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PAPER
CMND: Consistent-Aware Multi-Server Network Design Model for
Delay-Sensitive Applications

Akio KAWABATA†a), Senior Member, Bijoy CHAND CHATTERJEE††, Nonmember, and Eiji OKI†††, Fellow

SUMMARY This paper proposes a network design model, considering
data consistency for a delay-sensitive distributed processing system. The
data consistency is determined by collating the own state and the states of
slave servers. If the state is mismatched with other servers, the rollback
process is initiated to modify the state to guarantee data consistency. In
the proposed model, the selected servers and the master-slave server pairs
are determined to minimize the end-to-end delay and the delay for data
consistency. We formulate the proposed model as an integer linear pro-
gramming problem. We evaluate the delay performance and computation
time. We evaluate the proposed model in two network models with two,
three, and four slave servers. The proposed model reduces the delay for
data consistency by up to 31 percent compared to that of a typical model
that collates the status of all servers at one master server. The computation
time is a few seconds, which is an acceptable time for network design before
service launch. These results indicate that the proposed model is effective
for delay-sensitive applications.
key words: data consistency, delay-sensitive service, network design, dis-
tributed processing, conservative synchronization, time warp

1. Introduction

The trend toward lower delay networks is accelerating with
the launch of the Fifth-Generation Mobile Communication
System (5G) [1] and considering all photonics networks [2].
In addition, with the development of Internet of Things (IoT)
services, a variety of applications (APLs) are being provided
via a network. Among these services, differences in delay
for each user are an issue for space-sharing type APLs, such
as network games, in which multiple users share a scenario
space. For example, in fighting network games, if the delay
for each user varies significantly depending on the distance
from an application server, it may significantly influence the
games’ results.

To address the issue, various solutions are currently
being taken according to the characteristics of APLs. For
example, in the process of judging hits in shooting games,
judging hits at a coordinate position slightly earlier than the
current position considering the delay until the player’s ac-
tion (event) arrives at the APL server [3]. The low delay
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and the guarantee of event order could become major is-
sues in real-time IoT areas such as automated driving and
telemedicine.

Distributed processing that considers the ordering of
events has been studied in the field of parallel distributed pro-
cessing. There are two typical algorithms that process events
with the guarantee of event order [4]. One is a conservative
synchronization, and the other is optimistic synchronization.
In the conservative synchronization algorithm, the order of
occurrence of events is sequentially guaranteed before appli-
cation processing by time information to the events. On the
other hand, the optimistic synchronization algorithm pro-
cesses events in order of arrival. If a past event is received,
the order of events is guaranteed by the rollback of appli-
cation status, and the status is modified. Time Warp [5] is
a well-known implementation of the rollback process. The
causal ordering and the total ordering are generally known
as the methods of modifying the order of events. The causal
ordering [6] guarantees the order of events, assuming that
there is ordering among the received events. On the other
hand, the total ordering [7] guarantees that all events on all
servers operate in the same order.

The work [8] addressed the guarantee of event order
and the delay reduction in distributed processing. The work
provides a server selection scheme for distributed process-
ing that minimizes the end-to-end delay and processes events
with a guarantee of the occurrence order. The scheme re-
duces delay compared to the central processing scheme. In
the scheme mentioned in [8], each distributed server pro-
cesses all events of all users in the occurrence order, and
it is assumed that each server is always in the same state.
However, the possibility cannot be completely ruled out that
the order of processing may be changed even if the order
arrives at the servers at the same time, depending on link
errors, application load conditions, and the state of the in-
put/output (I/O) queue. If only one server processes events
in a different order and changes the status differently than the
others, the assumption that all servers progress in the same
status is broken. If this assumption is broken, users who
belong to different servers will not receive the same results
andmay impede the application’s progress. A question grabs
our attention: how can we guarantee data consistency among
distributed servers with low delay even if a server processes
events in a different order?

