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PAPER
Low Complexity Overloaded MIMO Non-Linear Detector with
Iterative LLR Estimation

Satoshi DENNO†a), Senior Member, Shuhei MAKABE†, Nonmember, and Yafei HOU†, Senior Member

SUMMARY This paper proposes a non-linear overloaded MIMO de-
tector that outperforms the conventional soft-input maximum likelihood
detector (MLD) with less computational complexity. We propose iterative
log-likelihood ratio (LLR) estimation and multi stage LLR estimation for
the proposed detector to achieve such superior performance. While the iter-
ative LLR estimation achieves better BER performance, themulti stage LLR
estimation makes the detector less complex than the conventional soft-input
maximum likelihood detector (MLD). The computer simulation reveals that
the proposed detector achieves about 0.6 dB better BER performance than
the soft-input MLD with about half of the soft-input MLD’s complexity in
a 6 × 3 overloaded MIMO OFDM system.
key words: overloaded MIMO, non-linear detector, soft-input decoding,
noise cancellation, ordering, complexity reduction

1. Introduction

Communication speed has been raised to about Gbps by us-
ingmany cutting-edge techniques even inwireless communi-
cation systems. Among them, multiple input multiple output
(MIMO) spatial multiplexing has been playing an important
role in enhancing communication speed [1]–[3]. For the
enhancement, many MIMO techniques have been proposed
such as serial interference cancellers based on the minimum
mean square error (MMSE), precoders, iterative decoders,
and so on [4]–[7]. To multiply the throughput enhancement,
lots of antennas are installed on the base station in the 5G
cellular system, which is called “Massive MIMO” [8]–[10].
While those techniques achieve superior performance [11]–
[13], another approach has been investigated that multiplexes
more signals than a degree of freedom for enhancing the
transmission speed. For instance, non-orthogonal multiple
access [14]–[19], faster-than-Nyquist (FTN) [20], and over-
loaded MIMO spatial multiplexing [21] have been investi-
gated, and their superior performances have been revealed. If
a transmitter has many antennas, overloadedMIMOmakes it
possible to increase the number of spatially multiplexed sig-
nal streams to that of the antennas on the transmitter in spite
of the number of the receive antennas. Since many anten-
nas are installable on base stations in the current and future
cellular systems, overloaded MIMO can be regarded as one
of promising techniques to increase the download through-
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put. Since overloaded MIMO imposes receivers to handle
a detection problem in underdetermined systems, non-linear
detectors have been mainly considered [21]–[29]. Linear
detectors have been investigated for complexity reduction
such as lattice reduction-aided MMSE receivers [30]. Itera-
tive receivers in conjunction with linear detectors have been
proposed to improve the transmission performance [31]. Al-
though the iterative receives achieves the transmission per-
formance comparative to the soft-input maximum likelihood
detector (MLD), many iterations needed for the performance
delays the signals to be output from the detectors, which in-
creases latency in networks.

This paper proposes a non-linear overloaded MIMO
detector that outperforms the soft-input MLD∗. The pro-
posed detector can be implemented with less computational
complexity than the soft-input MLD. The proposed detector
applies two types of techniques for achieving better trans-
mission performance with less complexity. One is to achieve
better transmission performance, which consists of an iter-
ative log-likelihood ratio (LLR) estimation with noise can-
cellation and an ordering technique. The other is to reduce
the complexity for making the proposed detector less com-
plex than the soft-input MLD, which is named multi stage
noise cancellation. Although the proposed detector iterates
LLR estimation with noise cancellation for performance im-
provement, the proposed detector achieves that superior per-
formance within two iterations, which limits the increase in
latency and in complexity.

