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SUMMARY In this paper, we consider precoder design for wireless
data aggregation in sensor networks. The precoder optimization problem
can be formulated as minimization of mean squared error under transmit
power and block diagonal constraints. We include statistical correlation
of data into the optimization problem, which is appeared in typical ap-
plications but is ignored in conventional designing methods. We propose
precoder optimization algorithms based on projected gradient descent with
projection onto the constraint sets. The proposed method can achieve better
performance than the conventional methods that do not incorporate data
correlation, especially when data are highly correlated. We also extend the
proposed approach to the context of over-the-air computation.

key words: wireless data aggregation, precoder optimization, data corre-
lation, projected gradient descent, over-the-air computation

1. Introduction

Internet-of-Things (IoT)-based automatic operations in Sth
and 6th generation communication systems such as intelli-
gent agriculture and industrial surveillance are supported by
environmental data collection by distributed multiple sen-
sors [1], [2]. The sensors measure environmental data such
as temperature, humidity, and amount of chemicals, and
transmit the data to a data aggregator (or central server)
that performs data processing for the application via wire-
less communication. The process is called wireless data
aggregation [3].

Data collected by sensors often have statistical corre-
lation in typical applications of wireless data aggregation
[4], [5]. One of the correlations is spatial correlation, where
data collected by sensors located in close geographically are
also close in the sensing values. There are also correla-
tions in data types and temporal correlation. For example,
higher temperatures lead to lower humidity and temperatures
change slowly during the day. Such correlation is often used
in signal processing to improve system performance [6].

Improvement of communication quality is essential for
constructing reliable IoT applications using wireless data
aggregation. The data aggregator is in general equipped
with multiple receive antennas and an advanced computa-
tion system for data processing. The communication system
between the aggregator and sensors can be modeled as a
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multiple-input multiple-output (MIMO) channel [7]. More
advanced sensor devices transmitting vector values and with
multiple transmit antennas such as drones have been recently
considered [8], [9]. The system is then modeled as a multi-
user MIMO channel. In the system, the received data at the
aggregator deteriorate due to channel conditions and addi-
tive noise in general. To reconstruct the transmitted data as
correctly as possible, precoder and decoder must be applied
for the transmitted and received signals, respectively [10].

The precoder and decoder designing problem for wire-
less data aggregation can be formulated as a nonconvex opti-
mization problem for deriving a precoding matrix with block
diagonal structure and a decoding matrix under transmit
power constraint. Huang et al. [11] proposed a non-iterative
optimization method that first solves a convex optimization
problem by ignoring the block diagonal constraint and data
correlation, and then performs block diagonalization. Huh
etal. [12] originally proposed a precoder design for over-the-
air computation (AirComp) [13] but it can be applied to this
problem. The precoder optimization problem in this method
can be divided into multiple convex optimization problems
by ignoring spatial correlation of data. The problem is iter-
atively solved by block coordinate descent method.

In these conventional methods, however, data correla-
tion is ignored in the formulation of optimization problems,
though it appears in typical applications of wireless data
aggregation. In other words, the precoder and decoder de-
rived from the conventional methods may not be suitable for
practical situations of wireless data aggregation. To further
improve communication quality, it is expected to formulate
the optimization problem that can appropriately incorporate
data correlation and construct an algorithm for solving the
problem.

For these demands, this paper aims to develop a novel
precoder and decoder design where data correlation is appro-
priately taken into account. The objective is to achieve better
detection performance of transmitted data than the conven-
tional methods ignoring data correlation, and to make the
system more suitable for practical scenarios. We first formu-
late an optimization problem including statistical correlation
of data. The problem is nonconvex minimization problem
under the block diagonal constraint and the transmit power
constraint. To solve the problem, we employ projected gra-
dient descent method that uses projection onto the constraint
sets. The proposed method is expected to be suitable for
practical environments by adopting data correlation in the
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design and by precisely satisfying the constraints. Perfor-
mance of the proposed method is evaluated on synthetic and
real environmental data [14].