To address the above question, this paper proposes
a consistent-aware multi-server network design model for
delay-sensitive applications (CMND). The proposed model
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guarantees that each server maintains the same status, even
if a server processes events in a different order. The master
server modifies its own status and the statuses of other slave
servers to determine the correct status by majority vote. If a
mismatch is detected, the master server rollbacks the status
to modify the status. In the rollback process, it is necessary
to maintain the past status of the application to re-processed
events in the occurrence order from the past application sta-
tus. In CMND, the method for guaranteeing the event order
is based on a conservative synchronization algorithm and
total ordering. The status modification method is based on
the rollback process [5]. The main contributions of CMND
are summarized as follows:

• Regardless of the users’ location, application processing
proceeds to keep the order in which events occur for all
users. This means that all users using the application
share the same time space.

• Confirm data consistency of processing results on all
servers in case an unexpected failure occurs. The roll-
back process is performed in the case of inconsistency
to keep consistency among all servers.

• The sum of the end-to-end delay and the delay for data
consistency is minimized by distributing the collating
function for data consistency inmultiple serverswithout
deciding on one master server.

CMND guarantees data consistency with low delay for
delay-sensitive services; it incorporates the time for data
consistency as part of the delay and minimizes the total de-
lay. The proposed scheme can be described as a problem
of optimizing the allocation of users to servers in order to
minimize delay. In order to address this allocation problem,
we introduce an integer variable that denotes the selection
of servers from the pool of candidate servers. The problem
is formulated by employing a binary variable to represent a
selection decision for the server; the variable takes a value
of 1 to indicate the server’s selection and 0 to indicate its
non-selection. Hence, the proposed scheme is formulated as
an integer linear programming (ILP) problem. As an eval-
uation of CMND, we evaluate the end-to-end delay of 10,
100, and 500 users under the condition that servers are lo-
cated at each node in the Kanto area of the Japan Photonic
Network Model (JPN) [9] and the ultra-high capacity opti-
cal transmission networks (COST) [10]. Numerical results
indicate that CMND reduces the delay by 6.8–31.2 percent
to maintain data consistency compared to that of a typical
model where one master server collects and collates the sta-
tus of all servers. We also evaluate the computation time of
CMND and observe that it is an acceptable time for deter-
mining the network design before the service launch. These
evaluations indicate that CMND guarantees of event order
and data consistency with low delay.

This paper is an extended version of the work [11]. The
main additions are as follows. We present related works
and the originality of our work. We improve the work [11],
which is limited to two slave servers, to allow the number
of slave servers specified as a given parameter. By adding

this parameter, networks can be designed with flexibility for
the conflicting characteristics of high redundancy and low
delay. We additionally investigate the evaluation of delay
and computation time due to the number of slave servers.

The rest of the paper is organized as follows. Section 2
presents related works and the originality of our work. Sec-
tion 3 presents the prerequisite and necessity of CMND. In
Sect. 4, we formulate CMND as an optimization problem.
In Sect. 5, we evaluate CMND in terms of delay and com-
putation time for two types of networks. Finally, Sect. 6
concludes this paper.

2. Related Works

A network design scheme in distributed processing has been
studied to reduce the end-to-end delay in applications where
multiple users communicate interactively [8]. In the scheme,
the user’s events are multicast from the server accommodat-
ing the users to all other servers, and each distributed server
processes all events of all users. At a time called virtual time,
each server rearranges and processes all events in the occur-
rence order so that, in a steady state, all servers maintain the
same processing results simultaneously. If a user switches
the server with network failures, the same results are main-
tained on all servers, so transferring user data from the old
accommodating server to the new one is unnecessary [12].
On the other hand, it does not consider anomalous situations
where data consistency between servers is not maintained,
such as when a server accommodating users cannot send
events to other servers.

Various methods have been introduced for data repli-
cation and consistency in distributed processing systems.
Hadoop [13] and Spark [14] are popular for distributed pro-
cessing of databases, and each has implemented features
that take fault tolerance into consideration. In Hadoop, huge
amounts of data are located across multiple servers named
data nodes. Each data is replicated and located on multi-
ple data nodes designated by a management server named a
name node, so that processing can continue even if one data
node fails. In Spark, Resilient Distributed Dataset (RDD)
manages data replication and consistency; data is recovered
even if the data is lost with server failure. It maintains the
events that generate the data and re-executes the events to
the pre-failure data to recover the data even if the data is lost.
This method takes into account data replication and consis-
tent methods for distributed deployment of huge amounts of
data that are difficult to process on a single server. It does
not target situations where all servers have the same data and
run the same applications, as in the proposed model.

