286

IEICE TRANS. COMMUN., VOL.E107-B, NO.2 FEBRUARY 2024

[PAPER

A Recommendation-Based Auxiliary Caching for Mapping Record

Zhaolin MA™*9, Jiali YOU™*?), and Haojiang DENG*%, Nonmembers

SUMMARY Due to the increase in the volume of data and intensified
concurrent requests, distributed caching is commonly used to manage high-
concurrency requests and alleviate pressure on databases. However, there
is limited research on distributed record mapping caching, and traditional
caching algorithms have suboptimal resolution performance for mapping
records that typically follow a long-tail distribution. To address the afore-
mentioned issue, in this paper, we propose a recommendation-based adap-
tive auxiliary caching method, AC-REC, which delivers the primary cache
record along with a list of additional cache records. The method uses re-
quest correlations as a basis for recommendations, customizes the number
of additional cache entries provided, and dynamically adjusts the time-to-
live. We conducted evaluations to compare the performance of our method
against various benchmark strategies. The results show that our proposed
method, as compared to the conventional LCE method, increased the cache
hit ratio by an average of 20%, Moreover, this improvement is achieved
while effectively utilizing the cache space. We believe that our strategy
will contribute an effective solution to the related studies in both traditional
network architecture and caching in paradigms like ICN.

key words: auxiliary caching, recommendation, ttl caching, distributed
system

1. Introduction

In the current era of big data, storage and computation sys-
tems are shifting from centralized to distributed. To enable
rapid data distribution, streamline business processing, and
enhance overall user experience, an increasing number of
compute-intensive businesses and services are now relocat-
ing from core clouds to edge clouds. Due to the increase in
data volume and concurrent requests, distributed caching is
often introduced to handle high-concurrency requests and al-
leviate database pressure. A suitable caching system should
possess higher cache efficiency, store more useful data, and
filter out a greater portion of the back-end storage system’s
request load.

Currently, distributed caching can be mainly divided
into two types: the first type is content caching, which is
usually used in CDNSs to alleviate the request pressure on the
origin server. When data is hit on the CDN cache, it does
not need to be retrieved from the origin server but is directly

Manuscript received July 7, 2023.
Manuscript revised August 31, 2023.
Manuscript publicized January 15, 2024.

"The authors are with National Network New Media Engineer-
ing Research Center, Institute of Acoustics, Chinese Academy of
Sciences, Beijing, 100190 China.

*Presently, with University of Chinese Academy of Sciences.

a) E-mail: mazl@dsp.ac.cn
b) E-mail: youjl@dsp.ac.cn
¢) E-mail: denghj@dsp.ac.cn
DOI: 10.23919/transcom.2023EBP3117

distributed to users by the CDN server closest to them. This
type of cached data occupies a significant amount of stor-
age space. Although unstructured, the cached data remains
stable and does not have an expiration date. On the other
hand, there is another type of caching for mapping records.
This type of caching involves the storage of mapping records
or metadata, which is commonly implemented in Domain
Name System [1] and Information-centric network that rely
on name resolution systems (NRS) [2]-[5]. The primary
distinction between record cache and content cache lies in
their object type. Record caching is structured, occupies
smaller space but is often accompanied by a time-to-live
(TTL) which entails cached records to expire after a certain
period. The reason for this characteristic is that the existence
and location of content usually change, so records often have
a life cycle to ensure the freshness and effectiveness.

To our knowledge, most existing research studies focus
on content caching, and little research has been conducted on
mapping records caching. In addition, the primary objective
is usually to design suitable cache replacement strategies to
improve cache hit rates under limited cache space [6], [7].
In previous studies, it was usually assumed that user re-
quests on the storage system were independent events. From
a worldwide point of view, this presumption is reasonable
since there usually exists a substantial number of users that
access the system simultaneously. Moreover, it has been
proven to be accurate when the cache capacity tends to infin-
ity [8]. However, for small-scale user clusters (such as edge
clouds or edge data centers), the neighbor effect [2] cannot
be ignored. Typically, individual user requests have strong
context dependencies because content requirements often
appears in groups (such as requests for resources on web
pages or requests for subsequent content blocks in videos).
This phenomenon causes requests that occur in close tempo-
ral proximity to have a certain correlation, that is, temporal
correlation of requests.

In distributed edge clouds, cache nodes are usually dis-
tributed in various locations and face requests that are often
sudden in time and uneven in space. In order to improve the
cache efficiency of the system and reduce concurrent traffic
peaks for origin server requests, this paper mainly focuses on
the aforementioned mapping record caching and proposes a
recommendation-based adaptive auxiliary caching method
(AC-REC). In this method, auxiliary caching is defined as
delivering the primary cache record along with an incremen-
tal list of auxiliary records. This method uses the correlation
between requests as the recommendation basis for auxiliary

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

MA et al.: A RECOMMENDATION-BASED AUXILIARY CACHING FOR MAPPING RECORD

caching, customizes the number of incremental cache en-
tries and dynamically adjusts the TTL based on the cache
space of each nodes and the historical popularity of cache
records. This method is a data-driven caching method that is
suitable for various application scenarios, such as caching of
mapping records in information or content central network
architectures, edge cloud caching, DNS record caching, and
caching of flow table entries in SDN switches [9], [10]. The
major contributions of this paper are as follows:

e We first design AC-REC, which utilizes a plug-and-
play recommendation model to determine the candi-
date set of mapping records for auxiliary caching. It
fully considers the occupancy of the cache space in the
TTL-based cache system and exhibits greater robust-
ness across different workloads.

* Trace-driven evaluations are conducted to measure the
performance of our proposals. The results indicate that
the AC-REC algorithm achieves a higher average cache
hit ratio and a higher cache space utilization rate com-
pared to traditional caching strategies, such as Leave-
Copy-Everywhere (LCE).

