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PAPER
SimpleViTFi: A Lightweight Vision Transformer Model for
Wi-Fi-Based Person Identification

Jichen BIAN† ,††, Student Member, Min ZHENG†, Hong LIU†, Jiahui MAO† ,††, Hui LI†,
and Chong TAN†a), Nonmembers

SUMMARY Wi-Fi-based person identification (PI) tasks are performed
by analyzing the fluctuating characteristics of the Channel State Information
(CSI) data to determine whether the person’s identity is legitimate. This
technology can be used for intrusion detection and keyless access to re-
stricted areas. However, the related research rarely considers the restricted
computing resources and the complexity of real-world environments, re-
sulting in lacking practicality in some scenarios, such as intrusion detec-
tion tasks in remote substations without public network coverage. In this
paper, we propose a novel neural network model named SimpleViTFi, a
lightweight classification model based on Vision Transformer (ViT), which
adds a downsampling mechanism, a distinctive patch embedding method
and learnable positional embedding to the cropped ViT architecture. We
employ the latest IEEE 802.11ac 80MHz CSI dataset provided by [1]. The
CSI matrix is abstracted into a special “image” after pre-processing and fed
into the trained SimpleViTFi for classification. The experimental results
demonstrate that the proposed SimpleViTFi has lower computational re-
source overhead and better accuracy than traditional classification models,
reflecting the robustness on LOS or NLOS CSI data generated by different
Tx-Rx devices and acquired by different monitors.
key words: Wi-Fi sensing, CSI, person identification, lightweight model,
vision transformer

1. Introduction

With the continuous evolution of Wi-Fi protocols [2], [3]
and the exponential growth of Wi-Fi devices, people are no
longer solely focused on using Wi-Fi for Internet access. In-
stead, there is an increasing demand for higher bandwidth,
more reliable connections, and improved service quality to
accommodate applications such as high-immersive gaming
and remote healthcare [4]. This shift has led to the emer-
gence of a more versatile and robust wireless communication
infrastructure that not only provides seamless connectivity
but also enables novel sensing and interaction capabilities.
It is widely recognized that Wi-Fi sensing plays a crucial
role in various tasks, including indoor activity recognition,
object sensing, and localization [5], [6]. By leveraging the
fine-grained channel variations captured in Wi-Fi CSI, re-
searchers can extract meaningful features that correlate with
real-world positions, actions, and states [7]. This capabil-
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ity paves the way for an array of novel prospects in the
domain of pervasive and context-aware computing applica-
tions, including intelligent residential environments, assisted
living arrangements, and advanced security systems [5], [8].
However, there exist challenges in achieving efficient Wi-Fi
sensing in resource-constrained environments. For instance,
remote substations in underdeveloped areas need to deploy
the intrusion detection system due to their critical energy
supply role and potential security risks. Conventional cam-
era detection is difficult to illuminate at night and to guar-
antee dead-end coverage, not to mention the large demand
for computing resources. Meanwhile, such substations often
lack public network coverage because of the remote location,
making it hard to access cloud servers for the deployment
of highly resource-intensive detection applications [9], [10].
In such scenarios, the lightweight and effective Wi-Fi-based
PI method is considered as a reliable alternative, which can
operate with local, limited resources [6]. We aim to ad-
vance the state-of-the-art of Wi-Fi sensing at the edge and
contribute to its broader applicability in challenging envi-
ronments. This will ultimately enable the deployment of
Wi-Fi sensing technologies in a wider range of real-world
scenarios, thus improving the efficiency and safety of criti-
cal infrastructure management [5].