Throughout the paper, j, c∗, <[c], and = [c] represent
the imaginary unit, complex conjugate, a real part, and an
imaginary part of a complex number c. Superscript T and
H indicate transpose and Hermitian transpose of a matrix or
a vector, respectively. tr[A] and E [c] indicate a trace of a
matrix A and the ensemble average of c,

2. System Model

We assume that a transmitter with NT antennas sends sig-
nals for a receiver with NR antennas. When the transmitter
and the receiver are placed on a base station and a terminal
respectively, this signal transmission corresponds to that in
a downlink. Since massive MIMO is currently applied in
the wireless systems, the number of the antennas on the base
∗A part of the ideas proposed in the paper has been presented

in the conference paper [32]. However, the detail of that part is
brushed up in this paper. In addition, this paper proposes the other
ideas that were not included in the conference paper.
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station is usually bigger than that on the terminal, which cor-
responds that the number of the transmit antennas is greater
than that of the receive antennas, i.e., NT > NR, in down-
links. For high speed signal transmission, we apply orthogo-
nal frequency division multiplexing (OFDM) to the wireless
system. The information bit stream is fed to a channel en-
coder and its output bit stream is provided to a modulator via
an interleaver. The modulator output signals are provided
to the NF point inverse fast Fourier transform (IFFT) for
OFDM. The IFFT output signals are fed to a serial-parallel
converter (SP) after the cyclic prefix addition. The NT signal
streams from the SP converter are provided to the NT anten-
nas, respectively. The signals transmitted from the antennas
are traveling fading channels and received at the antennas on
the receiver with the NR antennas. All the received signals
are fed to the NF point FFT. Let Y(k) ∈ CNR represent a
received signal vector containing the kth subcarrier signals
converted from all the receive antenna output signals, the
received signal vector Y(k) is written as,

Y(k) = H(k)X(k) + N(k). (1)

In (1), X(k) ∈ CNT and N(k) ∈ CNR represent a transmission
signal vector and an additive white Gaussian noise vector
(AWGN) at the kth subcarrier. In addition, H(k) ∈ CNR×NT

denotes a channel matrix at the kth subcarrier, which is
defined as follows.

H(k) =

©«
h1,1(k) h1,1(k) · · · h1,NT (k)
... h2,2(k)

...
...

. . .

hNR ,1(k) · · · hNR ,NT (k)

ª®®®®®¬
(2)

hi,l (k) in (2) represents a frequency response at the kth sub-
carrier between the ith receive antenna and the lth transmit
antenna, which is defined as,

hi,l(k) =
NP−1∑
m=0

ĥi,l (m) e
−j2π mk

NF . (3)

In (3), NP and ĥi, j (m) ∈ C denote the number of the paths
in the channel and an mth path gain in the channel between
the ith receive antenna and the lth transmit antenna. Next,
the soft signals calculated from the received signal vector are
provided to a channel decoder to achieve better transmission
performance. When the transmission signal vector X (k) is
defined as X (k) =

(
x1 (k) · · · xNT (k)

)T where xm (k) ∈ C
represents the mth transmission signal, for instance, an LLR
with respect to the real part of the signal xm (k) is defined as
follows†.
†Based on the Bayesian rule, the LLR can be rewritten as,

log
P (< [xm(k)] = 1|Y (k))

P (< [xm(k)] = −1|Y (k))

= log
P (Y (k) |< [xm(k)] = 1)

P (Y (k) |< [xm(k)] = −1)
P (< [xm(k)] = 1)

P (< [xm(k)] = −1)
This means that the approximation in (4) becomes more exact, as
the term P(<[xm(k)]=1)

P(<[xm(k)]=−1) comes close to 1.

Fig. 1 System model.

ζ (< [xm(k)]) = log
P (< [xm(k)] = 1|Y (k))

P (< [xm(k)] = −1|Y (k))

≈ log
P (Y (k) |< [xm(k)] = 1)

P (Y (k) |< [xm(k)] = −1)
(4)

ζ (b) ∈ R and P (c |d) ∈ R in (4) denote an LLR of a signal
b ∈ R and a conditional probability that an event c occurs
when an event d happened. The LLR is fed to the decoder
as a soft signal via a de-interleaver. The system model is
illustrated in Fig. 1.

Whereas the system achieves superior transmission per-
formance, the computational complexity grows exponen-
tially as the number of the spatially multiplexed signal
streams increases. Since the number of the spatially multi-
plexed signal streams is equal to that of the transmit antennas
NT in the system, the complexity gets higher as the number of
the transmit antennas is increased. We propose a non-linear
detector that achieves better transmission performance than
that of the soft-inputMLD, keeping complexity less than that
of the soft-input MLD, in the following section.