The article is divided into five main sections. In the fol-
lowing Sect. 2, we introduce the research background, related
work, and the motivation for choosing the auxiliary caching
approach. In Sect.3, we model the problem and provide
theoretical explanations for the recommendation-based aux-
iliary caching algorithm. In Sect.4, we design simulation
experiments to compare the performance of the proposed
algorithm with other algorithms and analyze the results. Fi-
nally, in Sect.5, we summarize the article and provide an
outlook on future research directions.

2. Related Works and Motivation

Our design approach is inspired by the concept of soft cache
hits proposed in [11], which defines soft-cache-hit as the
requested content is not in the cache but is present in the rec-
ommended list. Motivated by this thought, we were intrigued
whether integrating recommendation system functionalities
to a distributed caching system could also enhance the cache
hit ratio and diminish the number of concurrent requests
sent to the origin server. Our research, as well as the argu-
ments presented in [12], [13], have shown that data requests
exhibit clear spatio-temporal characteristics, i.e., neighbor-
hood effects. Moreover, objects closer to the network edge
cache usually have higher access frequencies than those lo-
cated upstream [14]. For example, there is similarity in the
content acquirement by students in the same university in
the same time period, and there is also similarity in the hot
news topics followed by people in the same region. [15]
proposes a region-based pre-caching strategy for vehicular
edge networks, which includes algorithms for selecting pre-
caching regions and nodes, which effectively improves the
cache hit rate. Based on these arguments, we hypothesize
that for the user group connected to the switch under the edge
cloud, considering auxiliary caching for content related to

287

that group’s requests, rather than just caching content with
higher global popularity, can improve the system’s cache hit
ratio.

A similar concept was previously introduced in [16] as
incremental caching at the file level. This method calculates
the access frequency of a file and caches the first block
when the file is first requested. For subsequent requests,
2" — 1 blocks are pre-cached, where n is the number of
times the file has been requested. However, applying this
approach to finer-grained ICN or CCN-based block storage
is not feasible. Additionally, this method only accelerates
continuous requests for a file without considering related
content from a modeling perspective.

Cache replacement algorithms have always been con-
sidered an important factor affecting cache hit ratio. Classic
cache replacement methods for mapping records [7], such
as LRU, LFU, and FIFO, are all designed to handle a single
cache record. Yang et al. [6] propose a caching strategy that
groups records and uses this grouping for replacement deci-
sions that result in an improved cache hit ratio. This strategy
achieves both high efficiency and high throughput. In ad-
dition, in mapping record caches, the TLRU method [17]
adds expiration time to the cache to ensure the freshness
of records, but this method does not fully utilize the cache
space released by timeouts. If we can obtain the remaining
cache space in advance and incrementally cache additional
valid content besides the original records, subsequent cache
requests can hit, improving the cache hit rate per unit time
and reducing concurrent traffic to origin server. [18] uses the
cache space parameter to predict the expected hit density of
each object (hit density per space consumption), and filters
out objects that contribute little to the cache hit rate during
cache replacement. However, this method is mainly for con-
tent caching and is not suitable for mapping record caching
(mapping records usually have the same space occupation).
To make good use of the remaining cache space, it is neces-
sary to obtain the operational status of the distributed cache.
Fortunately, the SDN controller [9], [19] has laid the the-
oretical and practical foundation for this idea by providing
awareness of the underlying network devices.

In addition, due to the significant long-tail effect of
user requests [20], that is, a small number of content ac-
cesses account for a large amount of request traffic, records
at the tail are usually cleared due to timeouts or LRU re-
placement strategies before triggering the next request hit.
Traditional caching methods usually use fixed TTL, and the
expiration of hot data at the same time can cause cache
avalanche phenomenon, resulting in increased concurrent
load on the backend storage system. The article [21] points
out that using longer TTL in DNS systems can greatly reduce
network transmission latency, because the longer expiration
time of hot content filters out more traffic. However, even in
the case of limited storage space, caching the long-tail con-
tent for a long time does not significantly improve the cache
hit rate. Alici et al. [22] propose an adaptive TTL strategy
for caching query results that has been shown to reduce the
fraction of stale results served from the cache as well as the

288

fraction of redundant query evaluations on the search engine
backend. Additionally, the proposed method outperforms a
caching strategy that uses a fixed TTL value for all queries.
Therefore, we believe that more aggressive strategies should
be adopted for this part of the records, setting shorter TTL
times to quickly recover cache space resources and to guar-
antee the record freshness.

3. Analytical Model and Assumptions

In this section, for the sake of illustration and analysis, we
have made some assumptions and mathematical models for
the research problem. In addition to considering the global
characteristics of requests, such as popularity, this study also
focuses on their spatiotempora characteristics. The idea of
auxiliary caching is used to promote cache hits ratio in the
next time period by taking advantage of cache loss in the
current period. In summary, we describe the problem solved
in this study as follows: selecting a subset of records from set
S for incremental caching to maximize the average cache hit
rate. This problem is an NP-complete “knapsack problem”
that we divide into two sub-problems and propose a heuristic
solution approach.

3.1 Assumption

Our approach abstracts the caching system into three network
entities: the client who initiates the request, the cache nodes,
which are typically ICN cache units or CDN service nodes,
and the data source responsible for storing resources. The
client is analogous to the user in a recommendation system,
while the data source or origin server is analogous to the item
repository in a recommendation system. Similarly, the data
source suggests potential requests to the client, analogous to
how a recommendation system suggests items of interest to
users. Given the vast number of users in a network envi-
ronment, we do not perform fine-grained recommendations
for each user, but instead group units with similar features to
increase the accuracy of recommendations and reduce sys-
tem load. We use the user access node as the recommended
cache unit, aggregate the temporal and spatial characteristics
of requests, reduce the distribution pressure on the database
or origin server, and improve caching speed.

3.2 Auxiliary Caching Algorithm

The algorithm consists of three steps, which is presented
in Fig. 1 in the form of a flowchart to aid comprehension.
The central part of the flowchart represents the main steps of
the algorithm, while the left and right sides depict the input
models, parameters, and hyperparameters required for each
step. The specific operations for each step will be elaborated
in separate subsections.

