nonlinear Equalizers

The number of multiplications required for the ANN-based
nonlinear equalizer to compensate for a symbol is expressed
as

MANN = L × Shidden + Shidden, (7)

where MANN is the number of real-valued multiplications, L
is the number of taps of the tapped delay line, and Shidden is
the number of hidden-layer units [14], [15]. Here, we neglect
the calculations for the sigmoid functions of the hidden-layer
units, assuming that a lookup table is employed. The number
of real-valuedmultiplications required for a first-order VSTF
(equivalent to an FIR filter) is expressed as

MVSTF(1st,order) = L. (8)

The number of real-valued multiplications per symbol of
first- and third-order VSTF-based nonlinear equalizers can
be expressed as

MVSTF (1st, 3rd order) = L + 3L2(L + 1)/2

=
3
2

L3 +
3
2

L2 + L, (9)

where we eliminated the redundant terms, taking into ac-
count the symmetry of the Volterra kernels [14], [15]. Fig-
ure 3 shows the number of multiplications of the equalizers
versus the number of taps. The number of multiplications in
the ANN-based nonlinear equalizer increases linearly with
the number of taps and hidden layer units. The number of
multiplications in the first-order VSTF also increases lin-
early. On the other hand, for the first- and third-order VSTF,
the number of multiplications increases in proportion to the
cube of the number of taps. Therefore, if we need a long
tapped delay line, the VSTF-based nonlinear equalizer will
require significantly more multiplications than the ANN-
based nonlinear equalizer.

3. System Setup for Evaluating Overfitting

Figure 4 shows the system setup used to evaluate the over-
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Fig. 4 Additive WGN channel with RRBS.

fitting, which had been employed in previous studies on
the overfitting evaluation of ANN-based nonlinear equaliz-
ers [16]–[18]. By employing this setup, we can simplify
the evaluation to focus on the essential characteristics of the
overfitting, eliminating the effects of the transmission pa-
rameters such as CD, SPM, pulse shape, and modulation for-
mats. Even in actual transmission systems, the effects of the
transmission parameters can be compensated by the equal-
izers, theoretically. Therefore, the essential characteristics
of the overfitting are also applicable in actual transmission
systems. A binary RRBS was generated by the Mersenne
Twister (MT) algorithm. White Gaussian noise (WGN) was
added to this binary baseband signal so that the signal-to-
noise ratio (SNR) was adjusted to 4 dB. The bit lengths were
changed from 15 to 31, 127, and 511 bits. The nonlin-
ear equalizers were trained to try to “compensate” for the
noise. The signal quality after the “compensation” was eval-
uated using the error vector magnitude (EVM). Essentially
the noise cannot be compensated for using the equalizers.
When the overfitting occurs, however, the equalizers predict
the next incoming signals, resulting in an improvement of the
apparent EVM values. The numbers of hidden-layer units
of the ANN were 10, 100, and 1000. As noted in Sect. 2.1,
only about ten or fewer hidden layer units are enough to
compensate for the fiber nonlinearity [13]. Nevertheless, we
attempted to use as many as 100 or 1000 hidden layer units
to evaluate the overfitting characteristics of the ANN-based
nonlinear equalizers with a computational complexity com-
parable to that of the VSTF. We employed the first-order
VSTFs and the first- and third-order VSTFs. In the training
of the ANN and VSTF, we did not employ the techniques
such as batch normalization, a dropout layer, and an early
stopping algorithm. This approach was chosen to compare
the overfitting characteristics of ANN and VSTF in the sim-
plest condition. This simplicity of the training algorithm
is important in high-speed optical communication systems.
We trained the equalizers over 100,000 epochs, which we
confirmed to be a sufficient number of epochs. Each epoch
involved the training and test samples with different noise
generated using different seeds. We used the same RRBS
generated using one seed through the training over 100,000
epochs to observe the overfitting to the RRBS. The num-
bers of the training and test samples correspond to the bit
length of the RRBS used. The learning rate was adjusted to
minimize the average learning error for each combination of
the number of taps, the number of hidden units, and RRBS
length.

Fig. 5 EVM versus the number of taps (trained on 15-bit RRBS).