At present, a multitude of research employsWi-Fi sens-
ing technology for various tasks. [11] introduces Wisleep,
a system that infers sleep duration using passively sensed
smartphone network connections from Wi-Fi infrastructure,
achieving comparable accuracy to client-side methods. An
unavoidable limitation, though, is a reliance on users car-
rying devices, while current research trends are shifting to-
wards device-free detection methods for greater convenience
and user comfort. [12] proposes Temporal Unet, a deep con-
volutional neural network for sample-level action recogni-
tion in the Wi-Fi sensing domain, enabling precise action
localization and real-time recognition. Nevertheless, this
paper does not address potential issues related to compu-
tational complexity and generalizability across diverse en-
vironments. [13] presents FewSense, a few-shot learning-
based Wi-Fi sensing system capable of recognizing novel
classes in unseen domains using limited samples, achiev-
ing high accuracy on three public datasets (SignFi, Widar,
andWiar) and improving performance through collaborative
sensing while limiting in the large model size, which may
render it unsuitable for computationally constrained environ-
ments despite its effectiveness in cross-domain scenarios.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Despite a great deal of research being conducted, there
is still a lack of studies on Wi-Fi sensing focusing on
resource-constrained environments. In this paper, we pro-
pose a novel neural network model named SimpleViTFi
based on ViT. This model performs well on person identifi-
cation tasks using CSI data generated from Wi-Fi devices.
Our developments are inspired by works in [8], [14]. The
developments can be concretely described as follows:
(1) Drawing inspiration from the ViT model in the field of

Computer Vision (CV), we propose a lightweight ViT
model with distinctive patch segmentation, downsam-
pling operation, reduced number of layers, and efficient
feature extraction capabilities, termed as SimpleViTFi,
specifically designed for PI tasks in the Wi-Fi sensing
domain under resource-constrained scenarios.

(2) We conduct a comparative analysis of the impact of two
types of position encodingmethods - the sin-cosmethod
and learnable embedding - on PI. The results show
that the learnable embedding method yields superior
performance, and we delve into a discussion attempting
to analyze the possible explanations for this outcome.

(3) We benchmark SimpleViTFi against several popular
models, including LeNet, ResNet18, and GRU. Sim-
pleViTFi significantly outperforms thesemodels onWi-
Fi-based PI tasks. Furthermore, we introduce an incre-
mental learning approach to further enhance the perfor-
mance and efficiency of SimpleViTFi, which requires a
little extra time and data to achieve robust performance
across different CSI datasets generated by variousWi-Fi
devices.
The structure of this paper unfolds as follows: Section 2

delves into a comprehensive discussion on related works.
Section 3 provides the detail of the proposed SimpleViTFi.
Section 4 shows the experimental setup and comparisons of
the results with existing works. Section 5 concludes this pa-
per and provides recommendations for some future research
topics.

2. Related Works

In this section, we survey the existing literature on Wi-Fi
sensing using CSI data. Research work in the Wi-Fi sens-
ing field bifurcates into two main directions: fundamental
model research and application-oriented research. From a
methodological perspective, there exists a gradual shift in fo-
cus from traditional statistical modeling methods to artificial
intelligence (AI) methods.

In terms of fundamental model research, Yang et al. [7]
propose an automatic Wi-Fi human sensing learning frame-
work called AutoFi, which can achieve automatic Wi-Fi hu-
man sensing with minimal manual annotation. AutoFi can
train a robust model from low-quality CSI samples, making
it easier to use Wi-Fi sensing technology in new environ-
ments. The paper also analyzes the main gaps between ex-
isting learning-based methods and practical Wi-Fi sensing,
proposing a novel self-supervised learning framework and a
new geometric structure loss function to enhance themodel’s

transferability. Extensive experiments are conducted on pub-
lic datasets and real-world scenarios, demonstrating the high
accuracy and robustness of the AutoFi method in automatic
Wi-Fi human sensing. In another study, Hernandez and
Bulut [15] present WiFederated, a federated learning ap-
proach for training machine learning models for Wi-Fi sens-
ing tasks. This method allows for parallel training at the
edge, enabling devices to collaboratively learn and share
location-independent physical behavior features. The au-
thors demonstrate that their method diminishes the necessity
for extensive data collection at each new location, offering
a solution that is more accurate and time-efficient compared
to both transfer learning and adversarial learning solutions.
Liu et al. [16] propose a deep learning-based Wi-Fi sensing
approach using a CNN-BiLSTM architecture to identify vig-
orous activities. This architecture can simultaneously extract
sufficient spatiotemporal features of action data and establish
the mapping relationship between actions and CSI streams,
thereby improving activity recognition accuracy.