In a blockchain, there are characteristics that ensure
data replication and consistency by using a distributed pro-
cessing system and recording the results in a decentralized
manner [15]. In terms of data replication and consistency,
Raft [16] is the consensus algorithm used in permission-
based blockchains composed of trusted nodes. Raft main-
tains all servers in the same state by applying the same events
in order. The events are multicast to all servers. One reader



KAWABATA et al.: CMND: CONSISTENT-AWARE MULTI-SERVER NETWORK DESIGN MODEL FOR DELAY-SENSITIVE APPLICATIONS
323

server determines the processing order of each server to ob-
struct the reversal of the order in arrival events caused by the
differences in network delay. This differs from the proposed
model, where each server works as a master and collates data
in order to minimize the delay.

Compared to these related works, CMND is a new
model that minimizes the delay, including the delay of data
consistency between multiple servers at the condition of pro-
cessing the event in occurrence order. In applications where
the application space is shared by all users, such as network
games and online trading, CMND can realize a network with
high tolerance systemswithout disadvantaging users who are
far away from the servers (i.e., those with large delays).

3. Prerequisite and Necessity

3.1 Prerequisite of Distributed Processing and Guarantee
of Event Order

We describe the distributed processing and the guarantee
of event order assumed in CMND. Each user belongs to one
optimal server. Each distributed servermulticasts user events
to other servers. As shown in Fig. 1, the events of user a,
who belongs to server 1, are multicasted from server 1 to
servers 2 and 3. Thus, each server receives events from all
users.

Figure 2 shows an example of the guarantee of event
order. Let Dmax

U be the maximum delay between user and
server and Dmax

S be the maximum delay between servers.
In the example in Fig. 2, Dmax

U is 0.020 [sec], delay be-
tween user a and server 1, and Dmax

S is 0.005 [sec], delay
between server 1 and server 3. All events are rearranged
with Dmax

U + Dmax
S delay from the time of occurrence at

each server. In server 3, the event of user a arrives with
a delay of 0.025 [sec] (=0.020 [sec]+0.005 [sec]), so there
is no waiting. Event of user b arrives at server 3 with a
delay of 0.015 [sec] (=0.010 [sec]+0.005 [sec]), so waits for
0.010 [sec] (=0.025 [sec]-0.015 [sec]). Event of user c is
processed similarly, resulting in all events being rearranged
at T + Dmax

U + Dmax
S . These processes are performed for all

events at each server.
To guarantee that users also receive the results at the

same time, the arrival time of all users is controlled by each
server to arrive at the user after a maximum delay between
the user and server of Dmax

U . Thus, all users receive the results
processed atT+Dmax

U +Dmax
S with a delay of Dmax

U . Therefore,
the end-to-end delay of each user is T + 2Dmax

U + Dmax
S .

3.2 Necessity of Data Consistency

We describe the necessity of data consistency. In the pre-
requisite distributed processing, all servers receive the same
events in the same order at applications, as described in
Sect. 3.1. From these conditions, the status coincides across
all servers, and each user receives the same results even if
they belong to different servers. However, the possibility
cannot be completely ruled out that the order of processing

Fig. 1 Example of prerequisite distributed processing.

Fig. 2 Example of guarantee of event order at server 3.

may change even if the order of arrival at the servers is the
same. Especially, data consistency is necessary for APLs
such as network games and online trading, where the status
in data consistency at each server would alienate the progress
of the scenario.

When the status among servers is mismatched, it is
necessary to modify the status to guarantee data consistency.
The issues are how to determine the correct status and how
to modify it. To determine the correct status, more statuses
are desirable to collate since it is uncertain which status is
wrong in a 1:1 collation. The status modification method
uses the rollback process that rewinds the APL status before
the events are received and reprocesses the event to modify it
to the correct status [17], [18]. From the user’s perspective,
rollback impacts the application’s quality. Since the past sta-
tus is modified, the rewinding time and number of rollbacks



324
IEICE TRANS. COMMUN., VOL.E107–B, NO.3 MARCH 2024

should be reduced for application quality.