3.2.1 Determine Candidate List

The first step involves selecting a fixed candidate list size

IEICE TRANS. COMMUN., VOL.E107-B, NO.2 FEBRUARY 2024

- P

@_' Create candidate list Get cache node
request p

v /f\

[C'@_' > e mamber [

kA

3

Rec Model

>m"

: g

Get free space

Get last TTL
T(n)

» Setadaptive TTL |«—B

» v
P =

A 4

End

Fig.1 Auxiliary caching algorithm flow chart.

and determining the additional content for caching, which is
similar to the recall step in a recommendation system. Since
the keys of cached content are usually unstructured IDs or
hash values of metadata, we recommend using collaborative
filtering-based recommendation algorithms such as itemCF,
userCF, or other advanced model-based recommendation al-
gorithms [23]-[25]. In our simulation, we utilize the CDAE
algorithm (Collaborative Denoising Autoencoder) as the rec-
ommendation model [23]. This algorithm helps to effec-
tively capture latent user feature representations, enhancing
the accuracy of personalized recommendations.

In our algorithm, the acquisition, registration, and
deregistration of the records on the cache nodes are analo-
gous to the interaction behavior between “users” and “items”.
Here, we use item-based collaborative filtering as an exam-
ple. As shown in the Fig. 2, Nodel-Node4 are four caching
nodes, and the Storage Controller is equivalent to the data
source repository. We can use the nodes’ historical interac-
tion information with records to infer the similarity between
records. For example, in the figure, Node2-Node4 have sim-
ilar historical interaction information with records A and B,
and we can infer that the similarity between rec-A and rec-B
is high. When Nodel initiates a new request to the storage
system, in addition to caching the primary requested record
A, we incrementally cache its similar record B and respond
in the form of (key, value), where value represents the rec-
ommendation index, i.e., the degree of similarity with the
primary record.

The AC-REC strategy leverages the similarity between
records and the ID of the requesting switch to recall similar
records, which need not be confined to the recall approach
of a particular recommendation system. Section 4 presents a
comparison between the effectiveness of various recommen-
dation algorithms and the methods of optimal and random
recommendations, which serve as a reference for implement-
ing and deploying this algorithm. The following section will

MA et al.: A RECOMMENDATION-BASED AUXILIARY CACHING FOR MAPPING RECORD

Storage
Controller

Get
Q _—
-+
Return

Node1 LKAVA),(kBB)]

Fig.2 Schematic diagram of recommendation-based auxiliary caching.

Table 1
Symbols

Symbols in AC-REC algorithm.

Definition

The current primary request key
The node that handling the request
The set of cached keys

The recommended candidate list
The recall number ratio

The i-th request key

The recommendation index of k;
The request number

The importance of a certain cache
The auxiliary cache entry size
The time-to-live value

Su The free space for node u

e NRET

&

N ~=3

provide a detailed explanation of the structure and algorithm
of the recommended candidate list, including the parameters
and physical quantities involved, as shown in the Table 1.

Unless otherwise specified, we will use the example of
caching in the form of (key, value) pairs, and the set of cached
keys will be denoted as K. We define the recommended
candidate list as L, the amount of data stored in the data
source as m, and the recall ratio as A. The size of the
recommended candidate list is len(L) = Am. We define
the current request p as the main request initiated by node
u, and the key of the current request as k,. The key of
the i-th cached content in the storage system is k;, and its
recommendation index is v;. The recommendation index
is a physical quantity that represents the importance of the
cached record. The higher the recommendation index, the
more likely the cache is to be incrementally cached. The
recommended cache candidate list is predicted through the
recommendation system’s algorithm and can be represented
as:

L = f(K,p,u,1) ey

Here, f is the function that uses the recommendation system
model for prediction. It recommends based on the input
node u, the main request p, and the candidate list size Am,
and returns a list containing the recommended key and its
recommendation index. During predicting, model caching
can be used to expedite the inference process of the model
for requested recommendation results in practical production

289

Fig.3 The sliding window mechanism.

environments. The indices of the stored entries are denoted
as 01,02,. . .,0;, and they take the following form:

L: {(kol, Uol)» (k02, UoZ)’ cees (ko/lm’ Uo/lm)} 2)

Although the training process of the recommendation model
is beyond the scope of this paper, we describe a feasible train-
ing method in the simulation section and provide satisfactory
results based on this approach.

3.2.2 Auxiliary Cache Number

The second step is to determine the number of auxiliary
cache records and the TTL value of the them after the can-
didate list is determined. In our approach, we determine
the number of entries for incremental caching based on two
factors: the available space u, on the current cache node
and the importance of the primary cache, denoted 1,. We
calculate I, as the proportion of access record k;’s number
of visits ng, during a unit time to the total number of visits
ny during that same period. To reflect the dynamic changes
in the distribution of content requests, a time sliding window
mechanism is used to dynamically calculate and update ny, .
To simplify the computations, the specific value is converted
as a probability distribution ranged in (0, 1), employing the
sigmoid function in normalization in Eq. (5). The sliding
window mechanism is shown in Fig. 3, Where R,, and R,
denote the nth and (n + 1)th requests for caching k,, re-
spectively. The temporal interval between them is denoted
as Aty and the requested counting interval is marked as 7.
AN represents the number of requests during window sliding
Aty time.

