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PAPER 
PopDCN: Popularity-Aware Dynamic Clustering Scheme for 
Distributed Caching in ICN* 

Mikiya YOSHIDAial, Yusuke ITO'i''i'bl, Yurino SATO'i'llcl,and Hiroyuki KOGAll<ll,Members 

SUMMARY Information-centric networking (ICN) provides low-
latency content delivery with in-network caching, but delivery latency de-
pends on cache distance from consumers. To reduce delivery latency, a 
scheme to cluster domains and retain the main popular content in each 
cluster with a cache distribution range has been proposed, which enables 
consumers to retrieve content from neighboring clusters/caches. However, 
when the distribution of content popularity changes, all content caches may 
not be distributed adequately in a cluster, so consumers cannot retrieve them 
from nearby caches. We therefore propose a dynamic clustering scheme to 
adjust the cache distribution range in accordance with the change in content 
popularity and evaluate the effectiveness of the proposed scheme through 
simulation. 
key words: ICN, distributed caching, dynamic clustering 

1. Introduction 

Information-centric networking (ICN) [3], [4] has been at-
tracting attention as a new architecture that uses network 
caching to satisfy the requirements (e.g., ultra-low latency, 
ultra-high reliability, and massive connectivity) for emerg-
ing services such as IoT-like automation, robotics, and in-
dustrial automation [5], [6]. In ICN, a consumer sends inter-
est packets containing content names to request content. A 
content router (CR), which is an intermediate router receiv-
ing the interest packets, forwards the packets to a producer 
on the basis of a routing table called a forwarding informa-
tion base (FIB). The producer then returns data packets of the 
requested content with the reverse path to consumers. The 
CRs cache data packets on their content store (CS) during 
forwarding, so they can return caches to consumers instead 
of the producer if they store the requested data. Namely, this 
in-network caching, which can satisfy the future requests of 
consumers, significantly reduces the network load and im-
proves content delivery efficiency. To take full advantage of 

-;-The author is with the Center for Information Technology and 
Management, Okayama University, Okayama-shi, 700-8530 Japan. 

i''i'The authors are with the Graduate School of Environmental 
Engineering, The University of Kitakyushu, Kitakyushu-shi, 808-
0135 Japan. 

i'i''i'The author is with the Department of Control Engineer-
ing, National Institute of Technology (KOSEN), Sasebo college, 
Sasebo-shi, 857-1193 Japan. 

*Earlier version of this paper was presented at ACM ICN2022 
and APSIPA ASC2022 [ll, [2]. 

a) E-mail: m-yoshida@okayama-u.ac.jp 
b) E-mail: y-ito@kitakyu-u.ac.jp 
c) E-mail: y-sato@sasebo.ac.jp 
d) E-mail: h.koga@kitakyu-u.ac.jp 

in-network caching, an efficient content caching scheme is 
needed, and various schemes have been proposed. 

Simple content caching makes a cache decision on in-
dividual CRs, while distributed content caching distributes 
content by considering nearby caches to satisfy content re-
quests. Distributed caching solves a cache efficiency prob-
lem that simple content caching causes cache duplication for 
a small amount of highly popular content over neighboring 
CRs. However, if the cached required content is distributed 
over a large range, delivery latency may increase. 

Therefore, cluster-based distributed caching schemes 
have been proposed [7], [8] to control a distributed range. 
These schemes group CRs into clusters in a domain·! and 
retain the main popular content in each cluster using a dis-
tributed caching manner. This aims to avoid cache duplica-
tion among CRs in the cluster, enabling the caches of each 
content to be distributed within it. As a result, the deliv-
ery latency can be controlled by cluster size, and it enables 
consumers to retrieve content efficiently from the originating 
clusters. However, a too-small distribution range decreases 
cache utilization and causes delivery delays due to the deliv-
ery from producers, while a too-large distribution range in-
creases cache utilization but may cause delivery delays due 
to long cache delivery. Therefore, we believe that the ade-
quate cache distribution range should be determined in ac-
cordance with content popularity on the basis of such trade-
off factors. In a practical environment, the distribution of 
content popularity changes over time, so it is necessary to 
determine the distribution range depending on the situation. 