This paper also extends the idea of the proposed method
to the context of AirComp [13]. AirComp enables simultane-
ous transmission and processing of data to achieve immediate
responsiveness in IoT applications. Sensor nodes simulta-
neously transmit signals over the same frequency band. The
aggregator receives the sum of the transmitted signals with
the analog-wave superposition property of wireless multiple-
access channels and obtains function values that can be di-
rectly calculated from the received sum such as arithmetic
mean, weighted sum, or Euclidean norm. The calculation
of such functions is the typical objective in many applica-
tions of sensor networks including federated learning which
is known as a recent distributed machine learning technique
[15]. Also in AirComp, however, there occurs aggregation
error, i.e., the error between the actual sum of transmitted
data and the aggregated signals on the air, due to channel con-
ditions and additive noise. Therefore, precoder and decoder
are required to reduce the aggregation error. This paper ap-
plies the proposed approach to the context of AirComp and
evaluates its performance.

2. Preliminalies
2.1 Notation

In the rest of the paper, we use the following notation. Super-
scripts (-)T and (-)H denote the transpose and the Hermitian
transpose, respectively. The zero vector, zero matrix, and
identity matrix are represented as 0, O, and I, respectively.
Euclidean (£;) norm is represented by || - ||. The real Gaus-
sian distribution NV (0,X) and complex circularly symmetric
Gaussian distribution CAN(0, X) have mean vector 0 and co-
variance matrix X. The expectation and trace operators are
E[-] and Tr[-], respectively. Hadamard product, i.e., element-
wise multiplication of matrices, is represented as ©.

2.2 System Model

Assume a wireless data aggregation system with a single
aggregator equipped with r receive antennas and L sen-
sor nodes equipped with m transmit antennas, as illustrated
in Fig. 1. Each sensor node s; (i = 1,2,...,L) obtains n-
dimensional data, which are expressed as a vector x; € R".
The data vector x; is composed of, for example, n differ-
ent types of data observed by a multi-modal sensor, such
as temperature and humidity at the same time, or sequential
data observed at a sensor, such as temperatures at n different
times. Each node transmits a linearly precoded data vector

c; =A;x; € cm (1)

to the aggregator, where A; € C™" is a precoding matrix.
The channel matrix in terms of node s; and the aggregator
is assumed to be H; € C"™™. The aggregator receives the
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Fig.1  System model for wireless data aggregation.

Fig.2  Sensor positions and room temperature of real data [14].

sum of the transmitted data from all the nodes. The received
signal is given by

L L
Yy = ( H[Ci) +n = ( H[Aixi +nc Cr, (2)
i=1 i=1

1

1

where n is a complex additive Gaussian noise vector and is
independent of x;. The equivalent model can be expressed
as

y = HAx +n, &)
where x = [xT,....x]|",H = [Hy,...,H. ]| € C™"L and
Aq o
A - .. ) c CmLXI’LL, (4)
o A

i.e., the precoding matrix A has a block diagonal structure.

The aggregator reconstructs the original data vector x
by linearly multiplying a decoding matrix W € C"™"*L with
the received signal y. The estimated data £ is given by
£ =WHy.

2.3 Assumptions on Correlation

Data collected by sensors tend to have statistical correlation
in many applications. Figure 2 represents an example of real
sensing data [14], where distributed sensors collect environ-
mental data such as room temperature and humidity. From
Fig. 2, we can see that sensors that are close in distance have
close sensing values, that is, there is spatial correlation in
sensing data. Moreover, it is also known that there are cor-
relation between different data types (e.g., temperature and
humidity as shown in Fig. 3) and temporal correlation [4].
With these facts, in this paper, we assume a correlation
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(a) Temperature (b) Humidity

Fig.3  Example of temperature and humidity data [14].

model for the data vector x. The data vector x is assumed to
follow Gaussian distribution N (0, K). The positive definite
covariance matrix K € R"2*"L has the following structure:

Ky K -+ KL
Ky Ky --- Ky

K=|. . - ©)
K. K -+ Kpp

The diagonal block matrix K;; € R™" corresponds to cor-
relation in sensing data of node s;. When the data vector x;
is composed of n different types of data, the block includes
correlation between the data types. When x; is composed of
data at n discrete times, the block includes temporal corre-
lation. The non-diagonal block matrix K;; (i # j) includes
spatial correlation between nodes s; and s;. Data encoding is
not assumed in this paper to retain data correlation. It should
be noted that the data cannot be whitened in each sensor due
to spatial correlation among sensors.

