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SAMMARY  An unmanned aerial vehicle (UAV) can be used for wireless 
communication and localization, among many other things. When terrestrial 
networks are either damaged or non-existent, and the area is GPS-denied, the 
UAV can be quickly deployed to provide communication and localization 
services to ground terminals in a specific target area. In this study, we propose 
an UAV operation model for unified communication and localization using 
reinforcement learning (UCL-RL) in a suburban environment which has no 
cellular communication and GPS connectivity. First, the UAV flies to the target 
area, moves in a circular fashion with a constant turning radius and sends 
navigation signals from different positions to the ground terminals. This 
provides a dynamic environment that includes the turning radius, the 
navigation signal transmission points, and the height of the unmanned aerial 
vehicle as well as the location of the ground terminals. The proposed model 
applies a reinforcement learning algorithm where the UAV continuously 
interacts with the environment and learns the optimal height that provides the 
best communication and localization services to the ground terminals. To 
evaluate the terminal position accuracy, position dilution of precision (PDOP) 
is measured, whereas the maximum allowable path loss (MAPL) is measured 
to evaluate the communication service. The simulation result shows that the 
proposed model improves the localization of the ground terminals while 
guaranteeing the communication service. 

Keywords: Unmanned aerial vehicle, communication, localization, 

reinforcement learning, PDOP. 

1. Introduction 

An unmanned aerial vehicle (UAV), also known as a drone, or 

an airborne relay, is an aircraft controlled by a computer system 

through a radio communication link. UAVs have become the 

center of research in the industry because of their paramount 

importance for military and civilian applications. In the civilian 

application, UAVs are highly demanded for public safety and 

rescue operations when natural and/or man-made disasters 

occur. In such cases, UAVs can be quickly deployed to serve as 

base station in the sky (UAV-BS) and provide communication 

as well as localization services [1], [2].  

UAV has size, weight, and power (SWaP) limitations. 

Therefore, it is crucial to optimize the transmission power and 

bandwidth of UAV-BS communications. Various research 

issues and challenges regarding efficient UAV operation in 

wireless networks were introduced in [3], [4].  

The use of UAV-BS for communication service has been 

studied in [5] – [10]. In [5], the authors proposed an analytical 

approach to optimize the altitude of low area platforms (LAPs) 

which can deliver essential wireless communication for public 

safety agencies in remote areas or during the aftermath of 

natural disasters. The main goal of this research work is to 

provide maximum radio coverage on the ground. In [6], the 

authors proposed an energy efficient placement of a drone base 

station for minimum required transmit power. They formulated 

the problem in a way such that it minimizes the average transmit 

power of the UAV-BS that serves a set of ground users. The 

authors in [7] proposed 3-D placement of a directional-antenna 

equipped UAV-BS aiming to maximize the number of 

flying/hovering UAV-UEs under its coverage area.  

In [8], the authors applied deep reinforcement learning to 

make drones behave autonomously inside a suburban 

neighborhood which has plenty of obstacles such as trees, 

cables, parked cars, houses, and other moving drones. The UAV 

learns about the environment to avoid these stationary and 

moving obstacles as it navigates through the neighborhood 

showing how it can be used to provide communication services 

safely. The authors in [9] proposed a Q-learning based UAV 

deployment algorithm in which the UAV makes its own 

decision for attaining an optimal 3-D position by learning from 

trial and mistake for maximizing the sum mean opinion score 

of ground users. In [10], the authors studied how to maximize 

the overall data rate through an intelligent deployment of an 

UAV-BS in the downlink of a cellular system. They apply a 

reinforcement learning algorithm to avoid collision between 

multiple UAVs and optimize the UAV-BS positions that provide 

maximum sum data rate of multiple user equipment. 

The use of UAV-BS for localization service in non-GPS 

environments has been studied in [11] – [15]. In [11], the 

authors proposed the use of a single UAV to localize terminals 

in battlefield environments as the use of global navigation 

satellite system (GNSS) such as GPS is prone to jamming and 

has weak signal reception capability. They analyzed the 

localization service by varying the number of received 

navigation signals, and the velocity of the UAV. In [12], the 

authors proposed a Doppler shift-based user position detection 

system using UAV. They measured the statistical and 

quantitative performance of the positioning errors of a single 

ground user as the UAV moves in sinusoidal curve. The ground 

user sends continuous signal with a fixed frequency, the UAV 

receives it, and relays it to the terrestrial control station where 

the position computation takes place. In [13], the authors 

proposed the use of multiple UAV-BSs and additional ground 

references to locate a ground user. In [14], the authors proposed 

UAV-assisted localization of wireless devices that are in 

network outage and have run out of power. To localize the 

inactive devices, the authors used wireless power transfer 

(WPT) based wireless charging in which a small amount of 

power is transferred by the UAV to enable the target device to 

broadcast a beacon. The beacon from the devices contains the 

information about the neighboring nodes and their signal 

strength. The paper in [15] proposed the use of UAV-BSs for 

localization of a connected autonomous vehicle (CAV). They 

applied reinforcement learning algorithm to find the best spatial 

configuration of the UAV-BSs to localize the CAV in an 

unknown environment. 
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In all the above research works, the focus of the authors is 