We therefore propose a dynamic clustering scheme to 
adjust the cache distribution range, i.e., cluster size, in ac-
cordance with the change in content popularity, considering 
cache utilization and delivery latency. Our scheme controls 
the cluster size effectively using a simple threshold-based al-
gorithm based on the number of cache updates on CRs in a 
cluster. Moreover, we evaluate the effectiveness of the pro-
posed scheme compared with conventional schemes through 
simulation in a situation where content popularity changes. 

The main contributions of this paper, updated from pre-
vious papers [I], [2], are as follows: 

• We discuss recent studies that utilize clustering tech-
niques in ICN. 

• We evaluate the proposed scheme compared with con-
ventional schemes in detail and discuss the effective 

-;-In this paper, the term 'domain' refers to a large-scale network 
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threshold settings. 
• We investigate the effectiveness of the proposed scheme 

in practical network topologies. 

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our motivation for this study through a 
discussion of related works. In Section 3, we describe our 
scheme. In Section 4, we describe the simulation model and 
evaluation details. In Section 5, we evaluate the performance 
of our scheme in comparison with conventional schemes. Fi-
nally, in Section 6, we summarize our findings and conclude 
the paper. 

2. Related Work 

In this section, we describe an issue of this study through 
discussions of various content caching schemes to improve 
content delivery efficiency. 

2.1 Distributed Caching 

Simple caching schemes such as LCE [3] and Prob(p) [9] 
make a cache decision on individual CRs. This may cause 
cache duplication for a few high-popular contents over neigh-
boring CRs because more frequently requested content is 
likely to be cached. This becomes useless for other content 
requests. Therefore, distributed caching schemes have been 
proposed such as MCD [10], WAVE [11], MuNCC [12], 
and Hash-routing [13], which distribute various content con-
sidering nearby caches to satisfy various content requests. 
The key idea of MCD and WAVE schemes is that each CR 
moves requested caches to downstream CRs. Namely, the 
CR caching the requested content sends its cache to the 
downstream CR and removes it from itself, so that each cache 
is not duplicated on the default path, i.e., the shortest path to 
consumers. However, it is unable to avoid cache duplication 
among neighboring CRs outside the default path. 

In contrast, in MuNCC and proposed in [14] schemes, 
each CR shares cache summaries that are formed using a 
Bloom filter among neighboring CRs to avoid cache duplica-
tion. When a data packet arrives, a CR determines whether it 
caches it or not depending on the cache summaries of neigh-
boring CRs. The Hash-routing scheme distributes content 
to CRs using a hash function that maps content identifiers 
to each CR of the domain, without additional functionality 
such as shared cache summaries. In particular, when an edge 
router in the domain receives a request, it calculates the hash 
value from the received content identifier and forwards it to 
the responsible CR. Similarly, each CR caches the respon-
sible content whose hash value matches its identifier during 
forwarding. As a result of this approach, since the cache lo-
cation of each content is limited to one CR over a domain, 
it can avoid cache duplication among CRs. However, if the 
cached required content is distributed over a large range, de-
li very latency may increase. 
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2.2 Cluster-Based Distributed Caching 

To control the cache distribution range considering deliv-
ery latency, network clustering-based distributed caching 
schemes for ICN have been proposed [7], [8], [15], [16]. 
These schemes group CRs into clusters in a domain and re-
tain the main popular content in each cluster using a Hash-
routing-like distributed caching manner. The delivery la-
tency can thus be controlled by cluster size, enabling con-
sumers to retrieve content efficiently from the originating 
clusters. As a scheme similar to the aforementioned ones, the 
HCC [ 17] scheme has also been proposed. It centrally man-
ages the distributed caches by a cluster header constructed in 
each cluster. The cluster header calculates the content pop-
ularity and importance of each node on the basis of infor-
mation collected from the cluster, and then assigns the more 
popular content to the more important node to improve cache 
efficiency and delivery latency. 