In practical situations, the covariance matrix K can be
estimated by using sample covariance matrix with respect
to a part of the data. We will show the results of using the
sample covariance matrix in Sect. 3.2.3.

We also assume that the noise vector n follows n ~
CN(0,S). The positive definite covariance matrix § € C"™"
represents the correlation of the noise vector.

2.4 Precoder Optimization Problems

In this paper, we explore the precoding matrix A and decod-
ing matrix W that minimize mean squared error (MSE) in
terms of the original data vector x and the estimated vector
X. We name the context that aims to aggregate the original
data vector x full aggregation system. We assume that the
aggregator executes the optimization process of the precoder
using all sensors’ information and distributes the optimized
precoder for each sensor.

The precoding matrix is required to have a block diag-
onal structure (4). This corresponds to the following con-
straint CO:

(C0) A eB™, (6)

where B/ is the set of complex block diagonal matri-
ces with L diagonal blocks of m X n matrices. In addition,
we consider a constraint on transmit power. We here em-
ploy the constraint that the total transmit power of all nodes,
E[||Ax]|?], is fixed to the constant P, i.e.,
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Table 1

Sect. Context
3 Full aggregation
4 Full aggregation
5 AirComp

Precoder optimization problems in each section.

Constraints
total transmit power (C1)
transmit power /sensor (C2)
total transmit power (C1)

(Cl) E[||Ax|]*] = P. 7

Another constraint can be considered and will be discussed
later. Therefore, the optimization problem under the above
two constraints CO and C1 is summarized as

(1) minimizes w E [||f - x||2]
s.t. E[|Ax|*] = P, A e B, W e C"™L,
(3)

The problem 1 is a nonconvex optimization problem so
that it is difficult to solve analytically in general.

In the following, we use the decoding matrix that mini-
mizes the MSE under fixed A, i.e., minimum MSE (MMSE)
decoding matrix. The MSE is represented by

MSE =E [||# - x||*| = Tr[K + WHHAKAYH"W
+WHSW - WHHAK - KAPHYW].  (9)

The MMSE decoding matrix W(A) can be obtained by the
stationary condition IMSE/OW = 0 and is given by

-1
W(A) = (HAKAHHH + s) HAK. (10)
By substituting it into the problem # 1 and using Woodbury

matrix identity, we obtain the following precoder optimiza-
tion problem under the constraints CO and C1:

(P1’) minimizes Tr

-1
(K" +AHHHS"HA) }
s.t. E[||Ax||*] = P, A € By™", (11)

An algorithm for solving the problem 1’ is derived in
Sect. 3. This paper also includes other problem formulations
for precoder optimization. We can replace the constraint C1
in the full aggregation system with another practical power
constraint; transmit power constraints per sensor, which is
discussed in Sect. 4. Moreover, we can deal with the precoder
optimization problem for the context of AirComp as shown
in Sect. 5. The constraint CO is still required in these cases.
Table 1 summarizes the organization of the paper.

3. Precoder Optimization Algorithm under Total
Transmit Power Constraint

In this section, we derive an algorithm for solving the prob-
lem £1’ and evaluate the performance of the algorithm.

3.1 Derivation

The precoder optimization problem #1” is still difficult to
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solve analytically because it includes the block diagonal con-
straint of the precoder. The problem cannot be separated into
the problems in terms of each block A; due to the existance
of K.

Therefore, we propose a precoder optimization algo-
rithm based on a projected gradient descent method that
does not require any assumption of uncorrelation of data.
The proposed algorithm allows precoder design to take the
block diagonal constraint CO and the total transmit power
constraint C1 into consideration by using projection onto
the constraint sets. The algorithm is derived from the pre-
coder optimization problem #1’ including the covariance
matrix K of the data so that it can appropriately incorporate
data correlation.

The proposed algorithm iterates gradient descent and
projection onto the constraint sets. At rth iteration (f =
1,2,...,J), the following four steps are executed:

Step (A) Calculate the gradient matrix G/~ of the MSE in
terms of AC=1),

Step (B) Update A”~1 by using gradient descent method
and obtain B®),

Step (C) Project B® onto the block diagonal constraint set
B/ and obtain c®,

Step (D) Project C*) onto the total transmit power constraint
set and obtain the estimate A®).