either on the use of the UAV-BS for communication or 

localization. In this study, we propose a reinforcement learning 

based UAV-BS deployment scheme to provide both 

communication and localization services to terminals in a 

suburban environment without cellular communication and 

GPS connectivity. To do so, the UAV-BS is first deployed 

within the defined minimum and maximum heights. Then, the 

maximum allowable path loss (MAPL) of the edge terminal is 

computed using the air to ground (ATG) path loss model to 

analyze the communication service. For the localization 

service, the UAV-BS periodically sends navigation signals to 

the ground terminals. Then, each ground terminal calculates its 

own position using the time difference of arrival (TDOA) 

algorithm. We assume that a single UAV-BS moves in a circular 

fashion and sends navigation signals at 𝑁  navigation signal 

transmission points (NSTP) which define the UAV positions. 

The NSTPs of the UAV-BS serve as reference (anchor) signals. 

The UAV-BS to terminal geometry impacts the position 

accuracy of the terminals. The metric that is normally used for 

measuring the terminal position accuracy is known as dilution 

of precision (DOP) which represents the degree to which the 

UAV-BS to terminal geometry dilutes the position accuracy of 

the terminals [16].  

The main contributions of this work are: 

- Defined localization and communication models 

using a single UAV-BS in a GPS and cellular 

communication denied suburban environment.  

- Defined an optimization problem that integrates both 

the localization and communication services.  

- Proposed a reinforcement learning based model to 

solve the optimization problem. 

The rest of the paper is organized as follows. Section 2 

provides the proposed system model. From the system model, 

the proposed unified positioning and communication schemes 

are described in detail. Section 3 presents the reinforcement 

learning based approach. Section 4 provides the simulation 

results, and finally, the conclusion and future work are 

provided in section 5. 

2. System Model 

Fig. 1 shows the proposed system model. The UAV-BS is 

deployed to the target area where it moves in a circular route to 

provide the localization and communication services to the 

terminals. It’s assumed that the UAV-BS is equipped with its 

own navigation equipment that provides accurate location 

information at any navigation signal transmission point, NSTP 

1 to NSTP 𝑁 as shown in Fig. 1. Also, it is assumed that the 

UAV platform consists of fixed-wing aircraft which can turn 

during flight in the sky and send downlink navigation signals to 

the terminals periodically. The terminals are assumed to be 

static (no mobility). Each navigation signal transmission point 

can provide different coverage area ranges as the UAV-BS 

moves in a circular path in the air. In this research work, 

however, we considered a fixed target area where the terminals 

are located. Only the edge terminal is located at the edge of the 

target area. Hence, the target area coverage and the location of 

the edge terminal are fixed as shown in Fig. 1. 

 

2.1. Positioning Scheme 

Let 𝑡𝑛 be the time when the UAV-BS transmits a navigation 

signal from the 𝑛-th NSTP and, 𝜏𝑛 be the time when a ground 

terminal receives it. 

 
Fig. 1. Proposed system model. 
 

The pseudo-range between the 𝑛-th UAV-BS NSTP and the k-

th ground terminal is computed as 

   

 𝜌𝑘
𝑛 =  𝑐 × (τ𝑛 − 𝑡𝑛) + ε𝑛  (1) 

 

where 𝑘 = {1, 2, …, 𝐾} is a ground terminal index, 𝑛 = {1, 

2, …, 𝑁} is a UAV-BS navigation signal transmission point 

index, 𝑐  is the speed of light and ε𝑛  denotes the error that 

occurs during navigation signal transmission. 

For any k-th ground terminal, the pseudorange difference 

between the 𝑛 -th and the first UAV-BS navigation signal 

transmission points becomes: 

   

 𝜌𝑘
𝑛 − 𝜌𝑘

1 = 𝑐 × ((τ𝑛 − τ1) −  (𝑡𝑛 − 𝑡1)) 

  

(2) 

 

where 𝜌𝑘
1 =  𝑐 × (τ1 − 𝑡1) +  ε1 is the pseudo-range between 

the first UAV-BS navigation signal transmission point, 𝑛 = 1, 

and the k-th ground terminal. The errors 𝜖1 = 𝜖2 = . . . = 𝜖𝑛 
are similar for the same environment, the suburban environment 

in our case. So, in the pseudo-range difference computations, 

these values cancel each other out. 

In the 3-D Euclidean space orthogonal coordinate system, the 

pseudo-ranges 𝜌𝑘
1 and 𝜌𝑘

𝑛 are computed as follows: 

 𝜌𝑘
1 = ‖R1 −R𝑘‖  

 

(3) 

𝜌𝑘
1 = √(𝑥1 − 𝑥𝑘)

2 +  (𝑦1 − 𝑦𝑘)2 + (𝑧1 − 𝑧𝑘)
2 

 

   

 𝜌𝑘
𝑛 = ‖R𝑛 −R𝑘‖  

 

(4) 

 

𝜌𝑘
𝑛 = √(𝑥𝑛 − 𝑥𝑘)

2 +  (𝑦𝑛 − 𝑦𝑘)
2 + (𝑧𝑛 − 𝑧𝑘)

2 



where ||·|| represents the Euclidean norm vector, R𝑛  is the 

position vector of the UAV-BS at 𝑡𝑛, and R𝑘 is the position 

vector of the k-th terminal. Here, the UAV-BS location (𝑥𝑛, 𝑦𝑛, 

𝑧𝑛) is known at each navigation signal transmission time, 𝑡𝑛, 

whereas the position of the k-th terminal, R𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘), is 

unknown. 