However, the amount of content that can be cached in 
the cluster depends on the cluster size. In other words, a 
smaller cluster size is insufficient to reduce delivery latency 
since it cannot cache necessary content sufficiently in the 
cluster. As mentioned before, in this study, we believe that 
it is necessary to determine the adequate cache distribution 
range in accordance with content popularity on the basis of 
the following trade-off factors. A too-small cache distribu-
tion range against the amount of main popular content will 
not retain sufficient caches, so it decreases cache utilization 
and causes delivery delays due to the delivery from produc-
ers. A too-large cache distribution range can satisfy most 
user requests within the cluster but causes delivery delays 
due to the delivery from widely distributed caches. In a prac-
tical environment, the distribution of content popularity, i.e., 
the amount of main popular content, will change over time 
[ 18], so it is necessary to determine the distribution range 
adequately depending on the situation. 

3. Proposed Scheme 

We propose a dynamic clustering scheme to adjust the cache 
distribution range in accordance with the change in content 
popularity.  This scheme is an extended version of our pre-
vious work [7] that formed a fixed size of clusters. In this 
section, we explain the operation of the proposed scheme. 
We first explain the main points of the previous work in 
Section 3.1, and then explain the extension in detail in Sec-
tion 3.2. 

3.1 Cluster-Based Cache Distribution Scheme 

To improve delivery latency and cache efficiency, we have 
proposed the cluster-based cache distribution scheme. It 
groups CRs into clusters in a domain and retains the main 
popular content in each cluster using a distributed caching 
manner, enabling consumers to retrieve content from the 
originating clusters. Furthermore, it can also retrieve caches 
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Fig. I: Cache placement 

from closer CRs by advertising cache information among 
CRs. In the following, we explain two functions of cluster-
based distributed caching and advertisement-based routing. 

The distributed caching approach uniformly distributes 
chunks of individual content to all CRs in each cluster, as 
shown in Fig. I. This approach improves cache efficiency 
by avoiding cache duplication in the cluster, leading to more 
cached content in it. Furthermore, transmission efficiency 
can also be improved by multi-path cache delivery from mul-
tiple CRs (i.e., load balancing). 

To uniformly distribute chunks in a cluster, this scheme 
partitions a domain into clusters of the same size and as-
signs unique identifiers (CRIDs) to each CR in advance. To 
avoid cache redundancy among CRs in a cluster, it uses a 
hash function that maps chunk identifiers to CRIDs. Specif-
ically, when a CR receives a chunk, it caches it as a responsi-
ble one if the hash value calculated from the received chunk 
identifier matches its own CRID. The Least Recently Used 
(LRU) cache replacement algorithm is used for spaces on 
the CS. In this study, each cluster is assumed to be a square 
shape. The cluster size is defined as the number of CRs on 
one side ( as shown in Fig. 1 is 2), which affects the cache effi-
ciency and distance from consumers. Note that the shape of 
clusters is not important because the main popular content 
will be retained in clusters if CRIDs are properly assigned 
within clusters in any topologies. For example, it can be ac-
complished by defining the cost as the distance between a 
CR and the nearest CR with a different CRID and solving 
the problem of minimizing the total cost. This will ensure 
that each CRID is assigned almost uniformly without bias 
according to the cluster size, i.e., the number of CRIDs to be 
assigned. Since each CR is neighboring to CRs with a CRID 
different from its own, each cluster is nearly a circle shape. 

Even if caches are uniformly distributed within a clus-
ter, consumers may not efficiently retrieve all chunks of the 
requested content from the originating cluster. This is be-
cause not all chunks will be cached due to the limitation of 
total cache capacity in a cluster, or there may be caches on 
closer CRs in neighboring clusters than those in the originat-
ing cluster. Therefore, requests should be forwarded to the 
nearest caches even those not in the originating clusters re-
gardless of cluster boundaries for efficient content delivery, 
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Fig. 2: Cache information advertisement 

so the advertisement-based routing approach is used, which 
forwards interest packets to nearby caches on the basis of the 
advertised cache information. 