In terms of application-oriented research, several ma-
ture systems have been developed, showcasing the unique
charm of Wi-Fi sensing in various fields. Tong et al. [17]
propose FreeSense, a combination of Principal Component
Analysis (PCA), Discrete Wavelet Transform (DWT) and
Dynamic Time Warping (DTW) techniques, using for CSI
waveform-based human identification. The identification ac-
curacy of FreeSense ranges from 94.5% to 88.9% when the
number of users changes from 2 to 6. Lin et al. [18] rep-
resent WiTL, a contactless authentication system based on
Wi-Fi CSI. It is devised using a transfer learning technology,
in combination with ResNet and the adversarial network, to
extract activity features and learn environment-independent
representations. WiTL achieves a great accuracy over 93%
and 97% in multi-scenes and multi-activities identity recog-
nition, respectively.

In spite of a few existing studies ofWi-Fi-based PI tasks,
they rarely consider the feasibility in resource-constrained
environments. Therefore, we would like to combine the
latest research based on Wi-Fi sensing and AI methods to
make innovations in resource-constrained PI tasks.

3. Methodology

3.1 Channel State Information

Channel State Information (CSI) [19] is a critical compo-
nent in Wi-Fi sensing systems. It represents the combined
effects of the wireless channel’s propagation properties, in-
cluding path loss, shadowing, and multipath fading, which
are affected by the environment and the presence of objects
or people. CSI can be modeled as channel impulse response
(CIR) in the frequency domain as

h(τ) =
L∑
l=1

αle jφl δ(τ − τl), (1)

where αl and φl respectively represent the amplitude and
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phase of the l_th multipath component, τl is the time delay,
L indicates the total number of multipath components, and
δ(τ) denotes the Dirac delta function. CSI has been widely
used inWi-Fi sensing research to exploit the rich information
it contains about the surrounding environment and human
activities.

CSI can be obtained from commodity Wi-Fi devices.
When a transmitter transmits a signal x, it is received by the
receiver as y = Hx + η, where η represents environmental
noise andH represents theCSI complex-valuedmatrix. Each
element in the matrix corresponds to the channel gain be-
tween a specific transmitter-receiver antenna pair in aMIMO
system. The matrix’s dimensions depend on the number of
transmitting and receiving antennas. In addition, the CSI
matrix is also influenced by the number of Orthogonal Fre-
quency Division Multiplexing (OFDM) subcarriers. The
more subcarriers, the finer the frequency resolution, which
allows for a more accurate representation of the channel
characteristics [20].

The CSI matrix H for a system with N transmitting
antennas and M receiving antennas can be represented as:

CSIN×M =


h11 h12 . . . h1M
h21 h22 . . . h2M
...

...
. . .

...
hN1 hN2 . . . hNM


(2)

In this representation, hi j is a complex vector that represents
the channel gain between the i-th transmitting antenna and
the j-th receiving antenna. The amplitude and phase of each
hi j can be calculated as follows:

Amp(hi j) = |hi j | =
√
Re(hi j)2 + Im(hi j)2 (3)

Pha(hi j) = ∠hi j = arctan
( Im(hi j)
Re(hi j)

)
(4)

3.2 Vision Transformer

Vision Transformer (ViT) [21], [22] has emerged as a pow-
erful and flexible approach for solving various CV tasks,
inspired by the success of Transformers in natural language
processing (NLP). ViT is a type of neural network archi-
tecture that can process images by dividing them into non-
overlapping patches and treating these patches as a sequence
of tokens, similar to how Transformers process texts.

The core component of ViT is the self-attention mecha-
nism, which allows the model to learn long-range dependen-
cies between different parts of the image. This mechanism
enables ViT to capture both local and global contextual in-
formation and adaptively focus on relevant regions in the
image.

ViT has demonstrated state-of-the-art performance on a
wide range of CV tasks, such as image classification, object
detection, and semantic segmentation [23], outperforming
traditional convolutional neural networks (CNNs). The flex-
ibility and expressiveness of ViT make them a promising

approach for various CV tasks, including those that require
fine-grained visual understanding and adaptability to differ-
ent input modalities [24].