From Eq. 2, Eq. 3, and Eq. 4, the position of the k-th terminal, 

R𝑘, can be determined using the TDOA algorithm and the non-

linear least squares method in the Levenberg-Marquardt 

algorithm [13].  

From the pseudorange equation provided in Eq. 2, let’s 

define matrices 𝐻 and 𝑍 as follows:  

 

𝐻 =  

[
 
 
 
𝜌𝑘

2 − 𝜌𝑘
1

𝜌𝑘
3 − 𝜌𝑘

1

⋮ ⋮ ⋮
𝜌𝑘

𝑁 − 𝜌𝑘
1]
 
 
 

 

 

(5) 

 

 

 

𝑍 =  

[
 
 
 
 
 
 
 −

𝑥1 − 𝑥𝑘

𝜌𝑘
1

−
𝑥2 − 𝑥𝑘

𝜌𝑘
2

−
𝑦1 − 𝑦𝑘

𝜌𝑘
1

−
𝑦2 − 𝑦𝑘

𝜌𝑘
2

−
𝑧1 − 𝑧𝑘

𝜌𝑘
1

−
𝑧2 − 𝑧𝑘

𝜌𝑘
2

⋮ ⋮ ⋮

−
𝑥𝑁 − 𝑥𝑘

𝜌𝑘
𝑁 −

𝑦𝑁 − 𝑦𝑘

𝜌𝑘
𝑁 −

𝑧𝑁 − 𝑧𝑖

𝜌𝑘
𝑁 ]

 
 
 
 
 
 
 

 

 

(6) 

where matrix 𝐻  is a column vector which consists of the 

pseudo-range differences between the first and the remaining 

(𝑁 − 1) UAV-BS positions for the k-th terminal, and matrix 

𝑍 is a set of unit vectors of the 𝑁 UAV-BS positions for the 

k-th terminal. 

From Eq. 5 and Eq. 6, the terminal position is computed as:  

   

 
R𝑘 = 

1

2
(𝐻𝑇𝐻)−1𝐻𝑇𝑍  

(7) 

 

 

where R𝑘  refers to the position of the 𝑘 -th terminal, 𝐻𝑇  is 

the transpose of matrix 𝐻, and (𝐻𝑇𝐻)−1 indicates the inverse 

of the matrix (𝐻𝑇𝐻). At least four UAV-BS positions (𝑁 ≥
4) are required to calculate the positions of each terminal, R𝑘 

= (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘), using Eq.7.  

Position DOP (PDOP) is a metric used to measure the 

accuracy of terminal positioning in global navigation systems, 

particularly in the context of global positioning systems (GPS) 

and other airborne-relay based navigation systems. It is the 

uncertainty of 3-D parameters (latitude, longitude, and height) 

and depends on the geometric arrangement of the navigation 

signal transmission points and the altitude of UAV-BS from 

perspective of the ground terminals. To compute the PDOP, 

let’s define the geometric matrix, 𝐺: 

   

 

 

 

𝐺 = 
 

[
 
 
 
 
 
 
 −

𝑥1 − 𝑥𝑘

𝜌𝑘
1 −

𝑦1 − 𝑦𝑘

𝜌𝑘
1 −

𝑧1 − 𝑧𝑘

𝜌𝑘
1 1

−
𝑥2 − 𝑥𝑘

𝜌𝑘
2 −

𝑦2 − 𝑦𝑘

𝜌𝑘
2 −

𝑧2 − 𝑧𝑘

𝜌𝑘
2 1

⋮ ⋮ ⋮ ⋮

−
𝑥𝑁 − 𝑥𝑘

𝜌𝑘
𝑁 −

𝑦𝑁 − 𝑦𝑘

𝜌𝑘
𝑁 −

𝑧𝑁 − 𝑧𝑖

𝜌𝑘
𝑁 1

]
 
 
 
 
 
 
 

 

(8) 

 

From the geometric matrix in Eq. 8, we define the covariance 

matrix 𝑄 =  (𝐺T𝐺)-1 which is a 4x4 matrix. 

   

 

𝑄 = [

𝑄11 𝑄12 𝑄13 𝑄14

𝑄21 𝑄22 𝑄23 𝑄24

𝑄31 𝑄32 𝑄33 𝑄34

𝑄41 𝑄42 𝑄43 𝑄44

] 

  

(9) 

 

Then, the PDOP of each terminal is extracted from the 

covariance matrix, 𝑄, as follows:  

   

 PDOP𝑘  = √𝑄11 + 𝑄22 + 𝑄33  (10) 

 

PDOP is a dimensionless number. A lower PDOP value 

indicates a more favorable geometric configuration, leading to 

higher position accuracy, while a higher PDOP value suggests 

less favorable geometry and potentially reduced accuracy. 