Nk, (tn+1) = nk, (1n) + 1 = AN 3)
ng = Z N, (4)
I, = sigmoid(ng, [ny) 5)

The inference can be drawn that the primary cache’s sig-
nificance relates to the frequency of requests over a particular
time period, also known as content popularity in some liter-
ature [26]. The remaining space of a cache node, denoted
as sy, is measured by mapped record entries, including re-
claimed space due to timeouts, and space occupied by un-
reclaimed timed-out records. The data can be sent to the
storage controller through the request message (CDN archi-
tecture), or via the packet-in message (SDN architecture).
The allocation of the auxiliary cache space for this request is
determined by the importance of the primary cache record
and the current remaining space of the cache node. To re-
strict the proportion of cache space that can be used for

290

auxiliary caching, we set a constant @ € [0, 1] to represent
the space occupancy rate. In the extreme case where @ = 0,
it indicates that the remaining space of cache node u cannot
be used for caching. The formula for calculating the number
of incremental cache entries A, is:

Apu = alpsy (6)

3.2.3 Adaptive TTL

Once the number of incremental cache entries is determined,
we select the top Ap,, recommended cache entries from the
candidate list and denote them as set L4. We then allocate
TTL to each cache in L4 based on the TTL of the primary
cache and the recommendation position of the cache entry.
The higher the recommendation position of the mapping
record, the longer the TTL allocation time. The design is
based on the assumption that if the primary cache contains a
popular record, then its related records or subsequent records
are likely to be accessed soon after. The benefit gained from
incrementally saving these records is thus higher. We denote
the TTL of auxiliary cache k; as 7; and update the TTL of
cache i using a time-based sliding average value, with the
calculation formula as follows:

Ti(n+ 1) = BT;(n) + (1 = Buidpto)
s.t. kieLs0<B<1
T;(0)=1o

Here, 1o represents the standard TTL value, which is
a constant and its value can be referred to in the literature
[27]. B is the weight of the sliding average and its value
ranges from [0, 1). As can be seen from the above formula,
the value of T; is generally less than 7y, which means that
the TTL of the content in the auxiliary cache will not exceed
the standard cache TTL. Using the above formula (7), we
calculate the TTL for each record in L4 to obtain the final
cache distribution list L,,;:

Laut = {(kal,tol)’- .. ’(kOAvtoA)’ (kpsIO)} (8)

To facilitate comprehension, the pseudo code for the
above algorithm is shown in algorithm 1.

4. Simulation and Analysis

This section will conduct simulation experiments on the
method proposed in Sect.3 and analyze the results. An
auxiliary caching algorithm was implemented based on the
Icarus [28] simulation platform.

4.1 Environment and Data Preprocessing

4.1.1 Dataset Collection

In order to assess the efficacy of the auxiliary caching al-
gorithm on a practical network traffic model, a week-long

IEICE TRANS. COMMUN., VOL.E107-B, NO.2 FEBRUARY 2024

Algorithm 1 AC-REC algorithm

Require: p, A, u,a,B, 1
Ensure: L.,
1: Initialization;
2: model < load pre-trained RECmodel
3: function GETRELATEDCONTENT(u, p, k, 1)
: initialize resT List, res P List to empty;

4

S: tl « getTimeStampBefore(z),);

6: for ¢ in reversed(z]) do

7: if £ + 10 < 7, then

8: guriList « getGroupURI(¢)
9: for uri in guriList do

10: resT List.append(uri)
11: end for

12: end if

13: end for

14: resPList «— model(u, p)

15: candList <« resT List[: k/2] + resPList[: k/2]
16: return candList

17: end function

18: function GETCANDIDATESIZE(, U, p)

19: sy < getAvailableSize(u)

20: 1, « getUriPop(p)

21: Apy «—int(a * sy * Ip)

22: return A,

23: end function

24: function assiGNTTL(B, 19, u, I, candList, Apy)
25: sort(candList)

26: candList « get first Ap,, item in candList
27: for ¢, v in candList do

28: t —p*getTTL(u, c)+(1-B)*v* 1, * 1y
29: Lyt -append((c, t))

30: end for

31: return L, ¢

32: end function

33: function MAIN(p, 4, u, @, B3, ty)

34: k «— Am, a « 0.5, 1y « 600

35: tp « getTime(p)

36: cl « getRelatedContent(u, p, k, tp)
37: A « getCandidateSize(a, u, p)

38: Loy < assignTTL(B, 1o, u, I, cl, A)
39: return L, ;

40: end function

41: main(p, A, u, a, B, ty)

data collection process was conducted. Request data from
CDN servers located underneath a cluster node owned by a
cloud service provider was recorded from nginx logs. Next,
we utilized Logstash to format the nginx log files and sub-
sequently preserved them in Elasticsearch. The structured
information was extracted and preserved as a CSV file for
training the recall model.

As the daily request volume was large (about 6 million
requests), we only took the first one million data and filtered
out the top 50 cities with popular requests as our initial
dataset. The arrival of network requests usually follows a
long-tailed or heavy tailed distribution [20], which was also
verified in our dataset. We plotted the distribution of the
dataset as shown in the Fig.4, which displays the request
model for one of the seven days. Even though we only
counted and plotted the top 100 URIs, the long-tail effect of
the request distribution is still evident.

Next, we preprocess the initial dataset and construct a

MA et al.: A RECOMMENDATION-BASED AUXILIARY CACHING FOR MAPPING RECORD

Count of records

Top 100 http request uri

Fig.4 Request distribution.

simulated request workload. We divide the original dataset
into 10 parts, with each part consisting of the first 50,000
requests as a group for experimental workloads. The URI
and client IP are mapped to the content ID and client ID of the
requesting node for the simulation experiment, respectively.
The city of the requester is mapped to the access switch of
the simulation node. The timestamp indicates the relative
time represented by the 00:00 on the day of the experiment
in the capture log. This allows our simulation traffic model
to preserve the time series and geographic characteristics of
real traffic.

4.1.2 Topology

Our simulation employs a star topology, where the data
source is at the center, connected directly to 30 cache nodes.
The bandwidth of each link is set to a fixed 10 Mb per second.
We assume that the data source possesses an infinite storage
capacity to accommodate all requested resources, and hence
a cache miss in the source is unlikely to occur. The rea-
son for using a star network topology in the simulation is
that our application scenario is focused on SDN, which in-
volves centralized devices (SDN controller) that determine
caching strategies and serve as the data source. We are more
concerned with the effects of caching different records via
auxiliary caching rather than the placement location of cache
entries. Thus, we streamlined the tangible connection be-
tween nodes and data sources within the topology. Instead,
we employed a logical link to denote the connection between
cache nodes and data sources.