In this paper, we treat the CSI matrix as a multi-channel
“image” and attempt to address the CSI-based PI tasks with
ViT. Fromour perspective, CSI images differ from traditional
RGB images in two aspects:
(1) The weights in CSI images are evenly distributed across

all pixels, unlike conventional images that typically
have a focal point and a background. The global re-
ceptive field of ViT can better capture the features of
CSI images due to this uniform distribution.

(2) CSI images have a temporal dimension, necessitating
a focus on the relationships and changes along this di-
mension. ViT, with its unique sensitivity to positional
relationships, is well-suited to this task.

Therefore, this paper aims to explore the potential of ViT in
the realm of CSI-based classification, hoping to uncover the
unique capabilities of this technology in handling such tasks.

3.3 SimpleViTFi

As shown in Fig. 1, we propose SimpleViTFi, which is de-
signed for processing CSI images with a focus on efficient
feature extraction and classification. SimpleViTFi is inspired
by the ViT and incorporates several key components with
data flow as shown by the bold red arrows. SimpleViTFi
comprises the following main components:

Patch Embedding: The input CSI matrix X ∈

RB×A×S×T is first downsampled and divided into non-
overlapping patches along the temporal dimension, where
the dimensions represent the number of antennas(A),
subcarriers(S), and the time sequence(T) respectively. Then
the patches are linearly embedded into a higher-dimensional
feature space. A Layer Normalization operation is applied
to the embedded patches. Unlike traditional image patch
segmentation methods, we do not partition the data along
the subcarrier dimension, as we prefer the model to focus on
the temporal dimension.

Position Encoding: Learnable positional embeddings
P ∈ RS×T are added to the patch embeddings to capture the
spatial relationships between the patches in SimpleViTFi.
There are two main types of positional embeddings:
(1) Fixed Positional Embbdings follow the original method

in [25], which are initialized with a sinusoidal function.
(2) Learnable Positional Embeddings are initialized ran-

domly and then updated through backpropagation dur-
ing the training process.

The CSI dataset involves complicated spatial and temporal
relationships across different antennas and subcarriers. This
multi-dimensional complexity could pose challenges to tra-
ditional sinusoidal position encodings such as the sin-cos
method used in the Transformer model, which provides a
fixed encoding based on the position of data points in the se-
quence. In contrast, learnable positional embeddings, added
to the patch embeddings to capture the spatial relationships
between time sequences, offer a more flexible approach. By
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Fig. 1 SimpleViTFi model.

Fig. 2 Test accuracy and inference time of two position methods.

allowing the model to learn the position embeddings from
the data itself, it could enable the discovery of more intricate
or subtle patterns in the sequence order, thereby improving
its ability to identify individuals.

We compare twomethodsmentioned above: the sin-cos
method and learnable embedding. Figure 2(a) shows that the
learnable embedding achieves a more consistent high rate of
accuracy within 20 replicate experiments, as it enables the
model to adapt to the specific patterns present in theCSI data.
Although using learnable embedding increases the number
of parameters and requires additional optimization during
training, it results in a shorter inference time compared to
the other as shown in Fig. 2(b). This is attributable to the
learnable embedding being computed in parallel, whereas
the sin-cos method requires sequential computation. The
combined embeddings can be represented as X′ = X+Pexp,
where Pexp ∈ RB×A×S×T is the expanded version of P.

Transformer Encoder: The combined patch and posi-
tional embeddings are fed into a Transformer encoder, which
consists of multiple layers of multi-head self-attention and
feedforward neural networks. In the experiments that fol-
low, we employ 2 layers of self-attention and feedforward
networks.

Pooling: Following the Transformer encoder, a global
average pooling operation is performed to aggregate the fea-

tures across the sequence dimension. This operation reduces
the dimensionality of the output and prepares it for the clas-
sification head. The pooled features can be represented as
Z = mean(X′,1).