3. Low Complexity Non-Linear Overloaded MIMO De-
tector

We propose two types of techniques for achieving better
transmission performance with less complexity. One is to
achieve better transmission performance at the cost of addi-
tional complexity. The other is to reduce the complexity for
compensating the increase in complexity.

Since the same signal processing is applied to the chan-
nels on all the subcarriers, we don’t need to distinguish the
signal processing at one subcarrier from that at another sub-
carrier. The index k denoting the subcarrier number is here-
after dropped from the variables. For example, the transmis-
sion signal vector is written as X.

3.1 Iterative LLR Estimation with Noise Cancellation

As is described in the previous section, the LLR plays a
very important role in achieving the superior transmission
performance. This section propose a technique to improve
the quality of the LLR in the following.

First of all, the channel matrix H is triangulated with
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the QR-decomposition for complexity reduction†.(
H

√
N0
σd

INT

)
= QR (5)

In the decomposition, σd ∈ R, N0 ∈ R, INT ∈ C
NT×NT ,

Q ∈ C(NR+NT)×NT , and R ∈ CNT×NT represent a standard
deviation of the transmission signal, the double side noise
power, the NT-dimensional identity matrix, an orthogonal
matrix, i.e., QHQ = INT , and an upper triangular matrix.
On the other hand, the received signal vector is extended
as ÛY =

(
YT 0T)T where ÛY ∈ C(NT+NR)×1 and 0 ∈ CNT

represent the extended received signal vector and the NT
dimensional null vector. The extended received signal is
transformed with the orthogonal matrix Q as,

QH ÛY = QH

(
H

√
N0
σd

INT

)
X +QH

(
N

−
√
N0
σd

X

)
= RX +QH

(
N

−
√
N0
σd

X

)
. (6)

Although the second term in the right hand side of (6) can
be dealt as a noise vector, the vector consists of the AWGN
vector and the transmission signal vector. We can expect
that the signal to noise power ratio (SNR) is improved by
canceling the latter part of the noise vector with the decoder
output signals, which improves the quality of the LLR. In-
putting the improved LLR into the decoder enhances the
decoding performance. Because the higher decoding perfor-
mance improves the LLR estimation performance, the LLR
estimation performance is improved as the above LLR esti-
mation procedure is iterated. Let X̄(n) ∈ CNT represent an
expected transmission signal vector as a soft signal vector
made from the decoder output signals at the nth iteration
stage, the cancellation is defined as follows.

S(n) = QH ÛY −QH

(
0NT√
N0
σd

X̄(n)

)
= RX +QH

(
N

√
N0
σd

(
X̄(n) − X

) )
(7)

In (7), S(n) ∈ C(NT+NR)×1 denotes a transformed received
signal vector at the nth stage. If the received signal is trans-
formed above, the LLR is estimated by using the MAX-log
approximation as,

ζ (n)(<[xm]) = −
1
σ2
n

(
min
<[xm]=1

���S(n) − RX
���2

− min
<[xm]=−1

���S(n) − RX
���2) . (8)

σ2
n ∈ R in (8) indicates a noise variance at the nth stage,

which is defined as follows.
†The detail of the complexity reduction is explained in the next

section.

σ2
n = E


�����QH

(
N

√
N0
σd
(X̄(n) − X)

)�����2
= tr

[
QQHA(n)

]
(9)

A(n)∈ C(NR+NT)×(NR+NT) in (9) represents a diagonal matrix
defined as (see Appendix),

a(n)(m, k) =


N0 m = k ≤ NT
N0
σ2

d

(
2 − E

[���x̄(n)m

���2] ) m = k > NT

0 m , k

.(10)

In the above equation, x̄(n)m ∈ C represents the mth element

signal of the vector X̄, i.e., X̄(n) =
(
x̄(n)1 · · · x̄

(n)
NT

)T
.

If more exact LLRs are provided to the decoder, the
decoder outputs the signals with more accurate. This implies
that the performance of the detection is improves as the
above signal processing is iterated. We assume that the
signal processing is iterated Ns times in this paper. However,
the iteration causes the complexity of the signal detection
to increase. The following section proposes a technique to
reduce the complexity.