4. Results and Discussion

First, we evaluated the overfitting with a short RRBS of 15
bits, which is comparable to or shorter than the number of
taps of the tapped delay line of the nonlinear equalizers. 15
bits is impractically short, and it is easily expected that strong
overfitting is prone to occur. However, we performed this
investigation using the short RRBS to evaluate the overfitting
of the first-order VSTFs (equivalent to FIR filters). Figure 5
shows the EVM versus the number of taps of the first-order
VSTF-based nonlinear equalizer when trained on the 15-bit
RRBS. In the figure, the characteristics of the first- and third-
order VSTF andANN are also presented for comparison. We
plotted the averages of ten trials of the training, with the error
bars representing the standard deviation at each tap length of
the equalizers. The RRBSs for the ten trials were generated
using different seeds. In the case of the first-order VSTFwith
one tap, the equalizer simply multiplies the input signal by
a Volterra kernel. Therefore, the equalizer does not change
the EVM of the input signal with WGN, and the value was
about 55%. It should be noted that the EVM was decreased
by overfitting when we increased the number of taps of the
first-order VSTF. When the number of taps was as large as
31, the EVM was decreased by about 23%. In the case of
the first- and third-order VSTFs and ANNs, the EVM values
were decreased to about 48% and 41%, respectively, even
when the number of taps was one. This is not due to the
overfitting, but due to the clipping of WGN caused by the
nonlinearity of the third-order terms of the VSTFs and the
sigmoid functions of the ANNs.

Figure 6(a) shows the waveforms of the RRBSs with
WGN before and after the first-order VSTF-based nonlinear
equalizer with only one tap. As noted above, the equal-
izer simply multiplies the input signal by a Volterra kernel.
Therefore, a linear relationship exists between the input and
output waveforms. Figure 6(b) shows the waveforms before
and after the first- and third-order VSTFs with one tap. In
this case, we can observe that the amplitude of the WGN
was clipped by the nonlinearity of the third-order terms of
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Fig. 6 Clipping of WGN by nonlinearity of equalizers.

the VSTF. When the overfitting is evaluated by using the
EVM, we have to take into account the effect of the clipping
caused by the nonlinearity of the equalizers. Figure 6(c)
shows the waveforms before and after the ANN with ten
hidden-layer units and one tap. The saturation curve of the
sigmoid functions of the hidden-layer units causes stronger
clipping than the VSTF. Figure 6(d) shows the principle of
the clipping caused by the nonlinearity of the equalizers.
When the transfer function of the equalizer is nonlinear, the
large amplitude of the input signal is clipped to some extent,
according to the nonlinear curve of the function. The first-
and third-order VSTF-based nonlinear equalizers caused this
clipping due to the nonlinear operation in the second term of
Eq. (6), whereas the ANN-based nonlinear equalizers caused
the clipping due to the nonlinearity of the activation function.
These clippings decreased the apparent EVM, as shown in
Fig. 5 and Fig. 6(b) and (c).

To eliminate the effects of the clipping, we plotted the
variations in EVM, ∆EVM, from the value that was eval-
uated with one tap. Figure 7(a) is the replotted version of
Fig. 5, showing the variations, ∆EVM, versus the number
of taps of the VSTF- and the ANN-based nonlinear equal-
izers when trained on the 15-bit RRBS. In the case of the
first-order VSTF, the EVM decreased by about 23% when
the number of taps was 31, as mentioned above. When we
used the first- and third-order VSTFs, the EVM decreased
by about 35% with 31 taps, which shows larger overfitting
than that which occurred in the case of the first-order VSTF.
When we used the ANNs with 10, 100, and 1000 hidden-
layer units, we observed stronger overfitting than observed
with the VSTF. This result implies the high function repre-
sentation capability of the ANN-based equalizers. However,
when the number of taps was 31, the EVM decreased by
about 35%, which was approximately equal to that of the
first- and third-order VSTFs. This is due to the lower limit
of the EVM, as shown in Fig. 5. Figure 7(b) shows ∆EVM
versus the number of taps of the equalizers when trained on
31-bit RRBS. In the case of the first-order VSTF, the EVM
decreased by 7% when the number of taps was 31. When we
used the first- and third-order VSTFs, the EVM decreased by
27% with 31 taps. When we used the ANN with 10 hidden-
layer units, the overfitting characteristics were comparable to
those of the first- and third-order VSTFs. When we used the
ANNs with 100 and 1000 hidden-layer units, we observed
stronger overfitting than observed with the VSTF. This re-
sult shows the tendency toward weaker overfitting with an
increase in the length of the RRBS used for the training. In
order to investigate the overfitting characteristics with longer
RRBS than the number of taps, we set the length to 127 bits.
Figure 7(c) shows ∆EVM versus the number of taps of the
equalizers which was trained on 127-bit RRBS. In the case
of the first-order VSTF, EVM decreased by only 2% when
the number of taps was 31, indicating the weak overfitting.
When we used the first- and third-order VSTFs, the EVMde-
creased by 22% when the number of taps was 31. When we
used the ANNwith 10 hidden layer units, however, the EVM
decreased by 7%, which is much smaller than that of the
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Fig. 7 ∆EVM versus the number of taps.