Classifier Head: The pooled featuresZ are then passed
through a LayerNormalization layer, which can be repre-
sented as:

Znorm =
Z − E[Z]√
Var[Z] + ε

, (5)

where E[.] is the expectation operation, Var[.] is the variance
operation, and ε is a small constant for numerical stability.
The normalized features Znorm are subsequently processed
by a Linear layer that maps the features to the desired number
of output classes. This can be represented as:

Y =W

(
Z − E[Z]√
Var[Z] + ε

)
+ b, (6)

where W is the weight matrix and b is the bias vector of the
Linear layer.

The SimpleViTFi architecture is designed to be
lightweight and efficient while maintaining high perfor-
mance on the task of processing and classifying CSI matri-
ces. By leveraging the strengths of both Vision Transformers
and learned positional embeddings, the SimpleViTFi model
demonstrates the robustness and adaptability to various CSI
data patterns.

4. Experiment

4.1 80MHz CSI Dataset of IEEE 802.11ac

The datasets mentioned in [1], [14] consisting of three types
of datasets applicable to activity recognition (AR), person
identification (PI), and people counting (PC), are produced
by the University of Padova. Our focus is on the subset
dedicated to PI in this paper.
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Fig. 3 Devices and users’ positions in the meetingroom.

Table 1 Measurement conditions of the dataset.

Dataset Experiment Setup:As shown in Fig. 3, the
experiments are set within a meeting room. Two pairs of
devices are strategically positioned. Specifically:

• Tx1 communicates with Rx1, establishing a line-of-
sight (LOS) condition.

• Tx2 communicates with Rx2, resulting in a non-line-
of-sight (NLOS) condition.

Additionally, two monitors, M1 and M2, are positioned to
sniff and calculate the CSI data from both communication
links. Consequently, each monitor stores two distinct sets of
CSI data, named PI-1 – PI-4 shown in Table 1.

CSI Collection Method: An iPerf3 session is estab-
lished between each pair of Tx and Rx, transmitting at a
consistent rate of 173 packets per second. This rate cor-
responds to time intervals of approximately 6ms between
each packet. The monitors configure the Nexmon-CSI ex-
traction tool [26] to sniff packets continuously. The dataset
involves 10 participants, each of whom moves individually
and randomly within the colored areas in Fig. 3.

4.2 Data Preprocessing

Taking PI2_p03 as an example, this file represents the CSI
data of Participant-3 created by Tx2 and Rx2, which is mon-
itored by M1 in NLOS condition. It is a complex matrix
of size 187264 × 256, where 256 represents the number of
OFDMsubcarriers under the 80MHzbandwidth, and 187264
represents the CSI indices of 46816 packets obtained sepa-
rately by the four antennas. We preprocess this data file as

Fig. 4 CSI amplitude matrix.

follows:
(1) Load raw data and apply a Fast Fourier Transform shift

operation.
(2) Remove invalid subcarriers and zero-sum rows from the

CSI matrix, retaining 242 subcarriers.
(3) Calculate the number of complete groups of 4-antenna

CSI data.
(4) Due to hardware artifact, negate the data from the 64th

column onwards in each group.
(5) Convert the original complex values to amplitude values

by taking the modulus.
(6) Divide the matrix into submatrices of size (4, 242,

2000) using a boundary of 2000 packets, facilitating
subsequent analysis.

4.3 Experiment Setup

To demonstrate the effectiveness of the proposed method,
we use the dataset mentioned in 4.1, and implement the
SimpleViTFi based on Pytorch. Then, we conduct extensive
experiments to evaluate the performance of SimpleViTFi
concerning classification accuracy, model parameters and
inference time of PI task.

System Design: The edge server in resource-
constrained scenarios is simulated by the PC equipped with
one NVIDIA RTX 3060 GPU. To fully evaluate the perfor-
mance of SimpleViTFi and the others, we attempt to set up
multiple experiments comprising different data sets. Four
sets of experiments are set up as shown in Table 2. Specifi-
cally:
(1) Experiment 1: Utilizing 2

3 of the PI-1 dataset as the
training set and the remaining 1

3 as the test set, this
experiment aims to validate the model’s classification
ability in handling CSI data generated from LOS con-
dition.