4. Proposed Model

4.1 Overview

In this section, we describe CMND. The correct status is
determined by a majority vote collating the status of three
or more servers. Each server collates its own status and the
status of other slave servers, with itself as the master server.
The master server selects the slave servers to minimize the
time for data consistency. If the status does not match be-
tween the collating servers, the rollback process is initiated
and the status is modified. Figure 3 shows an example of this
process. Server 3 is the master server and servers 1 and 2 are
slave servers. In server 3, the status is rollbacked to the time
the events are received and modified to the correct status.

We describe the delay of CMND. The time for data
consistency of the master server is delayed by the maximum
delay between the master server and the slave servers. Li

denotes the delay for data consistency in server i. Lmax is
the maximum value of Li over all servers i ∈ VS, i.e., Lmax

= maxi∈VS Li , where VS is the set of servers. Figure 4(b)
shows the master and slave server pairs when the selected
servers are as shown in Fig. 4(a). In Fig. 4, Li of servers 1,
2, 3, and 4 are 5, 3, 3, and 5, respectively, and Lmax is 5.
Since all servers are processing events at T + Dmax

U + Dmax
S ,

the delay considering data consistency is Dmax
U + Dmax

S +

Lmax. To guarantee that all users receive the results from
the accommodating server with the same delay, the timing
of sending the results is adjusted so that all results arrive at
the users with a delay of Dmax

U . Therefore, all users are using
the application at T + 2Dmax

U + Dmax
S + Lmax. In CMND,

the selected servers and the master-slave server pairs are
determined to minimize 2Dmax

U +Dmax
S +Lmax. We introduce

a parameter, NSS, that is the number of slave servers. If Nss
is increased for redundancy and the number of slave servers
is increased, Lmax tends to increase as well. For example,
when Nss = 1, one slave server is required, but when Nss =
2, two slave servers are required, and the second one is more
likely that a server is farther away than the first one.

4.2 Formulation

We formulate CMND as an ILP problem. The network is
represented as an undirected graph G(V,E). Let V be the set
of nodes as users and servers, and E be the set of undirected
links. VU ⊆ V is the set of users and VS ⊆ V is the set of
servers, where VU ∪ VS = V and VU ∩ VS = ∅. EU ⊆ E is
the set of links between user and server, and a link between
user p ∈ VU and server i ∈ VS is denoted by (p, i) ∈ EU.
ES ⊆ E is the set of links between server and server, and
a link between server i ∈ VS and server j ∈ VS is denoted
by (i, j) ∈ ES, where EU ∪ ES = E and EU ∩ ES = ∅. It is
assumed that (p, i) ∈ EU is set between every user p ∈ VU
and every server i ∈ VS. (i, j) ∈ ES is assumed to be set
between all servers i ∈ VS and all servers j ∈ VS (but i , j).

Fig. 3 Example of rollback process.

Fig. 4 Example of master and slave server pairs for CMND.

Let dpi, (p, i) ∈ EU, be the delay between user p ∈ VU
and server i ∈ VS. Let di j, (i, j) ∈ ES, be the delay between
server i ∈ VS and server j ∈ VS. It is assumed that the user be-
longs to one server, and Mi, i ∈ VS, is the maximum number
of users that server i can be accommodated. xkl, (k, l) ∈ E ,
is a binary variable; xkl = 1 if link (k, l) ∈ E is selected, and
xkl = 0 otherwise. yi, i ∈ VS, is a binary variable; yi = 1
if the server i is selected by at least one user, and yi = 0
otherwise. zi j, (i, j) ∈ ES, is a binary variable; zi j = 1 if the
link (i, j) is selected as a link between the master and slave
servers, and zi j = 0 otherwise. Lmax is the maximum de-
lay between each server and the corresponding slave servers.
That is a delay in data consistency. NSS is the number of
slave servers that will make the major vote to guarantee data
consistency.