In Step (A), the gradient matrix G~V can be calculated
from the cost function of (11) as

GV =v, (Tr [F(A)_l]) la=ac-v, (12)

where F(A) = K~' + AHHUS™'HA. Tt can be obtained by
using automatic differentiation mechanisms in neural net-
work frameworks or some matrix calculus [16].

In Step (B), the update equation is given by

B® = AG-D _ ,uG(t_l), (13)

where u € R is the step-size parameter and y > 0.

In Step (C), the projection onto the block diagonal con-
straint set B7”" is performed by Hadamard product of B
and a mask matrix M € B}>". The mask matrix has all 1
elements in the block diagonal matrices and O for the other
elements. The projection is given by

cY=BYoM. (14)

In Step (D), the total transmit power E[||Ax||?] can be
expanded as E[||Ax||?] = Tr[AK A"], so that the projection
to satisfy C1 is given by

P
AD = c® L 15
Tr [COK(CO)H] (13

The proposed method is summarized in Algorithm 1.
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Algorithm 1 Precoder Optimization Algorithm under Total
Transmit Power Constraint
Input: A© ¢ BY™" satisfying transmit power constraint
Output: AV) e By
1. forr=1,2,..., J do

2 GV = VA(TH{F(A) " Dy g1
3 B®W=A6-D_ gD
4. CcW=BOoM
. O _-_ct) [P
> R \/ Tr[CK(C)H]
6: end for

The MMSE decoding matrix can be obtained by substituting
AY) into (10). The main factor of the computational costs
is gradient calculation in Step (A). This is required in each
step so that the complexity is comparable to the conventional
iterative method based on [12] and is J times the order of
the conventional non-iterative method based on eigenvalue
decomposition [11].

3.2 Performance Evaluation
3.2.1 Settings

In this section, we evaluate estimation performance with the
precoder obtained by the proposed algorithm via numerical
evaluation. All the evaluations were implemented by Julia
language. We used the automatic differentiation mechanism
in Flux library for deriving the gradient matrix in Step (A).
The number J of iterations of the proposed methods are set
to yield sufficient convergence in each experiment.

The covariance matrix S of the noise vector was set
to S = o2I, where o2 is the noise variance. Signal-
to-noise ratio (SNR) in the following results is defined as
SNR = E[||Ax|?]/E[||n||*)] = P/(rc?). Each element of
the channel matrix H was generated from CN(0, 1). We cal-
culated the estimation of MSE in the following experiments
by randomly generating H over 100 times.

We employed three baseline algorithms for comparing
the performance with that of the proposed algorithm. The
method shown as “Random” in legends is a random pre-
coding method, where each element of the precoding ma-
trix follows CN(0, 1) and where the precoding matrix has
a block diagonal structure and is normalized to satisfy the
total transmit power constraint. The method of Huang et
al. [11] is shown as “Huang” in legends. The method shown
as “Huh” in legends is the precoding algorithm inspired by
[12], whereas the original proposal of Huh et al. [12] is for
the context of AirComp. For sufficient convergence of the
method [12], the number of iterations of the method was set
to 250 except for Fig. 6, where it was set to 300.

3.2.2 Evaluation on Synthetic Data
We first evaluate the performance on synthetic data. In

this subsection, the following synthetic correlation model is
assumed:
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Fig.4 MSE vs. the number of sensor nodes (Alg. 1), where
(n,m,r,a, P,SNR) = (2, 2,20,0.75, 20, 20(dB)).

1 a (12 . anL—l
a 1 a N
2 . nlL-3
K = a a 1 a , (16)
anL—l anL—Z anL—3 . 1

where a is a correlation parameter and 0 < a < 1. The
larger a shows the stronger correlation of data. This model
corresponds, for example, to the case where sensor nodes are
arranged in a row with equal spacing in order of sensor ID,
or the data vector x; is composed of sequential data sampled
at equally spaced times with correlation according to time
interval.