(2) Experiment 2: By employing 2
3 of the PI-4 dataset

for training and the rest for testing, this experiment is
designed to assess themodel’s classification abilitywith
CSI data stemming from NLOS condition.

(3) Experiment 3: This experiment combines 2
3 of the PI-

1 dataset with 1
3 of the PI-3 dataset to form the training

set, while the remaining data serves as the test set. Both
PI-1 and PI-3 generate CSI data using Tx1 and Rx1
communication link but utilize different monitors. The
primary objective is to evaluate the model’s robustness
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Table 2 Experiment setup.

Table 3 Network design of SimpleViTFi.

to variations in devices’ locations.
(4) Experiment 4: Incorporating a mixed dataset from PI-

1 to PI-4, with 2
3 used for training and the remainder

for testing, this experiment seeks to gauge the model’s
resilience under the complexities of different devices
and different monitors.
Network Implementation: The network design has been

shown in Table 3. Note that Transformer Encoder is a se-
quence of 2 attention and feed-forward layers. The atten-
tion layer uses the scaled dot-product attention mechanism
with 8 heads, and the feed-forward layer is a two-layer fully
connected network with a hidden dimension of 2048 and a
GELU activation function in between. The model is trained
with the Adam optimizer with a learning rate of 0.0001 and
a weight decay of 0.1. The loss function used is CrossEn-
tropyLoss. Themodel employs an early stoppingmechanism
during training, which halts the training process if there is
no improvement in validation loss for 8 consecutive epochs,
preventing overfitting and ensuring better generalization.

Criterion: In our experiments, we evaluate and com-
pare the models based on three key metrics: the number of

training parameters, inference time, and identification accu-
racy. The identification accuracy is denoted as the ratio of
true predicted samples and all testing samples.

Baselines: We compare our method with three tradi-
tional methods. LeNet, as one of the earliest convolutional
neural networks, has made significant contributions to the
field of image classification, setting the foundation for future
advancements [27]. ResNet18, with its innovative residual
learning framework, has further improved the performance
of deep neural networks in image classification tasks, no-
tably reducing the training error [28]. On the other hand,
GRU (Gated Recurrent Unit) has shown exceptional perfor-
mance in time series prediction due to its efficient gating
mechanisms, which handle the vanishing gradient problem
and allow for long-term dependencies [29]. In light of our
approach where we interpret the Channel State Information
(CSI) matrix as an image, and considering the substantial
temporal correlations this ‘image’ embodies, we deem it
appropriate to draw comparisons with the aforementioned
methods.

4.4 Evaluation

The proposed SimpleViTFi is compared with baselines. Fig-
ure 5 illustrates the efficiency of SimpleViTFi in compari-
son to the others. Notably, SimpleViTFi demonstrates the
shortest average inference time clocking in at 1.338 ms
and requires the least number of parameters with a total
of 1,079,923, which makes it consume the fewest compu-
tational complexity and memory usage with high efficiency
for real-time tasks.

Following this, we examine the performance of Simple-
ViTFi on PI-1 (Experiment 1). In addition to the amplitude-
based results shown in Fig. 6, we also incorporate phase-
based results shown in Fig. 7. However, the phase-based re-
sults are not as anticipated. For all four models, the accuracy
barely surpasses 25%, indicating that the models are virtu-
ally non-functional with the phase value. We believe that
the potential reasons for this could be the inherent instabil-
ity and sensitivity of phase to environment. Under complex
multipath effects, the phase undergoes multiple cumulative
changes, making it highly unstable. This heightened sensi-
tivity can lead the model to overfit, making it challenging to
capture essential features.