We formulate the network topology decision problem
for CMND as an ILP problem, which is given by:

Objective min 2Dmax
U + Dmax

S + Lmax (1a)

s.t.
∑
i∈VS

xpi = 1,∀t ∈ VU (1b)∑
p∈VU

xpi ≤ Mi,∀i ∈ VS (1c)

yi ≥ xi j,∀i ∈ VS, (i, j) ∈ ES (1d)
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Table 1 Given parameters and decision variables.

Given VU Set of users
parameters VS Set of servers

EU Set of links between user and server
ES Set of links between server and server
Mi Maximum number of users for server i ∈ VS

can be accommodated
NSS Number of slave servers
dpi Delay between user p ∈ VU and server i ∈ VS
di j Delay between server i ∈ VS and j ∈ VS

Decision Dmax
U Maximum delay between user and server

variables Dmax
S Maximum delay between server and server

Lmax Delay for data consistency
xpi xpi = 1 if link (p, i) ∈ EU is selected and

xpi = 0 otherwise
yi yi = 1 if server i ∈ VS is selected and yi = 0

otherwise
zi j zi j = 1 if link (i, j) ∈ ES is used for

master-slave link and zi j = 0 otherwise

xi j ≥ yi + yj − 1,∀(i, j) ∈ ES (1e)
xi j ≤ yi,∀i ∈ VS, (i, j) ∈ ES (1f)
xi j ≤ yj,∀ j ∈ VS, (i, j) ∈ ES (1g)
dpi xpi ≤ Dmax

U ,∀(p, i) ∈ EU (1h)
di j xi j ≤ Dmax

S ,∀(i, j) ∈ ES (1i)∑
i∈VS

yi ≥ NSS + 1 (1j)

zi j ≤ xi j,∀(i, j) ∈ ES (1k)
di j zi j ≤ Lmax,

∀i ∈ VS, j : (i, j) ∈ ES (1l)∑
j:(i, j)∈ES

zi j = yiNSS,∀i ∈ VS. (1m)

Given parameters and decision variables of CMND are
shown in Table 1. Equation (1a) indicates that the delay
2Dmax

U + Dmax
S + Lmax is minimized as the objective func-

tion. Equation (1b) indicates that the user selects optimal
one user-server link from the candidate links between the
user and all servers. Equation (1c) indicates that the number
of users accommodated by server i ∈ VS does not exceed Mi .
Equation (1d) indicates that if xi j = 1 and link (i, j) ∈ ES
is selected, server i ∈ VS is also selected and yi = 1: a
server with at least one selected link is the selected server.
Equations (1e)–(1g) are linear expressions, which indicate
yiyj = xi j : a link between the selected servers is the selected
link. Equation (1h) indicates that the maximum value of dpi

of the selected link is Dmax
U . Equation (1i) indicates that the

maximum value of di j of the selected link is Dmax
S . Equa-

tion (1j) indicates that there are at least NSS + 1 servers to
be selected for majority voting. Equation (1k) indicates that
the link used as the link between the master and slave server
is selected from the links satisfying xi j = 1. Equation (1l)
indicates that the maximum value of delay for each selected
server and the slave servers is Lmax. Equation (1m) indicates
that each selected server has NSS slave servers.

Fig. 5 Location of users and servers for JPN and COST.

5. Numerical Evaluation and Discussion

In this section, we describe the evaluation of CMND. We
compare the delay of CMND with that of a typical mas-
ter server model as a benchmark. In the master server
model, one master server is selected from the candidate
master servers and collates the status of all servers. The
delay of the master server model is obtained using the ILP
problem of (A· 1a)–(A· 1g) in Appendix A. The network
assumes that the servers are located at the Kanto area of
JPN [9] and the COST [10] nodes. 10, 100, and 500 users
are uniformly distributed in the square region. Figures 5(a)
and (b) show the location of users and servers for JPN and
COST, respectively. The delay is assumed to be propor-
tional to transmission distance. In addition to transmission
delays, actual delays include queuing delays at switches and
processing delays at servers. Since these delays are influ-
enced by the number of facility resources, service providers
usually provide sufficient processing power and bandwidth
for delay-sensitive applications. In this evaluation, we fo-
cus on the network topology design of users and servers
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and consider only transmission delays, assuming that a suf-
ficient amount of facilities are provided. The distances of
the user-server link and the server-server link are calculated
from the linear distance based on latitude and longitude, and
100 km is assumed as a delay of 0.5 [ms]. It is assumed that
each server is connected by a full mesh with the shortest
path. For example, in Fig. 5(a), the Yokohama node is con-
nected to the Chiba node via the Tokyo node. Our evaluation
uses CPLEX [19] on an Intel(R) Xeon(R) Gold 6132 CPU
2.60GHz, 32GB memory.