Figure 4 shows MSE values (9) obtained by the pre-
coder optimization methods in terms of the number L
of sensor nodes. The system parameters were set to
(n,m,r,a,P,SNR) = (2,2,20,0.75,20,20(dB)). The total
transmit power P was assumed to be constant regardless of
the number of sensors. The number of iterations and step-
size parameter of the proposed algorithm were J = 5000 and
u = 0.5, respectively. In the cases of L = 2,4,...,10, there
is little difference between the performance of the proposed
method and those of the conventional methods. However, it
can be seen that the performance difference increases as the
number of sensor nodes increases. In other words, the pro-
posed method can achieve better performance for large-scale
sensor networks.

Figure 5 shows MSE ratio obtained by the precoder op-
timization methods when the correlation parameter a varies
as a = 0,0.1,0.2,...,0.9. The MSE ratio means the ra-
tio of MSE values (9) of methods to that of the proposed
method. For example, the MSE ratio 2 means that the
MSE value of the method is twice the MSE value of the
proposed method. The higher the value of the MSE ratio,
the worse the performance of the method with respect to
the proposed method. The system parameters were set to
(n,m,r,L,P,SNR) = (2,2,20,20,20,20(dB)). The number
of iterations and the step-size parameter of the proposed al-
gorithm were J = 5000 and u = 0.5, respectively. From
the figure, as the correlation parameter a increases, the MSE
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Fig.5 MSE ratio vs. correlation parameter a (Alg. 1), where
(n,m,r, L, P,SNR) =(2,2,20, 20, 20, 20(dB)).

Table 2  Example of real data [14].
date time id  temperature  humidity  light
2004-02-28  03:16:3 1 19.3024 38.4629  45.08
2004-02-28  06:16:0 1 19.1652 38.8039  45.08

ratio of the three conventional methods also increases. The
three baseline algorithms do not incorporate data correlation
but the proposed algorithm appropriately incorporates it so
that the proposed method achieves better performance, espe-
cially in the case where the correlation parameter a is large,
i.e., the data are highly correlated.

3.2.3 Evaluation on Real Data

In this subsection, we evaluate the performance on real data
sensors placed indoors collected. We have used Intel Berke-
ley Research Lab Sensor Data [14], where 54 sensors placed
in the laboratory collect environmental data from February
28, 2004 to April 5. A part of the data is shown in Ta-
ble 2. We have removed missing values and picked up the
daily average of temperature and humidity data (data from
L = 47 sensors remained and n = 2). The sample covariance
matrix K was calculated by using daily average data from
February 28 to March 3. We used the data on March 4 and
5 as the original data vector x. The mean of the data was
preprocessed to become zero.

We have calculated the average of squared errors || —
x||? obtained by the precoder optimization methods. Figure 6
shows the performance in each SNR. The system parameters
were set to (m,r, P) = (2,141,30). The number of iterations
and the step-size parameter were J = 10000 and u = 15,
respectively. The result of “Huh” is removed from the figure
because it shows considerably worse performance than the
other methods. From Fig. 6, the proposed method shows
comparable or better MSE performance than the method
of Huang et al. It is confirmed that the proposed method
performs better also in realistic situations with correlated
data.

It should be noted that the proposed method may not
necessarily perform well with the sample covariance matrix
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Fig.6 MSE vs. SNR on real data [14] (Alg. 1), where (m, r, P) =
(2, 141, 30).

if the statistical properties of the data vary rapidly, or if
sufficient data for estimating the true covariance matrix are
not available for constructing the sample covariance matrix.

4. Precoder Optimization Algorithm under Transmit
Power Constraints per Sensor

This section deals with the precoder optimization problem
under transmit power constraints per sensor.