In order to streamline the time taken to construct the
shortest routing path during simulation, we have attached two
client nodes to each cache node. Data requests are sent by
randomly selecting a pair of client nodes that are connected to
each cache node. Itis worth noting that the number of clients
will not affect the results of the experiment, as our algorithm
recommends based on the granularity of edge caching nodes
rather than client. The topology is illustrated in the Fig. 5.

4.2 Algorithm Parameters Setting

This section mainly describes the main parameter settings
and reasons for the three steps of the auxiliary caching algo-
rithm.

The initial step involves obtaining a recommended list

Simulation_Topology Graph @ As
Link unit: 10M
[]
e revier @
@RCVEY @ RCV:62 g
RCV:7Q RCV:56 Rrev:ss @
RCV:55 RCV:57
a
WRCV:65 ° ‘.
RCV:66 2, F [] e ™
8 14 RCV:S2g L AUle
e @RcVe e g RCV:51

gV 18 RCV:64 RCV:S4 \ies T

RCV:72 . ° i 3 P '
e 17, [] e

RCV:59 i RCV:46

[]
8 pcvsi 8 e . a9 .
RCV:77 o ® RCVEO 15 .RCV-% RCV:50 RCV:45
e & 28 10 Ly
RCVi78 RCV:2 . o =
s 0 Revigs ® RCV:44
RCV:68 19 ’
. o s : a RCV:43
RCV:79 o Rver g RCV:33 Rc’ -
e o 2 ’
RCV:80 RCV:73 e o @ | Rovi4 by RCV:41
]
RCV:74 = rever @ b\ L)
RCV:88 ®] RCV:40
a 27 ° RCV:32, RCV:39
rev7s @ 30 b ’

Revi7e . .
g RCV:36
RCV:31 ROVAAS

)
a3 @
RVBReves @ .Rcew
RCV:BRCVi90 Rewi3s

Fig.5 Simulation topology.

of candidates for the current request. This is done by tak-
ing into account both the ID of the sending switch and the
specifics of the current request. In the AC-REC method, the
selection of the candidate list takes into account both tem-
poral and geographical relevance. For the temporal-based
recommendation part, this simulation uses a historical re-
quest group to recommend the URI group requested within
10 seconds after the first 3 requests that resolved the pri-
mary URL During the system’s cold start phase, a cache
node lacks historical temporal information. For this reason,
geographical coordination becomes the primary factor for
obtaining a recommended list of candidates. To simplify the
recall process, we set a fixed recall candidate list size as a
hyper parameter k. We will analyze the impact of k£ on the
simulation experiment results in later sections, and in other
experiments, we set the k value to the default value of 1000.

For the recommendation based on geographical rele-
vance, we use the CDAE algorithm for recall. When training
the recall model, the long-tail distribution characteristics of
user request traffic are evident, and the large amount of data
in the long-tail section can lead to a large and sparse simi-
larity matrix. To speed up the training process, we filtered
out switch nodes with less than 20 requested URIs and URIs
that were requested less than 10 times. To prevent overfitting,
we trained a total of 1000 epochs and set an early stopping
mechanism to end training when the NDCG @ 10 metric did
not increase for 100 consecutive values. The parameter in-
dicators used for training are shown in the Table 2.

In step 2, we set the switch space occupancy limit a to
0.3. In addition, we designed a set of experiments to compare
the impact of @ on cache hit rate and average remaining
space on switches. In the simulation experiment, the total
cache space on all switches was initialized to 20% of the
total number of requests, and the cache space on each switch
was evenly distributed. Before each time we calculate the
remaining available cache space on the switch, we perform a
dump operation to ensure that we obtain the correct available
space.

In step 3, we use the moving average to update the TTL

292
Table 2 Parameters setting for training.
Parameter Description Value
minltemPerUser Filter using the minimum number of 20
items each user has interacted with
minUserPerltem Filter using the minimum number of 10
user each item has been interacted
with
holdoutUsers Use holdout cross-validation method 1000
testRatio ratio of the sample for test 0.2
epochs Max number of epochs 1000
batchSize The number of training examples 256
utilized in one iteration of gradient
descent.
earlyStop Early stop when NDCG @10 indica- 100

tor does not increase for 100 times

of the mapping records in the incremental cache, and we
set B to 0.5 to balance historical and real-time information.
As a hyper parameter, we will discuss the impact of #y on
simulation results in the following Sect.4.4. In general, we
set fy to 600 seconds, which is the default expiration time of
DNS records.

4.3 Performance in Different Algorithms

In order to ensure the reliability of the results, we calculated
the average cache hit rate of 10 workloads in each group of
experiments for each strategy, and compared the strategies
based on data from 7 consecutive days. We used the LCE
[29] method as the baseline, which does not perform addi-
tional content caching and only caches the mapping record of
the current request. We compared several different auxiliary
caching methods, including AC-POP, AC-OPT, AC-RAND,
and AC-REC. The AC methods above are all belong to the
same category. These methods all fall under the auxiliary
caching scope, which represents a form of proactive caching
initiated by the data source. We only differentiate them based
on the form of content retrieval in proactive caching. AC-
POP utilizes usage records’ popularity as an indicator for
auxiliary caching, which is commonly considered in previ-
ous studies [30], [31]. AC-RAND is a naive random strat-
egy, whereas AC-OPT is the optimal strategy for incremental
caching based on the request traffic model. These methods
use the same parameters in the second and third steps of
the auxiliary caching algorithm, and the only difference is
the method used to obtain the candidate incremental caching
list. For the value of hyper parameters, we choose reasonable
parameter values discussed in the next Sect. 4.4.