3.2 Multi Stage LLR Estimation

As is shown above, since the brute-force search has to be per-
formed to find the minimum vector in the LLR estimation,
the complexity of the LLR estimation is almost the same to
that of theMLD. In aword, letCα ∈ Z represent the cardinal-
ity of the modulation scheme, the complexity is proportional
to CNT

α . This means that the complexity can be reduced as
the vector size is shrunk. We propose a complexity reduction
technique of the LLR estimation by making use of the chan-
nel matrix transformed into the triangular matrix as shown
in (6). For instance, let S(n) (l) ∈ C(NT−l+1)×1 indicate a
subvector of the transformed received signal vector defined

as S(n) (l) =
(
s(n)
l
· · · s(n)NT

)T
where s(n)m ∈ C represents the

m − l + 1th element of the subvector S(n) (l), the subvector
S(n) (l) contains only a part of the transmission signal vector,
i.e.,

(
xl · · · xNT

)T, because the channel matrix R is upper tri-
angular shown in (6). If the subvector is enough for the LLR
estimation with respect to the signals xm m = l, ..,NT, the
complexity will be reduced. To implement the above idea,
the upper triangular matrix is decomposed as follows.

R =
(
Π(−1)×NT (1,1)

0 R (l, l)

)
, (11)

where Π(−1)×NT (1,1) ∈ C(l−1)×NT and R (l, l) ∈

C(NT−l+1)×(NT−l+1) denote a rectangular matrix and an up-
per sub-triangular matrix. They are defined as follows.
Π(−1)×NT (1,1)

=
©«

r1,1 · · · r1,NT
. . . · · ·

...

0 rl−1,l−1 · · · rl−1,NT

ª®®¬ (12)
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R (l, l) =
©«

rl,l · · · rl,NT
. . .

...

0 rNT ,NT

ª®®¬ (13)

As is shown above, a pair of the numbers in the parenthesis
of the above two matrices, i.e., (n,m), indicates that the
(n,m) element of the matrix R is the (1,1) element in those
matrices. If a subvector of the transmission signal vector
X (l) ∈ C(NT−l+1)×1 is defined as X (l) =

(
xl xl+1 · · · xNT

)T,
the LLR defined in (4) can be modified to the equation in
(14).

ζ
(n)
l

(
<

[
xl+M (n)−1

] )
∈ R and M (n) ∈ Z in (14) repre-

sent an LLR and a search space length. X̄n:m ∈ C
(m−n+1)×1

denotes a vector defined asXn:m = (xn · · · xm)T. mina |b f (a)
indicates the minimum value of a function f (a) with re-
spect to a variable a under the constraint of b. In addition,
x̂(n)i (Xn:m) ∈ C represents a signal dependent on the vector
Xn:m. In other words, if a vector Xn:m is given, a signal
x̂(n)i (Xn:m) is uniquely got as one of the constellation points.
The third term in the twominimization in (14) is composed of
dependent variables x̂(n)i (Xn:m)which are given by the inde-
pendent variables in the second term xi i = l · · · l+M (n)−1.
Although NT− l+1 variables look to be included in the mini-
mization in (14), in a word, only M (n) independent variables
are included. The minimization with respect to only M (n) in-
dependent variables is carried out in (14). The search space
length in the minimization is reduced from NT to M (n). This
makes the complexity reduced in proportion to CM (n)

α , while
the original LLR estimation requires the complexity propor-
tional to CNT

α . Since M (n) is less than NT, the complexity
needed in (14) is much less than that of the original LLR
estimation.

After the LLRs with respect to the signals
<

[
xl+M (n)−1

]
and =

[
xl+M (n)−1

]
are obtained, next, the sig-

nal x̂l+M (n)−1 is decided for every Xl:l+M (n)−2. In a word,
x̂(n)
l+M (n)−1

(
Xl:l+M (n)−2

)
is decided as follows.

x̂(n)
l+M (n)−1

(
Xl:l+M (n)−2

)
= arg min

x
l+M (n)−1

NT∑
k=l

���s(n)(k)
−

l+M (n)−2∑
i=k

rk ,i xi − rk ,l+M (n)−1 xl+M (n)−1

−

NT∑
i=l+M (n)

rk ,i x̂
(n)
i

(
Xl+1:l+M (n)−1

) �����2 (15)

As is shown in (15), the signal is decided for every signal
vector Xl:l+M (n)−2. The signal decision makes the brute
force search space reduced, while keeping high transmission
performance as shown below.