Another metric used to evaluate the terminal position 

accuracy is root mean square error (RMSE). RMSE is the 

measure of the root of the mean of the squared errors between 

the predicted and true/actual terminal position values. 

 

𝑅MSE =  √
∑ ((xk − xˆk)

2 +  (yk − yˆk)
2 + (zk − zˆk)

2)K
k=1

K
 

(11) 

where (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) is the true position and (xˆk, yˆk, zˆk) is 

the estimated position of the 𝑘-th terminal. 

 

2.2. Communication Scheme 

From the system model provided in Fig. 1, the ATG model is 

used to evaluate the communication service of the terminals 

located in the target area. From the ATG model [17], the average 

path loss between the UAV-BS and the ground terminal is 

computed as: 
 

PL = PL𝐿𝑜𝑆 × 𝑝(𝐿𝑜𝑆, θ) +  PL𝑁𝐿𝑜𝑆 ×  𝑝(𝑁𝐿𝑜𝑆, θ)   (12) 

 

where PL𝐿𝑜𝑆  is the line-of-sight (LOS) path loss, 𝑝(𝐿𝑜𝑆, θ) 

is the LOS probability at elevation angle θ, PL𝑁𝐿𝑜𝑆 is the non-

line-of-sight (NLOS) path loss, and 𝑝(𝑁𝐿𝑜𝑆, θ) is the NLOS 

probability at elevation angle θ.  

Now, let’s see how each of the parameters in the average path 

loss equation provided in Eq. 12 are computed. The elevation 

angle is defined by θ =  𝑎𝑟𝑐𝑡𝑎𝑛 (
ℎ

𝑟
)  where ℎ  is the UAV 

height, and 𝑟 is the horizontal distance between the center of the 

coverage area and the ground terminal. 

The LOS and NLOS path loss parameters are given by: 

   

 PL𝐿𝑜𝑆 =  FSPL + η𝐿𝑜𝑆  

PL𝑁𝐿𝑜𝑆 = FSPL + η𝑁𝐿𝑜𝑆  

(13) 

(14) 

 

where η𝐿𝑜𝑆 and η𝑁𝐿𝑜𝑆 are the LOS and NLOS excessive path 

losses respectively. Their values are given in Table 1. 

The free space path loss, FSPL, is given by:  



𝐹𝑆𝑃𝐿 =  20 × 𝑙𝑜𝑔10 (
4 × π × 𝑓 × 𝑑

𝑐
) 

 

(15) 

 

where 𝑓  is the operating frequency, 𝑑 =  √ℎ2 + 𝑟2  is the 

distance between the UAV-BS and the ground terminal, and 𝑐 

is the speed of light.  

The LOS probability is given by: 

𝑝(𝐿𝑜𝑆, θ) =  
1

1 +  α × exp(− β × (θ –  α))
 

 

 

(16) 

where α  and β  are environmental constants, whose values 

are shown in Table 1.  

Eq. 16 shows that the probability of having a line-of-sight 

connection between the UAV-BS and a ground terminal 

increases as the elevation angle increases. This decreases the 

mean path loss because the shadowing effect, which is the 

attenuation of the signal due to obstacles, decreases as the 

elevation angle increases. On the other hand, as the elevation 

angle increases, the distance between the UAV-BS and the 

ground terminal also increases which results in higher path loss. 

The NLOS probability at the given θ becomes: 

 

𝑝(𝑁𝐿𝑜𝑆, θ) =  1 −  𝑝(𝐿𝑜𝑆, θ) 

 

 

(17) 

Now, we have all the parameters to compute the average path 

loss value, PL, at each terminal using Eq. 12.  

 

Table 1 Environment constants [1] [18]. 
Parameters Suburban Urban Dense Urban 

α 4.88 9.61 12.08 
β 0.43 0.16 0.11 

η𝐿𝑜𝑆 0.1 1 1.6 

η𝑁𝐿𝑜𝑆 21 20 23 

𝑎0 0.1154 0.1150 0.1151 
𝑎1 4.8008 4.5068 4.4511 

 

The minimum received power at each ground terminal 

depends on the transmitted power of the UAV-BS, and the 

maximum path loss. In [18], the authors proposed a path loss 

and height optimization (PLaHO) model where they defined the 

maximum path loss for a given UAV height as follows:  

 

ℎ =  exp(𝑎0(PL
𝑚𝑎𝑥

 −  𝑢) − 𝑎1) 

 

 

(18) 

where 𝑎0 and 𝑎1 are environmental constants, whose values 

are given in Table 1, and 𝑢 =  20 × 𝑙𝑜𝑔10(𝑓 × 10−9)  where 

𝑓 is the operating frequency.  

According to Eq. 18, the maximum path loss for an UAV-BS 

placed at 1400 𝑚 in a suburban environment is 110.4 dB. So, 

the maximum path loss value of 110.4 dB would be used as the 

threshold path loss in this study. 

 

2.3. Communication and Localization 

By combining the communication and localization schemes, we 

define the following optimization problem. 