In the methods we focus on, AC-REC is the prominent
method (proposed in Sect.3) which uses recommendation
to obtain the recommendation list. AC-RAND uses random
sampling to obtain the recommendation list. AC-POP is a
classic method that recommends the mapping record with
the highest global content popularity. AC-OPT is the the-
oretically optimal method for incremental caching, which
directly uses the subsequent requests of the current primary
request as the candidate recommendation list. The present
method is not feasible for real-world systems as it is not pos-
sible to predict future query requests with complete accuracy.

IEICE TRANS. COMMUN., VOL.E107-B, NO.2 FEBRUARY 2024

0.7 AC-OPT
LCE
o064 AC-POP
° AC-RAND
= AC-REC
L o5+
=
2044
S o
@
o
() 4
203
o
g
Z 02+
0.1
0.0 - r : r T T T
0610 0611 0612 0613 0614 0615 0616

Date

Fig.6 Average cache hit ratio for different algorithm.

We only use it as a theoretical upper bound for comparison
in simulation results. The average cache hit ratio of these
methods is shown in Fig. 6.

First, it is worth mentioning that the cache hit ratio of
the AC-OPT algorithm outperforms other caching methods,
suggesting the high effectiveness of our auxiliary caching
approach. If the recommendation list is sufficiently con-
sistent with the current traffic distribution model, the cache
hit ratio can be improved by 5-6 times compared to the
traditional LCE method. Second, we compared the AC-
POP, AC-RAND, and AC-REC algorithms and found that
the AC-REC method, which obtains its list of candidates by
a recommendation algorithm, has a higher average cache-
hit ratio over a seven-day period. For example, on June
10th, the cache hit rate of AC-REC reached 19.38%, which
is a 19.08% increase compared to the 16.28% of LCE, and
there was also about a 20% increase on other days. The
AC-RAND algorithm exhibits only a marginal improvement
over LCE, with minimal effect. This could be because the hit
rate of subsequent requests after the primary request is not
improved by the randomly constructed candidate set. The
AC-POP method has a lower cache hit rate than LCE, indicat-
ing that global hot resources have a time limit. Pushing the
same hot records repeatedly to each distributed edge cloud
not only fails to increase the cache hit ratio but also has the
opposite effect. This is because auxiliary caching, due to
caching additional records, will to some extent exacerbate
the replacement process in the cache. The long-tail nature
of requests implies that recommending only popular records
leads to a loss of diversity in the long-tail section of records,
resulting in suboptimal performance for real traffic models.

To observe the trend of cache hit ratio over time in a sin-
gle simulation experiment, we selected request data spanning
three days, tracked them, and calculated the cache hit ratio
with simulation time. The results are shown in the following
Fig.7. At the initialization of the simulation experiment,
there were no cached records on each cache node, and the
cache hit rate was 0. As the experiment progressed, the aver-
age cache hit rate increased rapidly, with the cache hit rate of
the auxiliary caching method increasing slightly faster than
that of LCE, and the cache hit rate of the AC-REC algorithm

MA et al.: A RECOMMENDATION-BASED AUXILIARY CACHING FOR MAPPING RECORD

—— LCE
' —— AC-POP
| —#— AC-RAND

o
5

o
S
8

0.06 4

Average cache hit ratio
H

Average cache hit ratio
g

002 0024

0.00 4

0 5000 10000 15000 20000 25000 0 5000 10000

Time/s
(a)
Fig.7

LCE AC-POP

o
=

AC-RAND AC-REC LCE AC-POP

0.14 o LCE 0.164
,hf'-\,\' —— AC-POP o014
0.12 G —»— AC-RAND
— —#— AC-REC °
~a_ 2012
\l\.\' e g
Z 010
°
S 0084
©
S
& 006
o
2 0044
<7 —e— LCE
0024 —— AC-POP
—u— AC-RAND
0.004 —=— AC-REC
15000 20000 25000 0 5000 10000 15000 20000 25000 30000
Time/s Time/s

(b) (©

Cache hit ratio with time.

AC-RAND AC-REC LCE AC-POP AC-RAND AC-REC

o
w

] " Lok
lafak ik D8 -7

Average CHR
E

Average CHR

°
S
o
>

b1 o#1 ik
IIIII nr

0.3 II II
177 | gl PoE g

Average CHR

600 1800 3600 10 100 500 1000

o
°
o
o

°
S
[
o
i
[
i | © 4
1
5
i
s
2
bt

o

Space occupied
o o
IS
5
[
i
==
Space occupied
o o o o

@

S
S
7
]
(]

I
H
Ho%e] © To%e
H

ot

Space occupied
<
S

Alpha Default time-to-live t0

(a) The impact of space utilization quota

Fig.8

always higher than that of other methods. In the middle of
the simulation experiment, the long-tail distribution effect of
requests began to show, and the increasing number of missed
requests led to a decrease in the overall cache hit rate, which
stabilized after a period of time.

4.4 Discussion

In addition, we conducted grouped experiments on the three
main hyperparameters related to auxiliary caching to analyze
the impact of each parameter on the average cache hit rate and
the average cache space utilization. We divided one day’s
request workload into ten groups based on time averaging,
which were used for 10 independent repeated experiments.
For each group of experiments, we compared representative
LCE, AC-RAND, AC-POP and AC-REC algorithm. The
results are shown in Fig. 8, which show the bar charts of
cache hit rate and cache space utilization rate under different
a, k, and 1o, respectively. The length of the error bars in each
bar chart was determined by calculating the 90% confidence
interval of the data.