Returning to the amplitude-based results, as presented
in Fig. 6, SimpleViTFi outperforms the others, achieving the
highest accuracy on the test set. The box plot visualizes the
range and distribution of accuracy scores achieved by Sim-
pleViTFi and the others across multiple runs. The central
line in the box plot represents the median accuracy, which
for SimpleViTFi is an impressive 0.9566, about at least 10%
higher than the others such as 0.8525 for ResNet18. The
box itself spans from the first quartile (Q1) to the third quar-
tile (Q3), representing the interquartile range (IQR). For
SimpleViTFi, Q1 is 0.91037 and Q3 is 0.9566. This range
captures the middle 50% of accuracy scores, providing a
sense of the model’s consistency. This consistency, coupled
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Fig. 5 Train parameters and inference time per batch.

Fig. 6 Test accuracy of Experiment 1 with amplitude values. TrainSet
and TestSet consist of PI-1.

Fig. 7 Test accuracy of Experiment 1 with phase values. TrainSet and
TestSet consist of PI-1.

with the high median accuracy, underscores the robustness
of SimpleViTFi, indicating that it consistently delivers high
performance under various conditions.

In Experiment 2 shown in Fig. 8, similar trends are ob-
served. The two experiments utilize CSI data generated from
two distinct sets of devices. After training on their respec-
tive train sets, the model achieved commendable results on
their test sets, with classification accuracies exceeding 95%.
This indicates that SimpleViTFi is adept at adapting to both
LOS and NLOS scenarios. Furthermore, the results from the
NLOS condition in Experiment 2 even surpass those from
the LOS condition in Experiment 1. This suggests that the

Fig. 8 Test accuracy of Experiment 2 with amplitude values. TrainSet
and TestSet consist of PI-4.

Fig. 9 Test accuracy of Experiment 3 with amplitude values. TrainSet
and TestSet consist of PI-1 & PI-3.

Fig. 10 Test accuracy of Experiment 4 with amplitude values. TrainSet
and TestSet consist of PI-1 & PI-2 & PI-3 & PI-4.

model might be benefiting from the distinct noise character-
istics introduced by different devices.

We get similar results through Experiments 3 and 4.
Through analyzing the box plots from Fig. 6 to Fig. 10, it
is obvious that SimpleViTFi not only gets a high median
accuracy but also demonstrates consistent performance, as
indicated by the relatively small IQR, either on individual or
mixed data sets generated by different devices or acquired
by different monitors.

In conclusion, our experiments showcase the superior



384
IEICE TRANS. COMMUN., VOL.E107–B, NO.4 APRIL 2024

performance of the SimpleViTFi model in terms of both
user identity recognition accuracy and inference time. By
outperforming traditional methods, the SimpleViTFi model
demonstrates its robustness and adaptability to various CSI
data patterns.

4.5 Insights and Analysis

In the preceding subsections, we detail the architecture, Im-
plementation, and evaluation of SimpleViTFi. Although the
quantitative results indicate the model’s efficacy, it is es-
sential to dive deeper into the underlying mechanisms that
contribute to its performance. In this subsection, we try
to elucidate some of the key factors that are pivotal for the
observed results.
(1) Model Architecture: SimpleViTFi employs a ViT-

based architecture, which fundamentally differs from
traditional convolutional (such as LeNet and ResNet18)
and recurrent (such as GRU) neural networks. Sim-
pleViTFi utilizes self-attention mechanisms to process
input data. The self-attention mechanism is computa-
tionally expressed as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V, (7)

where Q, K, and V are the query, key, and value ma-
trices, respectively, and dk is the dimension of the key.
The self-attention mechanism allows each element in
the input sequence to focus on other parts, governed by
the weight calculated in the softmax term.
The self-attention mechanism’s ability to weigh and
capture relationships between different parts of the in-
put is particularly crucial for tasks involving WiFi CSI.
In the context of CSI “images” classification, these re-
lationships can be both spatial, as in different antenna
pairs, and temporal, as in different time slots. There-
fore, the self-attention mechanism, defined by the for-
mula above, enables SimpleViTFi to capture these com-
plex relationships efficiently.
On one hand, convolutional models struggle to cap-
ture the long or short-range dependencies inherent in
time series data. On the other hand, while GRU can
capture these temporal features, it computes in a time-
step manner. In contrast, the self-attention mechanism
stands out with its ability to address these challenges,
offering both flexibility and parallelized computation.
This makes SimpleViTFi highly effective and efficient
in handling tasks that involve both spatial and sequential
data.