   

 min. PDOP𝑎𝑣𝑒   
𝑠. 𝑡.  PL ≤  PLmax 

h𝑚𝑖𝑛 ≤  h ≤ h𝑚𝑎𝑥 

 

(19) 

 

 

where PDOP𝑎𝑣𝑒 is the average PDOP for the terminals in the 

target area, PL is the path loss of a terminal, and h  is the 

UAV-BS height. 

We are going to apply a reinforcement learning algorithm to 

solve Eq. 19 which will be described in the next sections in 

detail. 

3. Communication and Localization using RL 

Reinforcement learning enables an agent to learn by 

continuously interacting with the environment by trial and error 

using feedback from its own actions and experiences. In RL, the 

agent is not programmed what actions to take; instead, it learns  

 

 
Fig. 2. Agent-Environment interaction in RL. 

 

the consequence of its actions. At each time step, the agent 

receives a state s𝑡 from the state space and selects an action 

𝑎𝑡  from the set of possible actions in the action space. As a 

result of the action it takes, the agent gets a numerical reward 

r𝑡+1 one time step later from the environment, and it finds itself 

in a new state s𝑡+1 [19]. Fig. 2 shows the agent-environment 

interaction in reinforcement learning algorithm. 

Q-learning is a model-free RL algorithm which learns the 

value of an action in a particular state. Q-learning algorithms 

carry out an action multiple times and adjust the policy for 

optimal rewards based on the outcomes of the actions. Epsilon-

Greedy action selection policy is applied in the Q-learning 

algorithm where epsilon is a probability value that balances the 

exploration and exploitation of the action by the agent. Epsilon 

helps the agent to exploit the action with small probability of 

exploring. 

In this paper, Q-learning algorithm is applied to solve the 

problem defined in Eq. 19. The goal is to apply Q-learning 

algorithm to acquire the minimum PDOP𝑎𝑣𝑒  value under the 

path loss and height constraints for unified communication and 

localization services using UAV-BS. For any Q-learning 

algorithm, the environment, agent, state, action, and reward 

should be defined. In this paper, these parameters are defined 

as follows: 

 

Environment – An environment represents the system an agent 

interacts with. In this paper, the environment is a GPS and 

cellular communication denied suburban environment. 

 

Agent – An agent is the entity that interacts with the 

environment to achieve a specific task. In this paper, the agent 

is the UAV-BS. So, UAV-BS and agent can be used 

interchangeably. 

 

State space – The UAV-BS height (altitude) forms the state 



space in our model. Originally, the state space is continuous as 

the UAV-BS can take any value as it moves within the defined 

minimum height, h𝑚𝑖𝑛 and the maximum height, h𝑚𝑎𝑥. This 

continuous UAV-BS height is then discretized to give an integer 

number of states. By defining Δh as the change of height after 

each action, the total number of states is computed as:  

 

𝑁𝑠𝑡𝑎𝑡𝑒𝑠 = ⌊
(h𝑚𝑎𝑥  −  h𝑚𝑖𝑛) 

Δh 
+  1⌋ 

(20) 

where the floor function ⌊x⌋ takes a real number x and gives the 

greatest integer less than or equal to x as an output.  

In this paper, h𝑚𝑖𝑛  and h𝑚𝑎𝑥  are 400 m and 1400 m 

respectively, and Δh is 100 m. Applying these values to Eq. 

20 provides 𝑁𝑠𝑡𝑎𝑡𝑒𝑠  = 11 discrete number of states which 

define the state space. Fig. 3 shows how each action the agent 

takes changes the state-space. 

 

Action space: An action indicates what the agent (UAV-BS) 

does from the current state. An action space indicates the 

possible set of actions that the agent can take in the agent-

environment interaction. In this paper, we have defined three 

types of actions the UAV-BS can take from the current state: An 

Upward Action, a Downward Action, and a Static Action, as 

illustrated in Fig. 3. Assuming that the current state of the agent 

is h, depending on the epsilon greedy policy, the agent takes one 

of the three possible actions. An Upward Action takes the agent 

to the (h +  Δh) state, a Downward Action takes it to the (h −
 Δh) state, and a Static Action causes the agent to remain int its 

current state at h.  

 

 
Fig. 3. Action space of the agent, UAV-BS. 

 

Policy: Policy indicates how an agent chooses its actions. In Q-

learning, an epsilon greedy strategy decides whether the agent 

should explore or exploit while interacting with the 

environment. The agent initially starts out by choosing a 

random action (exploration). As the episode progresses, the 

epsilon value provides a balance between exploration and 

exploitation. In exploitation, the agent chooses its action based 

on the highest Q-value from the Q-table for the given state. 

Reward – A reward is a scalar value received after each action 

for transition to the new state. The average PDOP value is used 

as a reward in this paper. It measures the position accuracy of 

the terminals in the target area. The UAV-BS sends the 

navigation signals from the 𝑁  UAV-BS positions of the 

current state, and each terminal computes the PDOP value as 

given in Eq. 10. When the number of terminals in the target area 

is more than one (𝐾 > 1) , an average PDOP is used as the 

reward. The average PDOP is defined by: 

 

PDOP𝑎𝑣𝑒 = 
∑ PDOP𝑘

𝐾
𝑘=1

𝐾
 

 

(21) 

The PDOP𝑎𝑣𝑒  decides the reward in the Q-learning algorithm. 