Figure 6 shows the delay in the JPN and the COST for

CMND and the master server model. The delay without
data consistency is also shown for reference. The delay
without data consistency is obtained using the ILP problem
of (A· 2a)–(A· 2b) in Appendix B. The number of slave
servers is evaluatedwith two, three, and four slave servers. In
the master server model, as a benchmark, one master server
is selected from the candidate master servers to minimize
the delay. To compare the delay of CMND with the lowest
delay of the master server model, we evaluate each delay
expressed in Eq. (A· 1b) when each server is set to the master
server. In CMND, the delay increases as the number of slave

Fig. 6 Delay of CMND and benchmark for JPN and COST.
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servers increases. This is because the maximum delay for
data consistency increases as the number of slave servers
increases. In the master server model, where one master
server collects and collates the application status with that
of other slave servers, the delay may increase as the number
of slave servers increases. This is because the delay may
increase as the number of selected servers increases by the
constraint of Eq. (1j) in Appendix A. For 10 users in JPN,
the additional delay of CMND from the delay without data
consistency is 0.471, 0.499, and 0.625 [ms] in two, three, and
four slave servers, respectively. The smallest value for that
of the master server model is 0.537, 0.623, and 0.824 [ms]
in two, three, and four slave servers, respectively. Thus,
the additional delay of CMND is 88, 80, and 76 percent
compared to that of the master server model in two, three,
and four slave servers, respectively. For 100 users in JPN,
the additional delay of CMND is 90, 86, and 86 percent
compared to that of the master server model in two, three,
and four slave servers, respectively. For 500 users in JPN,
the additional delay of CMND is 98, 91, and 95 percent
compared to that of themaster servermodel in two, three, and
four slave servers, respectively. For 10, 100, and 500 users
in COST, the additional delay of CMND is up to 96 percent
(three slave servers for 100 users) and down to 69 percent
(two slave servers for 10, 100, and 500 users) compared to the
delay of the master server model. The delay may increase
with an increase in the number of users. This increase in
delay is due to the possibility of more users with large dpi

rather than the number of users since the user with the largest
delay determines DMAX

U .
From these results, CMND reduces the additional delay

compared to that of the master server model in all scenarios.
In CMND, each selected server, as a master server, collects
the status and modifies its own status if a mismatch is found.
In other words, the delay for data consistency is the max-
imum delay in one direction between each server and the
corresponding slave servers. In the master server method,
one master server collects all server statuses and sends the
modification order to the mismatched server if a mismatch
is found. In other words, the delay for data consistency is
a maximum round-trip delay between the master server and
the other servers. In this way, the distribution for the status
collation process and the status modification process reduces
the delay for data consistency in CMND. CMND is effective
in reducing delay regardless of the network topology and the
number of slave servers, and it is effective in data consistency
with low delay.

We discuss the use cases. In the scenario where a single
network operator facilitates the networks ofmultiple applica-
tion providers, it is plausible for the network operator to offer
servers within its own cloud infrastructure. The network op-
erator offers an optimized server and network configuration
designated by the service provider, while the application
providers utilize the servers that have been provided to them.
In the scenario where an application provider utilizes its own
servers, it determines the most suitable configuration that the
network operator provides and its own multiple servers.

Table 2 Computation times.