(2) Feature Representation Capability: In traditional
CNN architectures, the receptive field is generally lo-
calized, focusing primarily on capturing local features
such as edges and textures. In contrast, SimpleViTFi
leverages self-attention mechanisms to offer a dynamic
receptive field, which allows the model to adaptively
adjust its focus and capture features at various scales

Fig. 11 Loss curve of incremental SimpleViTFi and normal SimpleViTFi.

and complexities. The dynamic nature of its receptive
field enables SimpleViTFi to integrate both local and
global information more effectively, thereby providing
an extra layer of flexibility and power in representing
features.

(3) Training and Implementation Efficiency: A signifi-
cant advantage of SimpleViTFi lies in its efficiency. By
utilizing only two transformer layers, the model inher-
ently has fewer parameters as shown in Fig 5. This
streamlined architecture not only expedites the training
process but also ensures a swift inference time. Fur-
thermore, the inherent parallel computation capability
of the architecture further boosts the inference speed.
As a result, SimpleViTFi boasts the shortest inference
time among the four models, making it highly suitable
for real-time applications.

(4) Robustness to Noise and Deformation: SimpleViTFi
incorporates dropout layers in both the FeedForward
and Attention modules. Dropout is a regularization
technique that helps prevent overfitting, especiallywhen
the model might be exposed to sharp noise features in
the data. Meanwhile, self-attention mechanism offers
a more adaptive response to noise compared to other
methods. Furthermore, the parallel processing capa-
bility ensures that SimpleViTFi remains resilient even
when faced with temporal distortions in the data.

4.6 Incremental Learning

Based on the SimpleViTFimodel trained in Experiment 3, we
implement incremental learning [30]–[32] by training with
a small amount of data from PI-4. As presented in Fig. 11,
the loss curve of the incremental learning model converges
faster than the normal one. Meanwhile, the accuracy of the
incremental learningmodel is higher under the same training
conditions.

5. Conclusion

In this paper, we introduce a novel Wi-Fi sensing method,
SimpleViTFi, designed for Wi-Fi-based PI in cross-device
sensing scenarios. To address the limitations of existing al-
gorithms, we develop a lightweight neural network model
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Fig. 12 Test accuracy of incremental SimpleViTFi and normal Simple-
ViTFi.

based on ViT with learnable embedding. The original CSI
data are generated by 2 pairs of Netgear and TP-Link Wi-Fi
devices, which enable a single antenna to enforce the com-
munication over a single spatial stream. The packets trans-
mitted over-the-air by the Tx are monitored by 2Asus routers
equipped with 4 antennas and then form 4 folders contain-
ing both LOS and NLOS scenarios. Subsequently, we train
the proposed SimpleViTFi under 4 experimental conditions,
utilizing data generated by different devices or acquired by
different monitors. Extensive experiments demonstrate that
SimpleViTFi achieves state-of-the-art performance in test
accuracy, inference time and model parameters compared to
baseline methods (LeNet, ResNet18 and GRU). Finally, we
experiment with incremental learning to obtain a new model
at a low cost. Here, a SimpleViTFi model initially trained
on one set of devices is subjected to incremental training
on another set of devices with a small amount of additional
data. The results show that better accuracy and faster con-
vergence are gained compared to training directly with data
from another set of devices.

In the future, we have several avenues of exploration
to further enhance our research. Firstly, we plan to propose
a new method of position encoding that is better adapted
to the CSI-based classification. Our experiments have un-
derscored the significant impact of this aspect on the results.
Furthermore, we aim to delve deeper into the potential of uti-
lizing various CSI parameters, such as phase values, Doppler
shifts and AoA, to improve the model’s performance. In ad-
dition, we intend to test our model onWi-Fi devices based on
OpenWrt and then conduct pilot tasks in substations within
the State Grid of China. By pursuing these avenues, we hope
to further refine our model and broaden its applicability, ul-
timately contributing to the advancement of Wi-Fi sensing
technologies.
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