Low average PDOP shows good terminal position accuracy, and 

large average PDOP shows bad terminal position accuracy. 

The Q-learning algorithm uses a Q-table which contains the 

state and action pair known as Q-values. At each state, the agent 

computes the numerical reward r𝑡+1 , based on the average 

PDOP as follows: 

 

r𝑡+1 ={

− 1,  𝑖𝑓 PDOP𝑎𝑣𝑒(s𝑡+1) > PDOP𝑎𝑣𝑒(s𝑡)

0,  𝑖𝑓 PDOP𝑎𝑣𝑒(s𝑡+1) =  PDOP𝑎𝑣𝑒(s𝑡)

+1,  𝑖𝑓 PDOP𝑎𝑣𝑒(s𝑡+1) < PDOP𝑎𝑣𝑒(s𝑡)
    (22) 

 

where PDOP𝑎𝑣𝑒(s𝑡+1) is the average PDOP at the next state, 

and PDOP𝑎𝑣𝑒(s𝑡) is the average PDOP at the current state. 

Depending on the PDOP𝑎𝑣𝑒, the UAV-BS decides r𝑡+1 as 

shown in Eq. 22. If the average PDOP at the next state is greater 

than the average PDOP at the current state, the agent gets a 

negative reward. If the average PDOP at the next state is lower 

than the average PDOP at the current state, the agent receives a 

positive reward. If there is no change in the average PDOP 

values, the agent gets zero reward. The agent updates its Q-table 

and takes one of the 3 actions based on the epsilon greedy policy 

to move to the next state as shown in Fig. 3. 

 

UAV-BS Q-table update - the UAV-BS has an action-value 

matrix which represents the value of being in a specific state s𝑡, 

while taking an action a𝑡. The UAV-BS updates the Q-value 

of the current state, Q
𝑛
(s𝑡 , a𝑡), through the Q-learning function 

defined by: 

 

Q𝑛(s𝑡 , a𝑡) = Q𝑜
(s𝑡 , a𝑡) +  

μ × (r𝑡+1 +  γ × max
a

Q( s𝑡+1, a) − Q𝑜
(s𝑡 , a𝑡)) 

which can be simplified to: 

Q
𝑛
(s𝑡, a𝑡) = (1 −  μ) × Q

𝑜
(s𝑡 , a𝑡) + 

 μ × (r𝑡+1 +  γ × max
a

Q( s𝑡+1, a))   (23) 

where Q𝑛
(s𝑡 , a𝑡)  is the new Q-value of the current state,  

Q
𝑜
(s𝑡 , a𝑡)  is the old Q-value of the current state, μ  is the 

learning rate, r𝑡+1  is the reward defined in Eq. 22, γ  is the 

discount factor, and max
a

Q( s𝑡+1, a)  is the action that 

maximizes the Q-value of the next state. μ  determines how 

much the agent adjusts its estimates based on new information 

obtained from the interactions with the environment. It’s a value 

between 0 and 1. γ is a parameter that controls the importance 

of future rewards in the agent’s decision-making process. It’s a 



value between 0 and 1 and represents the extent to which the 

agent values future rewards compared to immediate rewards. 

 

Stopping criteria: Initially, the UAV-BS is randomly located 

in one of the discrete states which correspond to the UAV-BS 

heights. Then, the interaction between the agent and the 

environment proceeds in sequences of steps until a stopping 

criterion is met. Stopping criteria decide when the agent should 

stop interacting with the environment. One way to define the 

stopping criteria is to let the agent continue until all the 

available states are visited. This is done to give the agent 

enough opportunity to interact with the environment and learn 

about it through exploitation and exploration following the e-

greedy policy. Another way to outline the stopping criteria is to 

specify the number of steps in each episode. In this paper, we 

have defined the stopping criteria based on the number of steps. 

The agent runs for 200 steps and then stops. This is decided 

based on a repeated simulation observation where the reward 

does not improve when the number of steps exceeds 200. 

 

DQN versus Q-learning: Deep Q-learning network (DQN) has 

become widespread in many of the RL-based research works 

recently. In this paper, however, Q-learning has been selected 

because the number of state and action spaces, (states = 11, and 

actions = 3), is very small and memory is not a problem. When 

the state and action spaces are large, using the Q-table is 

impractical because of memory limitations which affect the 

performance. In that case, DQN should be used as it addresses 

the memory limitation of Q-learning through Replay Memory 

technique where only limited number of state-action pairs are 

used instead of the whole state-action pairs. 

4. Simulation Results 

MATLAB is used to simulate the proposed UCL-RL model. 

We have developed a customized suburban environment that 

contains randomly generated terminals within a defined 

coverage area. The agent (UAV-BS) continuously interacts 

with the environment and learns about it using the 

reinforcement algorithm. 

To the best of our knowledge, this is the first work that 

proposed the use of UAV for unified communication and 

localization services using reinforcement learning. To evaluate 

the performance of the proposed UCL-RL model, we have used 

two models for comparison. The first model is proposed in [11] 

which analyzed the use of single and dual UAV to localize 

terminals in battlefield environments. Since we are using one 

UAV-BS in this study, we have selected the single UAV-based 

localization (SUL) model of [11] for comparison. In the SUL 

model, the UAV-BS is placed at the middle of the UAV-BS 

height ranges which is 0.9 Km which is the average of the 

minimum (400 m) and maximum (1400m) UAV-BS altitudes. 