The multistage LLR estimation procedure is summa-
rized as follows.

a) initialization
l = NT − M (n) + 1

b) LLR estimation

Signal processing in (14) for theLLR ζ (n)
l
(<[xl+M (n)−1])

c) Tentative signal decision
signal decision for the possible vectors Xl+1:k+M (n)−2 in
(15)

d) Loop control
if l > 1 then
l = l − 1 and go to step b)
else
l is fixed to 1
LLR ζ

(n)
l
(<[xm]) and ζ (n)l

(=[xm]) estimation by
using (14) where xl+M (n)−1 is replaced with xm
for m = 1 ∼ M (n)

end

3.2.1 Ordering Based on Channel Norm

As is described in the previous section, the signal decision
in (15) makes the LLR estimation less complex. However,
the wrong signal decision deteriorates the LLR estimation
performance. In a word, as the decision performance is im-
proved, the LLR estimation will get more accurate. The
section proposes a technique to improve the decision perfor-
mance.

First of all, the matrix R (l, l) is redefined as R (l, l) =(
Rl (l) · · ·RNT (l)

)
, where Rm (l) ∈ C(NT−l+1)×1 represents

m − l + 1th column vector of the matrix R (l, l). We search
the column vector that satisfies the following equation.

kl = arg max
l≤k≤l+M (n)−1

[|Rk (l)|] (16)

kl ∈ Z in (16) represents an index of the column vector. The
klth column vector is swapped with the l+M (n)−1th column
vector in the matrix R (l) as,
ÜR (l, l) =

(
Rl (l) · · ·Rkl−1 (l) Rl+M (n)−1 (l) Rkl+1 (l)

· · ·Rl+M (n)−2 (l) Rkl (l) Rl+M (n) (l) · · ·RNT (l)
)

=
(
ÜRl (l) · · · ÜRNT (l)

)
. (17)

ÜR (l, l) ∈ C(NT−l+1)×(NT−l+1) in (17) denotes a swapped ma-
trix†. Let X̂ (l) ∈ C(NT−l+1)×1 denote a subvector defined as
X̂ (l) =

(
xl · · · xl+M (n)−1 x̂l+M (n)

(
Xl+1:l+M (n)−1

)
· · ·

x̂NT

(
Xl+1:l+M (n)−1

) )T, the subvector is also swapped to keep
the channel model in spite of the swapping of the matrix
R (l, l), which is defined as follows.

Ü̂X
(n)
(l)=

(
xl · · · xkl−1 xl+M (n)−1 xkl+1 · · · xl+M (n)−2 xkl

x̂l+M (n)
(
Xl+1:l+M (n)−1

)
· · · x̂NT

(
Xl+1:l+M (n)−1

) )
=

(
Üxl · · · Üxl+M (n)−1 Ü̂xl+M (n)

(
ÜXl+1:l+M (n)−1

)
· · · Ü̂xNT

(
ÜXl+1:l+M (n)−1

) )
(18)

In (18), Ü̂X
(n)
(l) ∈ C(NT−l+1)×1 and ÜXn:m ∈ C

(n−m+1)×1 rep-
resent swapped vectors transformed from X̂(n)(l) and Xn:m,
respectively. With those vectors, the LLR is calculated and
†The matrix ÜR (l, l) is not upper triangular, unless kl = l +

M(n) − 1 at all the stages.
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ζ (n)
(
<

[
xl+M (n)−1

] )
≈ ζ
(n)
l

(
<

[
xl+M (n)−1

] )
= −

1
σ2
n

(
min

<[xl+M (n)−1]=1

���S(n) (l) − R (l, l)X (l)
���2 − min

<[xl+M (n)−1]=−1

���S(n) (l) − R (l, l)X (l)
���2)