Figure 8(a) illustrates that the AC-POP and AC-REC
method outperforms the LCE and AC-RAND methods in
terms of cache hit rate, with a greater difference as « in-
creases. This is because the space utilization quota « deter-
mines the size of the space in which incremental caching can
play a role. When « is small, the number of entries in incre-
mental caching is limited, making it difficult to achieve cache
hit for subsequent requests. When « is large, the number of
entries in incremental caching increases, making it easier to

(b) The impact of standard time-to-live #

Recommended candidate set size k

(c) The impact of candidate set size k

The impact of different hyper parameters.

achieve cache hit, and the corresponding cache space uti-
lization of the switch also increases. However, even when «
is 0.7, thanks to the adaptive dynamic TTL of this method,
the average cache space utilization of the AC-REC method
does not exceed 50%. This level of utilization represents a
favorable and tolerable load state for the device. In contrast,
the cache space utilization of the AC-RAND method has ex-
ceeded 70% when « is 0.7, but it has not achieved a good
cache hit rate improvement. The cache hit rate of the LCE
method is not high, and the cache space utilization rate is
also low under the influence of the TTL timeout mechanism.
In addition, we found that the cache hit rate of AC-POP is
slightly higher than AC-REC and occupies less space. This
proves that using global content popularity as an auxiliary
cache can effectively improve cache hit rate when the total
number of records is small (only 1/10 of the requests were
used in each experiment). However, the effectiveness of
this method is constrained by the accuracy of prior knowl-
edge and it yields poor performance when dealing with a
large number of records which is shown in Fig. 6. Further-
more, implementing it in practical production environments
is challenging.

Another important parameter that affects the results is
the initial lifetime of the cached record, #y. Since we use the
sliding average to update the TTL of the cached record, the
initial lifetime will greatly affect the TTL value of the pri-
mary cache and the auxiliray cache records. From Fig. 8(b),
we can see that the average cache hit rate increases with the
increase of 7y when 7 is small, and it stops increasing after
reaching 600s. After that, a too high 7y will cause the average

294

cache hit rate to decrease, which is reflected in all methods.
A larger ty will cause the mapping record not to be cleared
even if it times out, thus consuming a large amount of cache
resources. Many requests are subject to the long-tail effect,
meaning that they are not frequently requested in a short
time frame. Consequently, a significant amount of cache is
rendered invalid. The LRU cache update strategy removes
caches that are truly effective due to a lack of space, resulting
in a reduced cache hit rate. That why it is essential to define
a justifiable value for #y when deploying the cache system in
real network architecture.

Finally, we analyzed the impact of the candidate list
size k on the cache hit rate and cache space utilization rate.
From Fig. 8(c), we can see that increasing the value of k
has little effect on improving the cache hit rate, and when k
reaches a certain value, increasing k will not bring any gain
in cache hit rate or increase the cache space utilization rate
of the switch. This is due to the fact that the actual number
of entries generated for auxiliary caching is influenced by
parameters such as the cache space size and popularity, re-
sulting in a typically small number of entries. Therefore, as
long as the size of the recommendation list is not too small,
it can affect the recommendation. It is worth noting that
AC-REC exhibits a higher cache hit rate than AC-POP when
the number of recommended candidate sets k is small, while
AC-POP performs slightly better when k is large. This indi-
cates that the recommendation strategy of AC-REC, which
is based on temporal and content relevance, is superior to the
strategy of AC-POP, which uses global popularity, in terms
of recommendation accuracy.

5. Conclusion

This paper proposes an approach to auxiliary caching, based
on proactive recommendation, for edge distributed caching
systems. Specifically, we introduce a recommendation list
acquisition method based on joint temporal and geographical
characteristics. This method aims to expand the coverage of
the candidate set and accommodate the cold start state of the
system. Then, We use the remaining available space of the
cache node and the importance of the current request to the
primary cache to determine the number of auxiliary cache
entries. In addition, we dynamically calculate the TTL of the
cache entries using a sliding average algorithm. Finally, we
use a real dataset to experimentally test the algorithm on the
icarus simulation platform. The experiments demonstrate
that the proposed algorithm exhibits excellent performance
in terms of reliability and dynamic adaptability. Moreover,
it outperforms other algorithms regarding the utilization of
cache space and cache hit ratio. We firmly believe that the
caching strategy proposed in this article can bring about a
significant positive impact on distributed edge caching and
mapping record caching in ICN.

Our future improvements will focus on the following
aspects. Firstly, we plan to explore more suitable recommen-
dation algorithms to model the request pattern. Moreover,
we aim to incorporate additional multidimensional features,

IEICE TRANS. COMMUN., VOL.E107-B, NO.2 FEBRUARY 2024

such as total packet volume and request type, in addition
to user behavior to further enhance the recommendation ac-
curacy and improve the effectiveness of the caching mecha-
nism. Furthermore, we intend to apply feedback mechanisms
to our prediction model and iterate continuously to enhance
its adaptive capabilities.

Acknowledgments

Funding: This work was funded by the Strategic Priority
Research Program of Chinese Academy of Sciences: Stan-
dardization research and system development of SEANET
technology (Grant No. XDC02070100).

Thanks: We would like to express our gratitude to
YanXia Li, Yang Li, and WenHan Lian for their meaningful
support for this work.

References

[1] P. Mockapetris and K.J. Dunlap, “Development of the domain name
system,” Symposium proceedings on Communications architectures
and protocols, pp.123-133, 1988.

[2] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “MDHT:
A hierarchical name resolution service for information-centric net-
works,” Proc. ACM SIGCOMM workshop on Information-centric
networking, pp.7-12, 2011.

[3] J. Wang, G. Chen, J. You, and P. Sun, “SEANet: Architecture and
technologies of an on-site, elastic, autonomous network,” J. Netw.
New Media, vol.6, pp.1-8, 2020.

[4] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” Proc. 2007 conference on Applications, technologies,
architectures, and protocols for computer communications, pp.181—
192, 2007.

[5] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (NetInf) — An information-centric
networking architecture,” Computer Communications, vol.36, no.7,
pp.721-735, 2013.

[6] J.Yang,Z.Mao, Y. Yue, and K. Rashmi, “{GL-Cache }: Group-level
learning for efficient and high-performance caching,” 21st USENIX
Conference on File and Storage Technologies (FAST 23), pp.115-
134, 2023.

[7] S. Podlipnig and L. Bészormenyi, “A survey of web cache replace-
ment strategies,” ACM Computing Surveys (CSUR), vol.35, no.4,
pp-374-398, 2003.