The PDOP, RMSE, and PL metrics are then measured from this 

fixed altitude. As a second model, we have defined a Basic 

model where the UAV-BS is randomly placed within the 

minimum and maximum UAV-BS heights throughout all the 

simulation episodes. In the Basic model, the PDOP, RMSE, and 

PL metrics are computed from the random position the UAV-

BS takes at each episode. For the proposed UCL-RL model, 

however, the UAV-BS learns the optimal UAV-BS height using  

Table 2  Simulation parameters 
Parameters of the table Values 

UAV-BS speed  180 Km/h 

UAV-BS turning radius  2000 m 

UAV-BS height (Min, Max)  400 m, 1400 m 

Δh  100 m 

State space 11 

Action space 3 

Frequency 2 GHz 

Learning rate 0.1 

Discount factor  0.95 

Number of terminals 1 and 20 

Minimum received power -80 dBm 

UAV-BS transmitted power 15 W 

Navigation signal transmission points 15 

 

the reinforcement learning algorithm through a continuous 

interaction with the environment. 

Table 2 shows the simulation parameters. The simulation 

scenario consists of a 2.8284 km radius target area as shown  

in Fig. 4. Fig. 4 illustrates one instance of the simulation 

scenario where the UAV-BS is placed at h = 1400. From this 

position, it moves in a circular path, generating navigation 

signals at each UAV position. Subsequently, the localization 

and communication services are measured. At another time step, 

the UAV-BS takes different UAV-BS heights according to the 

UCL-RL algorithm as depicted in Fig. 3, to produce the required 

state, action, and reward. The agent continues interacting with 

the environment until it reaches a stopping condition. 
There are two simulation scenarios: single user simulation 

scenario and multiple user simulation scenario. In the single 

user simulation scenario, one terminal (𝐾 = 1), which is an 

edge user, is used to evaluate the performance of the SUL, Basic 

and UCL-RL models. In the multiple user simulation scenario, 

20 terminals (𝐾 = 20) are generated within the defined target 

area. Out of the 20  terminals, 19 terminals are randomly 

generated whereas 1 terminal is an edge user. The values for the 

learning rate μ  = 0.1 and the discount factor γ  = 0.95 are 

selected because they are very common values in many of the 

Q-learning algorithm-based research works. The value for 

epsilon is initially 1 and decreases as the episode progresses to 

balance the exploitation and exploration strategies which are 

crucial to maximize the cumulative reward over time.  

 

 
Fig. 4. Simulation scenario. 

 

Fig. 5 shows the PDOP simulation result for the SUL, Basic 

and UCL-RL models for the single user simulation scenario. 

Here, the dynamicity in the agent-environment interaction is the  



 
Fig. 5. PDOP comparison of SUL, Basic and UCL-RL models, K = 1. 
 

result of the change in altitude of the agent. The PDOP of the 

edge terminal is computed at each episode and serves as the 

reward. In Figure 5, the PDOP for the SUL model doesn’t vary 

throughout the episodes because it’s measured from a fixed 

height. Initially, up until episode 13, the proposed UCL-RL 

model has worse PDOP value than the SUL and Basic models 

as it has not interacted with the environment and learned the 

best reward yet. As the agent-environment interaction proceeds 

(defined by the episodes), the proposed UCL-RL model has 

resulted in an improved PDOP value compared to the SUL and 

Basic models. After 24 episodes, the UCL-RL model has 

converged to the best reward, while the SUL model has fixed 

value, and the Basic model has random values in every episode. 

Fig. 6 shows the average PDOP simulation result for the SUL, 

Basic and UCL-RL models for the multiple user simulation 

scenario. The average PDOP for the terminals is computed at 

each episode and serves as the reward. Initially, like in the 

single user scenario, the average PDOP value for the UCL-RL 

model is worse than the PDOP value of the SUL and Basic 

models. As the episode progresses, however, the average PDOP 

value for the UCL-RL model has improved. Starting from 

episode 14, the UCL-RL model provides better average PDOP 

compared to the SUL and Basic models as shown in Fig. 6. 

The PDOP range in the single-user simulation scenario 

(PDOP = 4 to 7.5 in Fig. 5) is lower than the PDOP range in the 

multiple user simulation scenario (PDOP𝑎𝑣𝑒 = 18 to 25 in Fig. 

6). This variation in PDOP value in the two simulation 
 

 
Fig. 6. PDOP𝑎𝑣𝑒  comparison of SUL, Basic and UCL-RL models for K = 20. 

 
Fig. 7. RMSE comparison of SUL, Basic and UCL-RL models for K = 1 and K 
= 20 averaged over 50 episodes. 