≈ −
1
σ2
n

©«
min

Xl+1:l+M (n)−1 |
<

[
xl+M (n)−1

]
= 1

NT∑
k=l

������s(n)(k) −l+M
(n)−1∑

i=k

rk ,i xi −
NT∑

i=l+M (n)

rk ,i x̂
(n)
i

(
Xl+1:l+M (n)−1

) ������
2

− min
Xl+1:l+M (n)−1 |

<
[
xl+M (n)−1

]
= −1

NT∑
k=l

������s(n)(k) −l+M
(n)−1∑

i=k

rk ,i xi −
NT∑

i=l+M (n)

rk ,i x̂
(n)
i

(
Xl+1:l+M (n)−1

) ������
2ª®®®®®¬

(14)

the signal is decided at the nth stage based on (14) and (15)
as follows.

ζ
(n)
l
(<[ Ü̂xl+M (n)−1])

= −
1
σ2
n

(
min

<[ Üxl+M (n)−1]=1

����S(n) (l) − ÜR (l) Ü̂X(n)(l)����2
− min
<[ Üxl+M (n)−1]=−1

����S(n)(l) − ÜR (l) Ü̂X(n)(l)����2) (19)

Ü̂x(n)k
l+M (n)−1

(
ÜXl:l+M (n)−2

)
= arg min
Üxk

l+M (n)−1

NT∑
k=l

������s(n)(k) −l+M
(n)−2∑

i=k

Ürk ,i Üxi

−Ürk ,l+M (n)−1 Üxkl+M (n)−1
−

NT∑
i=l+M (n)

Ürk ,i Ü̂x
(n)
i

(
ÜXl+1:l+M (n)−1

) �����2
(20)

In (20), Ürk ,i ∈ C represents a (k − l + 1, i − l + 1) element
of the matrix ÜR (l, l). When this technique is used, the LLR
estimation procedure described at the end of the previous
section has to be modified as follows.

e) (19) replaces (14)

f) (20) and ÜXl+1:l+M (n)−1 replace (15) and Xl+1:l+M (n)−1,
respectively.

g) The following signal processing replaces “l=l-1” in the
if-block at the procedure d).

R (l − 1, l − 1) =
(

rl−1,l−1 · · · rl−1,NT

0 ÜR (l, l)

)
X(n) (l − 1) =

(
xl−1

Ü̂X
(n)
(l)T

)T

l = l − 1 except for R (l − 1, l − 1) ,X(n) (l − 1)

However, the matrix R (l, l) at the initial stage is defined as
that in (11) where l = NT −M (n) + 1. Also, the definition of

the vector X(n) (l) at the initial stage is the same to that in the
previous section, i.e., X(n) (l) = X (l) =

(
xl xl+1 · · · xNT

)T.

3.2.2 Irregular Multi Stage Configuration in Iterative LLR
Estimation

As is shown in the previous section, the complexity is re-
duced as the search space length M (n) is decreased. How-
ever, increasing the search space improves the transmission
performance. Thismeans that there is a trade-off between the
complexity and the transmission performance with respect
to the search space length. In addition, we can change the
search space length for every iteration. The combination of
the search space length is described as

(
M (0),M (1), · · ·M (Ns)

)
in this paper when the LLR estimation is iterated Ns times.
Then, we find out the best combination that makes the pro-
posed non-linear detector outperforms the conventional soft-
input MLD with less computational complexly. Since the
theoretical performance is difficult to derive, the best com-
bination is searched through computer simulation in the fol-
lowing section.

4. Computer Simulation

The performance of the proposed non-linear detector is eval-
uated by computer simulation in overloaded MIMO-OFDM
systems. While 6 antennas are installed on the transmitter, 3
antennas are put on the receiver, i.e., the overloading ratio is
2. The modulation scheme is quaternary phase shift keying
(QPSK), and a half rate convolutional code with a constraint
length of 3 is used [34]. The number of the subcarriers
NF is set to 64. Multipath Rayleigh fading is applied to
the channels between the transmitter and the receiver where
the Jakes’ model is used for each path model. The sorted
QR-decomposition is applied [35]. Table 1 summarizes the
simulation parameters. The soft-input MLD is referred as a
conventional detector in the following performance evalua-
tion.
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Table 1 Simulation parameters.
Modulation QPSK/OFDM

No. of subcarriers, NF 64
Channel model 4-path Rayleigh fading
(NT, NR) (6, 3)

Channel estimation Perfect
QR-decomposition Sorted QR-decomposition [35]

Error correction coding Convolutional code
(
R = 1

2 , K = 3
)

Decoding algorithm Soft-input Soft-output Viterbi
Maximum No. of iterations 2

Fig. 2 BER performance of noise cancellation.