Users No. of slave servers Ave. time (min-max) [sec]
JPN 500 users 2 1.56 (1.55–1.58)

3 2.20 (2.14-2.27)
4 1.40 (1.31-1.47)

COST 500 users 2 4.06 (3.94–4.15)
3 7.87 (7.58-8.06)
4 4.31 (4.23-4.39)

We describe the computation time of CMND. Ta-
ble 2 shows the average computation times for five trials
of 500 users in the JPN and the COST, which is an ac-
ceptable time for network design before service launch. If
participants are predetermined, it allows ample time to plan
and design the network before providing services. In scenar-
ios where participants are predetermined prior to the com-
mencement of service, such as in the context of participatory
online games, a waiting period of approximately 10 seconds
is widely regarded as tolerable in numerous instances.

6. Conclusion

This paper proposed a network design model considering
data consistency for a delay-sensitive distributed processing
system. Themodel achieves the guarantee of event order and
data consistencywith low delay. In the proposedmodel, each
distributed server selects slave servers for collating whether
the status is correct or not. If the status is incorrect, the
rollback process is initiated to modify the application sta-
tus to guarantee data consistency. The select servers and
the master-slave server pairs are determined to minimize the
end-to-end delay and delay for data consistency. We formu-
lated the proposed model as an ILP problem and evaluated
the delay performance at the condition that the servers are
located in the Kanto area of JPN and the COST node. We
compared the delay of the proposed model with that of a
typical master server model as a benchmark. The additional
delay of the proposed model is reduced by up to 24 percent
for JPN and 31 percent for COST compared to the master
server model. In addition, the computation time was a few
seconds, which is an acceptable time for network design be-
fore service launch. The proposed model aims to design
a distributed processing network in order to guarantee the
event order with low delay and data consistency. For appli-
cations for space-sharing type APLs, such as network games
and online trading, these results indicate that the proposed
model is effective in guaranteeing data consistency with low
delay.
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Appendix A: Formulation of Master Server Model

In the master server model, one master server collates the

Fig. A· 1 Example of master and slave server pair for master server
model.

status of all servers. The slave server sends the processing
results to the master server. The master server is selected to
minimize the delay with all servers. Figure A· 1(b) shows
an example of the master server and slave servers when the
server in Fig. A· 1(a) is selected. In the example in Fig. A· 1,
server 2 is selected as the master server to minimize the delay
with all servers, and the maximum delay of the link between
the master and slave servers is Lmax = 5.

The following given parameter and decision variable
are added to those in Sect. 4.2. Since the master server col-
lates the status of all servers, it is required to have sufficient
performance. We specify the candidate servers that can be
the master server. The selected servers for the distributed
processing and one master server are determined to mini-
mize the delay. We express the candidate servers for the
master server with the parameter of si, i ∈ VS; server i is a
candidate of the master server if si = 1, and server i is not
a candidate of the master server if si = 0. mi, i ∈ VS, is a
binary variable; mi = 1 if server i is selected as a master
server, and mi = 0 otherwise.

The server selection problem for the master server
model is formulated as an ILP problem as follows:

Objective min 2Dmax
U + Dmax

S + 2Lmax (A· 1a)
s.t. mi ≤ yi,∀i ∈ VS (A· 1b)

mi + yj − 1 ≤ zi j,∀(i, j) ∈ ES (A· 1c)
zi j ≤ mi,∀(i, j) ∈ ES (A· 1d)
zi j ≤ yj,∀(i, j) ∈ ES (A· 1e)∑
i∈VS

simi = 1 (A· 1f)

(1a) − (1l). (A· 1g)

Equation (A· 1a) shows that the delay 2Dmax
U +Dmax

S +2Lmax

is minimized as the objective function. The processing re-
sults of all slave serves are sent to the master server. If the
master server finds a statusmismatch, themaster server sends
a modification order to the mismatched server. Therefore the
maximum delay for data consistency is 2Lmax since the delay
for collating and modifying the status is the round trip time
between the master server and the mismatched server. Equa-
tion (A· 1b) indicates that the master server is selected from
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the servers to be selected. Equations (A· 1c)–(A· 1e) are lin-
ear expressions showing that miyj = zi j . Equation (A· 1f)
indicates that the number of the master server is one.

Appendix B: Formulation of Server Selection without
Data Consistency

An ILP problem as the server selection problemwithout data
consistency is given by:

Objective min 2Dmax
U + Dmax

S (A· 2a)
(1a) − (1 j). (A· 2b)
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