first- and third-order VSTFs. When we used the ANNs with
100 and 1000 hidden-layer units, the overfitting character-
istics were comparable to those of the first- and third-order
VSTFs. Figure 7(d) shows ∆EVM versus the number of
taps when a 511-bit RRBS was employed for the training.
In the case of the first-order VSTF, the EVM variation was
about 0%, even when the number of taps was as large as 31.
When we used the first- and third-order VSTFs, the EVM
decreased by 13%, when the number of taps was 31. On the
other hand, when we used the ANN with 10 hidden-layer
units, ∆EVM was only about 1%, even when the number
of taps was as large as 31. In this case, the overfitting was
suppressed enough, although we employed the ANN-based
nonlinear equalizer. However, when we used the ANN and
the number of hidden-layer units was as many as 100 and
1000, the overfitting characteristics were comparable to that
of the first- and third-order VSTFs.

Figures 8(a) and (b) show the variations ∆EVM versus
the bit length of the RRBS used for the training under the
condition where the number of taps of the nonlinear equal-
izers was 31. First, we should note that the first-order VSTF,
which is equivalent to an FIR filter, showed strong overfit-
ting when the RRBS was as short as 31 or less. However,

when the RRBSwas longer than 127, the overfitting was suf-
ficiently suppressed. In the case of the first- and third-order
VSTFs, we observed strong overfitting, even when the RRBS
was as long as 511. This result indicates that the first- and
third-order VSTFs have a high function representation capa-
bility, and the VSTF-based nonlinear equalizer memorized
the trained RRBS. Consequently, the equalizer predicted the
incoming RRBS, and the EVM decreased. The ANN-based
nonlinear equalizers have a high function representation ca-
pability as good as one based on the VSTF. However, when
the number of hidden-layer units was as small as 10, the
∆EVM was only about 1%, and the overfitting was suffi-
ciently suppressed against the 511-bit RRBS, whereas the
first- and third-order VSTF showed strong overfitting in the
same condition. As mentioned in Sect. 2.1, only about ten or
fewer hidden layer units are sufficient to compensate for the
fiber nonlinearity [13]. It should be noted that the computa-
tional complexity of the ANN-based nonlinear equalizer is
much smaller than that of theVSTF, as shown in Fig. 3. How-
ever, when we increased the number of hidden-layer units to
more than required, namely, 100 or 1000, we observed strong
overfitting similar to the case of the VSTF. The results indi-
cate that we need to carefully consider the overfitting and the
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Fig. 8 ∆EVM versus bit-length of RRBS.

required number of hidden-layer units of ANN-based non-
linear equalizers. In [22], the overfitting characteristics of
the ANN- and VSTF-based nonlinear equalizers were com-
pared using PRBSs. In this case, both equalizers showed
stronger overfitting than what was observed in this study us-
ing RRBSs. This is because the ANN and VSTF can learn
the simple generation rule of the PRBSs and consequently
predict the received pattern. The overfittings of the nonlinear
equalizers with RRBSs were weaker than that with PRBSs.
In particular, when the number of the hidden-layer units of
the ANN was as small as 10, the overfitting of the ANN was
weaker than that of VSTF in the case of RRBSs.

5. Conclusion

We investigated the overfitting of ANN- and VSTF-based
nonlinear equalizers trained on a finite-length RRBS. The
results show that the VSTF used for nonlinear compensation
in optical communication causes stronger overfitting than
the ANN, depending on the conditions, in particular, the
length of the RRBS and the number of taps. Nevertheless,
it should be noted that we have to take care in deciding
the number of hidden-layer units of the ANN. If we use

more hidden-layer units than necessary, this will result in
stronger overfitting. The problem of overfitting occurs not
only with ANN-based nonlinear equalizers but also with
general equalizers using learning algorithms. Depending on
the conditions, the overfitting can occur even when we use a
simple FIR filter.
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