4.1 BER Performance

Figure 2 shows the BER performance of the proposed non-
linear detector with the search space length M (n) = NT =
6 n = 1,2, which corresponds to the proposed detector
with the single stage LLR estimation. In other words, if
the multistage LLR estimation is not used in the proposed
non-linear detector, the figure shows the performance of only
the LLR estimation with the noise cancellation. The perfor-
mance is improved as the number of the iterations increases.
As is seen, the performance gain is saturated at the second
iteration, i.e., Ns = 2. This is the reason why the maxi-
mum number of the iterations is set to 2 in Table 1. The
two-iteration attains a gain of about 1 dB at the BER of 10−5.

Figure 3 shows the BER performance of the proposed
non-linear detector with the number of the iteration Ns of 0.
Because the LLR estimation with the noise cancellation is
not employed in the detector with Ns of 0, the performance
of the multistage LLR estimation in conjunction with the
ordering is just confirmed. In the figure, the performance
of the proposed detector without the ordering is added for
a reference. As the search space length M (0) is decreased,
the BER performance gets worse. Besides, the proposed
ordering improves the performance despite of the search
space length M (0).

Figure 4 and Fig. 5 show the BER performance of the

Fig. 3 BER performance (Ns = 0).

Fig. 4 BER performance (Ns = 1).

Fig. 5 BER performance (Ns = 1).
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Fig. 6 BER performance (Ns = 2).

proposed detector where the LLR estimation with noise can-
cellation is iterated once, i.e., Ns = 1. As the search space
length at the 1st iteration M (1) increases, the BER perfor-
mance is improved. When the search space length M (1) is
set to 5, the proposed detector achieves almost the same BER
performance despite of the search space length at the 0th it-
eration M (0). Actually, as is shown in Fig. 5, even when the
search space length M (1) is 5, the BER performance degrades
at the lower BER region if the search space length M (0) is
reduced to 3. In other words, the proposed detector with the
search space length M (1) of 5 achieves about 0.6 dB better
BER performance than the conventional soft-input MLD, as
far as the search space length M (0) is more than 3.

Figure 6 shows the BER performance of the proposed
detector with the number of the iteration Ns of 2. If the
performance in Fig. 6 is compared with that in Fig. 2, we
can realize that the use of the search space length M (2) of 5
makes the proposed detector achieve the near performance
to that with M (2) of 6 as far as M (n) n = 0,1 are more
than 3. The proposed detector with that combination of the
search space length achieve 0.7 dB better BER performance
than the conventional detector.

4.2 Complexity

Figure 7 shows the complexity of the proposed non-linear
detector when the number of the iterations is set to 1, i.e.,
Ns = 1. The complexity of the conventional detector is
drawn as a reference. The ordinate is the number of the mul-
tiplications needed for detecting all the symbols in a packet,
and the abscissa is the search space length M (1). While the
complexity of the conventional detector is independent of
the search space, the complexity of the proposed detector in-
creases as the search space length M (1) is raised. Similarly,
the complexity also depends on the search space length M (0).
This concludes that the complexity of the proposed detector
with any combinations is less than that of the conventional
detector as far as the combinations shown in the figure are

Fig. 7 Complexity (Ns = 1).

Fig. 8 Complexity (Ns = 2).

applied.
Figure 8 shows the complexity of the proposed non-

linear detector when the number of the iteration is 2, i.e.,
Ns = 2. While the ordinate is the same to that in Fig. 7, the
abscissa is the search space length M (2). M (1) is set to the
same to M (0) in the figure. Although the other combinations
can be thought of, the simplest combinations are investi-
gated. Similar as the complexity in Fig. 7, the complexity is
increased if not only the search space length M (2) but also(

M (0),M (1)
)
increase. As is seen in the figure, while the

complexity of the detector with
(
M (0),M (1),M (2)

)
= (5,5,5)

exceeds that of the conventional detector, the complexity
of the other combinations is less than that of the conven-
tional detector. This means that the proposed detector can
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be implemented with less complexity than the conventional
detector unless

(
M (0),M (1),M (2)

)
= (5,5,5).