 

scenarios come from the different UAV-BS to terminal 

geometries. The UAV-BS to terminal geometry is an important 

factor that affects the PDOP value. It describes the geometry of 

the navigation signal transmission points (NSTP) of the UAV-

BS from the ground terminals perspective. In the single-user 

simulation scenario, the geometry of the terminal depends on 

the NSTPs and height of the UAV-BS only. This provides better 

UAV-BS to terminal geometry which corresponds to the lower 

PDOP range. In the multiple user simulation scenario, however, 

there are many UAV-BS to terminal geometries, one for each 

terminal, which depend on the NSTPs and the height of the 

UAV-BS as well as the positions of the terminals. These 

multiple geometries result in a large average PDOP value at 

each episode. That is the reason why the PDOP range in the 

multiple-user simulation scenario is larger than the PDOP range 

in the single-user simulation scenario. In both simulation 

scenarios, the proposed UCL-RL model provides better PDOP 

value as the episode increases compared to the SUL and Basic 

models as illustrated in Fig.5. and Fig. 6. 

Another way to measure the accuracy of the terminal 

positioning is to apply root mean square error (RSME). Fig. 7 

shows the RMSE for the SUL, Basic and UCL-RL models for 

the two simulation scenarios averaged over 50 episodes. For 

𝐾 = 1,  the RMSE values for the SUL, Basic and UCL-RL 

models are 1.91 m, 2.06 m and 1.51 m respectively. For 𝐾 = 

20, the RMSE values for the SUL, Basic and UCL-RL models 

are 3.70, 3.67 m and 2.97 m respectively. To compute the 

estimated positions of the terminals, we apply a non-linear least 

square method using the Levenberg-Marquardt algorithm [13]. 

The algorithm iteratively adjusts the estimated terminal 

positions, leading to reduced errors and minimized RMSE 

values. Consequently, despite the high PDOP values shown in 

Fig. 6, the RMSE values in Fig. 7 are small. The improvement 

is due to the effectiveness of the Levenberg-Marquardt 

algorithm in minimizing errors.  

In both simulation scenarios, the UCL-RL model has 

provided smaller RMSE values compared to the SUL and Basic 

models. This shows the proposed UCL-RL model provides 

better terminal position accuracy as the agent learns the best 

parameters that minimize the positioning error of the terminals.  

To evaluate the communication, the maximum allowable 

path loss (MAPL) metric is measured. The purpose of this 



 
Fig. 8. MAPL comparison of SUL, Basic and UCL-RL models at episodes 5 

and 20. 

 

evaluation is to show the path loss of the proposed UCL-RL 

model lies within the given path loss range defined by the 

maximum path loss, PLmax, which is the threshold path loss. 

According to the PLaHO model defined in [18] and given in Eq. 

18, the MAPL for an UAV-BS to ground terminal 

communication in suburban environment is 110.4 dB which is 

the threshold path loss value. Fig. 8 shows the path loss for the 

SUL, Basic and UCL-RL models at two episodes (ep = 5, and 

20) for the single user simulation scenario (K = 1) by 

considering the MAPL for the suburban environment. The 

values of ep = 5 and ep = 20 are carefully selected to 

demonstrate learning properties of the agent. The lower 

episode, ep = 5, represents the learning process at the beginning 

of the learning. At this episode, the agent has had limited 

interaction with the environment. At ep = 20, the agent 

demonstrates substantial learning about the environment due to 

increased interaction. The characteristics of the other episodes 

are similar to these two episodes. 

At ep = 5, the path loss values for the SUL, Basic and UCL-

RL models are 108.15 dB, 111.94 dB and 108.15 dB 

respectively. At ep = 20, the path loss values are 108.15 dB, 

108.12 dB, 108.74 dB for the SUL, Basic and UCL-RL models 

respectively. The proposed UCL-RL model has produced path 

loss value below the MAPL as the episode increases from 5 to 

20 as shown in Fig. 8. There is a slight increase in the path loss 

value for the UCL-RL model when the episode increases from 

5 to 20, but it is still less than the threshold path loss value 

(110.4 dB) which shows that the proposed UCL-RL model 

maintains the communication service. This proves that the 

proposed UCL-RL model provides improved localization 

service while enabling communication service to the terminals 

in the target area when compared to the SUL and Basic Models. 

5. Conclusion 

This paper proposed the use of a single UAV-BS to provide 

unified communication and localization services in suburban 

environment with no cellular and GPS connectivity by applying 

reinforcement learning. The UAV-BS is flown to the target area 

and deployed within the minimum and maximum heights where 

it moves in a circular path to send navigation signals to the 

terminals in the target area. The combination of the UAV-BS 

turning radius, navigation signal transmission points, UAV-BS 

height, and the position of the ground terminals provides a 

dynamic environment. The UAV-BS interacts with the 

environment and learns the average PDOP value as a reward 

through the Q-learning algorithm. The path loss of an edge 

terminal is also measured to assess the communication service. 

Simulation results have shown that the proposed model 

provides improved terminal positioning accuracy while 

guaranteeing communication service. 

In this work, the UAV-BS turning radius is constant. In our 

next work, we will design the problem by varying the turning 

radius and assess how it affects the localization and 

communication capabilities. In addition to that, we will expand 

the UAV-BS height range to increase the state space and then 

apply other reinforcement learning algorithms, like DQN, to 

evaluate the performance. 
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