4.1 Derivation

In many applications, sensor network is composed of small
sensors with small batteries so that it requires severe power
constraint per sensor. The transmit power of sensor s; (i =
1,...,L)can be expressed as E[||A;x;||?], because the trans-
mit signal is (1). We employ the constraint that the transmit
power of sensor s; is fixed to the constant P;, i.e.,

(C2) E[|lAixi||P1=P:i(i=1,...,L). (17)

The precoder optimization problem in this case is under
the block diagonal constraint CO and the transmit power
constraints per sensor C2, and is summarized as

(2) minimizeyq Tr

(K-l + AHHHS‘IHA)_I}

s.t. A e B E[|Aix|* =P (i=1,...,L).
(13)

We propose a precoder optimization algorithm under
transmit power constraints per sensor based on the projected
gradient descent method, which is derived from the same
approach as in Sect.3. The only different point from the
previous optimization problem #1’ is the transmit power
constraint. The transmit power per sensor can be expanded
as E[||A;x;]|?] = Tr[A,-Kl-AlH]. We replace Step(D) of the
previous algorithm, the projection onto the transmit power
constraint set, with the projection to satisfy C2:
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Algorithm 2 Precoder Optimization Algorithm under Trans-
mit Power Constraints per Sensor

Input: A© ¢ B satisfying transmit power constraint
Output: AVY) ¢ By
1: fort=1,2,...,J do

2 G = VA(TIF(A) "Dl 4q0-0
3 BW=A0-D_ ;G-
4 CcO=BYoM
5: fori=1,2,...,Ldo
6: A(t) — C(t> P
' ‘ ' Tr[c(.”K--(C“))H]
i it i
7. end for
8: end for

P;

Tr [cg”Kﬁ (Cﬁ’))ﬁ] ’

AV = (19)

where Af.t) € C™" and Cgt) € C™" are the diagonal block

matrices of A® and C®, respectively. The gradient descent
in Step (A) and (B) and the projection onto the block diagonal
constraint set in Step (C) are the same as Algorithm 1. The
proposed precoder optimization algorithm under transmit
power constraints per sensor is summarized in Algorithm 2.

4.2 Performance Evaluation

We evaluate estimation performance with Algorithm 2 on
synthetic data. Most of the experimental settings are the
same as in Sect.3.2.1 and 3.2.2. The synthetic correlation
model (16) was assumed. Transmit power of all sensors
was set to the constant P; = Py. The conventional method
of Huang et al. [11] cannot be applied to problem with the
transmit power constraints per sensor so that it is removed
from the following results.

Figure 7 shows MSE values (9) in terms of the num-
ber L of sensor nodes. The system parameters were set to
(n,m,r,a, Pp,SNR) = (2,2,40,0.85,5,30(dB)). The num-
ber of iterations and the step-size parameter of Algorithm 2
were J = 50000 and u = 0.5, respectively. The proposed
method achieves the lowest MSE when L = 2 to 18. When
L = 20, however, it shows the same MSE performance as
the conventional method of Huh et al.

Figure 8 shows MSE ratio when the correlation param-
eter a varies as a = 0,0.1,0.2,...,0.9. The system parame-
ters were set to (n,m, r, L, Py, SNR) = (2,2,20,20,1,20(dB)).
The number of iterations and the step-size parameter of Al-
gorithm 2 were J = 5000 and p = 0.5, respectively. From
Fig. 8, the MSE ratio in terms of the method of Huh et al.
is almost one for any value of a although it is never less
than one. This means that there is only a slight performance
difference between the proposed method and the method of
Huh et al. when L = 20. By comparing Fig. 8 with Fig. 5, it
can be seen that the proposed approach does not necessarily
yield a large performance difference over the conventional
method under the power constraints for each sensor.

The performance behavior of the proposed method in
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Fig.8 MSE ratio vs. correlation parameter a (Alg. 2), where
(n,m,r, L, Py,SNR) = (2,2, 20,20, 1,20(dB)).

Figs.7 and 8 is different from the results in Sect. 3.2.2. This
can be interpretable by the difference between Algorithms 1
and 2. The most important contribution of the proposed
algorithms over the conventional methods is the incorpora-
tion of correlation, especially spatial correlation included in
K;;(i # j), into the algorithm design. In Algorithm 1, infor-
mation on the matrices K;;(i # j) is included in two steps:
the gradient descent step (Step (B)) and the projection step
(Step (D)) onto the transmit power constraint set. This is
considered to be the reason for the large performance dif-
ference from the conventional methods. On the other hand,
in Algorithm 2, it is included only in the gradient descent
step. Therefore, the advantage of using the information of
the matrices K;;(i # j) is more prominent in Algorithm 1.