[8] B. Jiang, P. Nain, and D. Towsley, “LRU cache under stationary
requests,” ACM SIGMETRICS Performance Evaluation Review,
vol.45, no.2, pp.24-26, 2017.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
innovation in campus networks,” ACM SIGCOMM Computer Com-
munication Review, vol.38, no.2, pp.69-74, 2008.

[10] R.Masoudiand A. Ghaffari, “Software defined networks: A survey,”
Journal of Network and computer Applications, vol.67, pp.1-25,
2016.

[11] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft
cache hits: Improving performance through recommendation and
delivery of related content,” IEEE J. Sel. Areas Commun., vol.36,
no.6, pp.1300-1313, 2018.

[12] C. Dannewitz, M. D’Ambrosio, and V. Vercellone, “Hierarchi-
cal DHT-based name resolution for information-centric networks,”
Computer Communications, vol.36, no.7, pp.736-749, 2013.

[13] C. Dannewitz, H. Karl, and A. Yadav, “Report on locality in dns
requests—evaluation and impact on future internet architectures,”

MA et al.: A RECOMMENDATION-BASED AUXILIARY CACHING FOR MAPPING RECORD

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Univ. Paderborn, Paderborn, Germany, Technical Report TR-RI-12-
323, p.19, 2012.

M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms
in information-centric networking,” IEEE Commun. Surveys Tuts.,
vol.17, no.3, pp.1473-1499, 2015.

H. Guo, L.I. Rui, and Z.p. Gao, “A zone-based content pre-caching
strategy in vehicular edge networks,” Future Generation Computer
Systems, vol.106, pp.22-33, 2020.

K. Cho, M. Lee, K. Park, T.T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and collaborative in-network caching for content-
oriented networks,” 2012 Proceedings IEEE INFOCOM Workshops,
pp.316-321, IEEE, 2012.

M. Bilal and S.G. Kang, “Time aware least recent used (TLRU)
cache management policy in ICN,” 16th International Conference on
Advanced Communication Technology, pp.528-532, IEEE, 2014.
N. Beckmann, H. Chen, and A. Cidon, “LHD: Improving cache hit
rate by maximizing hit density,” NSDI, pp.389-403, 2018.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” Proc. third work-
shop on Hot topics in software defined networking, pp.1-6, 2014.
T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Computer Commu-
nication Review, vol.40, no.1, pp.92-99, 2010.

G.C. Moura, J. Heidemann, R.d.O. Schmidt, and W. Hardaker,
“Cache me if you can: Effects of DNS time-to-live,” Proc. Inter-
net Measurement Conference, pp.101-115, 2019.

S. Alici, 1.S. Altingovde, R. Ozcan, B.B. Cambazoglu, and O. Ulusoy,
“Adaptive time-to-live strategies for query result caching in web
search engines,” Advances in Information Retrieval: 34th European
Conference on IR Research, ECIR 2012, Barcelona, Spain, April
2012. Proceedings 34, pp.401-412, Springer, 2012.

Y. Wu, C. DuBois, A.X. Zheng, and M. Ester, “Collaborative de-
noising auto-encoders for top-N recommender systems,” Proc. Ninth
ACM International Conference on Web Search and Data Mining,
pp.-153-162, 2016.

R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi,
“DCN V2: Improved deep & cross network and practical lessons for
web-scale learning to rank systems,” Proc. Web Conference 2021,
pp-1785-1797, 2021.

H. Steck, “Embarrassingly shallow autoencoders for sparse data,”
The World Wide Web Conference, pp.3251-3257, 2019.

Y. Li, J. Wang, and R. Han, “PB-NCC: A popularity-based caching
strategy with number-of-copies control in information-centric net-
works,” Applied Sciences, vol.12, no.2, 653, 2022.

Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in
information-centric networks,” 2012 Proceedings IEEE INFOCOM
Workshops, pp.268-273, IEEE, 2012.

L. Saino, I. Psaras, and G. Pavlou, “Icarus: A caching simulator for
information centric networking (ICN),” Proc. 7th International ICST
Conference on Simulation Tools and Techniques, SIMUTOOLS’ 14,
ICST, Brussels, Belgium, Belgium, ICST, 2014.

G.Zhang, Y. Li, and T. Lin, “Caching in information centric network-
ing: A survey,” Computer Networks, vol.57, no.16, pp.3128-3141,
2013.

W.K. Chai, D. He, 1. Psaras, and G. Pavlou, “Cache “less for more” in
information-centric networks,” NETWORKING 2012: 11th Interna-
tional IFIP TC 6 Networking Conference, Prague, Czech Republic,
May 2012, Proceedings, Part I 11, pp.27-40, Springer, 2012.

W. Zhao, Y. Qin, D. Gao, C.H. Foh, and H.C. Chao, “An efficient
cache strategy in information centric networking vehicle-to-vehicle
scenario,” IEEE Access, vol.5, pp.12657-12667, 2017.

(0

295

ZhaolinMa received his B.S. degree in elec-
tronic information science and technology form
Nankai Univresity in 2019. He is now a Ph.D.
candidate in signal and information processing
from Institute of Acoustics, Chinese Academy
of Science (IACAS). His research interest in-
clude ICN resolution systems, software-defined
networking (SDN), and distributed systems.

Jiali You received the Ph.D. degree in signal
and information processing from the Institute of
Acoustics, Chinese Academy of Sciences (IA-
CAS), in 2008. From January 2015 and January
2016, she was a Visiting Scholar with the Univer-
sity of Massachusetts Amherst. She is currently
a Professor in the National Network New Me-
dia engineering Research Center, IACAS. Her
research interests include in-network processing
and future network.

Haojiang Deng received the M.S. degree
from 510 Institute of China Academy of Space
Technology, Beijing, China, in 1998, and the
Ph.D. degree from the Institute of Semiconduc-
tors, Chinese Academy of Sciences, Beijing, in
2001. He is currently a full Professor. His cur-
rent research fields are digital signal processing
in audio and video, and broadband multimedia
communication.