Consequently, when the LLR estimationwith noise can-
cellation is iterated less than three times, the proposed de-
tector achieves about 0.7 dB better BER performance than
the soft-input MLD at most, even though the complexity
of the detector is less than the soft-input MLD, unless the
search spaces length

(
M (0),M (1),M (2)

)
= (5,5,5) is used.

Especially, even though the performance gain is a little bit
reduced to about 0.6 dB, the complexity of the proposed de-
tector can be reduced to about half of that of the complexity
by iterating the LLR estimation once in the proposed detector
with the search space length

(
M (0),M (1)

)
= (4,5).

Although the complexity of the proposed non-linear
detector is compared with that of the proposed nonlinear
detector without ordering in Fig. 7 and Fig. 8, the two perfor-
mances are almost overlapped, which means that the com-
plexity needed for the ordering is negligible small compared
with that for the multi stage LLR estimation. In a word,
the ordering can be implemented with negligible small ad-
ditional complexity.

While the performance gain is not guaranteed in prac-
tical systems, the complexity reduction shown above is
achieved in any systems. When the detector with less com-
plex than the MLD is needed, it is better to start with small
search space length. If the gain is not sufficient in a practical
system, the search space length should be increased until
enough performance gain is obtained.

5. Conclusion

This paper has proposed a non-linear MIMO detector for
overloaded MIMO channels. The proposed non-linear
MIMO detector achieves better BER performance than the
conventional soft-input MLD with less computational com-
plexity. The proposed detector performs iterative multistage
LLR estimation with noise cancellation for achieving such
superior performance. Furthermore, we propose ordering
based on the channel norm to enhance the transmission per-
formance of the proposed detector. While the iterative LLR
estimation with noise cancellation achieves better estimation
performance as the number of the iterations increases, the
multistage LLR estimation reduces the computational com-
plexity, which compensates the complexity increased by the
iterative LLR estimation. An irregular multi stage config-
uration has been considered to find the best configuration
that makes the proposed detector achieve better transmission
performance than the conventional soft-input MLDwith less
computational complexity.

The performance of the proposed non-linear MIMO
detector is evaluated by computer simulation in a 6× 3 over-
loaded MIMO-OFDM system. The proposed non-linear de-
tector achieves about 0.6 dB better BER performance than
the conventional soft-input MLD, even though the computa-
tional complexity is about half as much as that of the soft-

input MLD, when the LLR estimation is iterated once with
the search space length

(
M (0),M (1)

)
of (4,5).
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Appendix: Devivation of (10)

When we see (9), the matrix A(n) can be written from as
follows.

A(n)=E

(

N
√
N0
σd
(X̄(n) − X)

) (
N

√
N0
σd
(X̄(n) − X)

)H
=

(
E

[
NNH]

0NR×NT

0NT×NR
N0
σ2

d
E

[
(X̄(n) − X)(X̄(n) − X)H

] )
(A· 1)

In the above derivation, we use the characteristics that
the AWGN and the transmission signals are uncorre-
lated, Because the transmission signals are generated in-
dependently, the correlation between one symbol and the
other symbol becomes zero. This means that the matrix
E

[
(X̄(n) − X)(X̄(n) − X)H

]
is reduced to a diagonal matrix.

The diagonal element can be rewritten as E
[���x̄(n)m − xm

���2] =
E

[���< [
x̄(n)m

]
−< [xm]

���2 + ���= [
x̄(n)m

]
− = [xm]

���2] . Because

the QPSK is applied, <
[
x̄(n)m

]
and =

[
x̄(n)m

]
are soft out-

put bits coming out from the decoder. Let b and b̄ denote
a transmission antipodal bit and a decoder soft output bit
respectively, the following relation is known; E

[��b̄ − b
��2] =

1 − E
[
b̄2] [33]. Hence, (10) can be obtained.
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