5. Precoder Optimization Algorithm for Over-the-air
Computation

The same idea as the proposed algorithms can be applied to
precoder design in the context of AirComp [13].
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5.1 Derivation

Typical functions required in applications of sensor networks
can be directly calculated by the sum of transmitted data from
sensors [17]. To calculate such a function at the aggregator,
it requires obtaining the sum s = 25‘:1 x; = Ox € R”
as correctly as possible, where Q = [I,...,I] € R™>"L,
Therefore, the objective for AirComp is to design precoder
and decoder that minimizes MSE in terms of the sum s
instead of the data vector x.

The received signal in the case of AirComp is also given
by (2). We suppose the assumption on data correlation as
in Sect.2.3. In addition, we assume the use of an MMSE
decoder for AirComp [18], that is, the estimate § of the sum
is given by

-1
§ = QKAMH! (HAKAHHH + s) y. (20)
The MSE in terms of the sum can be calculated as

E[|I$ - s||?] = Tr [Q (K-l + AHHHS‘IHA)_l QT]
21

by using Woodbury matrix identity.

The block diagonal constraint CO of the precoder is
required in this case because the received signal model is the
same as in Sect. 3. In addition, we consider the total transmit
power constraint C1. Note that the transmit power constraint
per sensor is also applicable. The precoder optimization
problem for AirComp under the constraints CO and C1 is
then given by [18]

-1
(P3) minTr [Q (K—1 + AHHHS—IHA) QT]
s.t. E[|Ax|*] = P, A € B/, (22)

The constraints are the same as for the previous problem
P1’ and the difference from $1’ is only the cost function.
Therefore, the algorithm for solving $3 can be constructed
in the same way as Algorithm 1 except for the gradient
calculation step, Step (A). The gradient calculation step is
formulated from the cost function of (22) as

GV = VA(Tr [T(A)]) g pe-0s (23)

where T(A) = Q (K™' + AHHHS_IHA)71 Q'. The algo-
rithm is summarized in Algorithm 3.

5.2 Performance Evaluation

We evaluate detection performance of Algorithm 3 on syn-
thetic data. Figure 9 shows MSE values of AirComp in terms
of the number L of sensor nodes. The synthetic correlation
model (16) was used and the system parameters were set
to (n,m,r,a, P,SNR) = (2,2,20,0.9,20,30). The number of
iterations and the step-size parameter were J = 50000 and
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Algorithm 3 Precoder Optimization Algorithm for AirComp

Input: A© ¢ BZ”X" satisfying transmit power constraint
Output: AY) e prn
1: fort=1,2,...,J do
2 GUTV = VAT [T(A)D4_ g1
3- B® = A=) _ yGgt-D
4. CYW=BOoM
5
6:

O=ct) | P _____
Atl=cC Tr[CK(C1)H]

end for

0 —e— Proposed
10"  |[——Random
—*—N.-K.
—o—Huh
107t
1]
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1074}
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Fig.9  MSE vs. the number of sensor nodes (Alg. 3), where
(n,m,r,a, P,SNR) = (2,2,20,0.9, 20, 30).

u = 0.5, respectively. We used three baseline algorithms
for AirComp, a random precoding method (“Random”), the
method of Nakai-Kasai and Wadayama [18] (“N.-K.”), and
the method of Huh et al. [12] (“Huh”). The method of
Nakai-Kasai and Wadayama [18] is a non-iterative optimiza-
tion method for the context of AirComp, which is similar to
the method of Huang et al. [11]. This shows good perfor-
mance when the system is overloaded. The proposed method
achieves the lowest MSE among the methods. The proposed
precoder optimization using correlation effectively performs
also in the context of AirComp.

6. Conclusions

This paper has considered precoder design in wireless data
aggregation using statistical data correlation that appeared in
typical applications of sensor networks. We introduced co-
variance matrix of data into the precoder optimization prob-
lem and proposed novel algorithms on the basis of projected
gradient descent method. The proposed methods achieve
better performance than the conventional precoder optimiza-
tion algorithms that ignore data correlation. We have also
proposed the precoder optimization algorithm for the context
of AirComp and it shows better performance. From these
results, the proposed method enables superior precoder de-
sign by appropriately incorporating data correlation. Future
work includes the combination of the proposed algorithm
with federated learning and its performance evaluation.
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