To achieve this behavior, each CR informs neighbor-
ing CRs of their own responsible cache status. Specifically, 
CRs that newly cache or discard responsible chunks adver-
tise the cache information (newly cached/discarded) in the 
flooding manner shown in Fig. 2. The CR receiving the 
advertised packet updates its FIB entry with the received 
cache information. Considering the overhead of this oper-
ation, the flooding range should be limited but would affect 
the content retrieval efficiency, which is defined as the flood-
ing limit parameter (as shown in Fig. 2 is 2). This opera-
tion is performed only when responsible chunks are cached 
or discarded, thereby reducing the overhead compared with 
conventional schemes flooded for all cached chunks such as 
proposed in [ 19]. Moreover, to reduce the load caused by 
flooding, our scheme simply discards and does not forward 
the flooding packets when it can be determined that neigh-
boring CRs do not need to update their FIB. Let us explain 
this process using the example shown in Fig. 2. When CR 
A caches responsible chunks, it advertises its cache infor-
mation to neighboring CRs (gray-colored range). After that, 
when CR B caches the same chunk, it can decide not to flood 
to CR C and advertises the cache information to neighboring 
CRs except it (red-colored range). This is because CR B has 
an FIB entry with metric of 2 hops for the chunk by adver-
tised information from CR C and it indicates that CR C al-
ready has a valid metric of I hop that does not need updating. 
Namely, if the CRs already have FIB entries of plus 2 hops or 
fewer metrics than the flooding one, it does not need to adver-
tise it in that direction. Note that this scheme increases over-
heads including cache information sharing and FIB entry in-
creases to improve acquisition efficiency compared to on-
path routing schemes as an inherent issue of off-path routing 
schemes. To resolve this issue (overheads caused by off-path 
extension), several solutions (e.g., a Bloom filter approach 
[12], [14], [20]) have been proposed, while we focus on re-
ducing delivery latency by adjusting cache distribution range 
while considering only communication overheads caused by 
flooding in this study so that we will leave this issue for fu-
ture work. 
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3,2 Popularity-Aware Dynamic Clustering Scheme 

As previously mentioned, the cluster size, i,e,, cache dis-
tribution range, should be adequately determined in accor-
dance with content popularity. In a practical environment, 
the distribution of content popularity changes over time, so 
it is necessary to determine the distribution range depending 
on the situation. We therefore propose a dynamic clustering 
scheme to adjust the cache distribution range in accordance 
with the change in content popularity, considering cache uti-
lization and delivery latency. Our scheme controls the clus-
ter size effectively using a simple threshold-based algorithm 
based on the number of cache updates in the cluster. 

To discuss the adequate cluster size, we focus on the 
frequency of cache updates in a cluster. This is because 
this metric is useful to estimate whether the current cluster 
size is suitable to cache the main popular content. When the 
frequency of cache updates is high, it indicates that caches 
are updated by incoming data packets from outside the clus-
ter. Namely, requested content cannot be retrieved inside the 
cluster as well as the cluster size is too small. A low fre-
quency of cache updates indicates that caches are not up-
dated since requested content can be retrieved inside the 
cluster. Namely, the cluster size may be decreased to reduce 
delivery latency. Thus, we consider that the frequency of 
cache updates in a cluster would fall into a certain range with 
the appropriate cluster size. 

From the aforementioned strategy, the proposed scheme 
adjusts the cluster size using a simple threshold-based algo-
rithm based on the frequency of cache updates. Specifically, 
it uses the number of cache updates in a cluster as a metric, 
and decreases/increases the cluster size when the metric falls 
below or exceeds lower/upper thresholds. Figure 3 explains 
how the proposed scheme migrates to the adequate cluster 
size in accordance with the change in content popularity. Let 
us consider at-second scenario when the content popularity 
will disperse after x seconds, and then heavily concentrate 
after y seconds. In phase 1 until x seconds, we assume that 
each cluster, which represents the domain divided into four 

parts, can store most of the popular content, so the frequency 
of cache updates fits between the upper and lower thresh-
olds. Namely, the current cluster size is adequate. In phase 
2 from x toy seconds when the content popularity disperses, 
the frequency of cache updates increases and exceeds the up-
per threshold because the current cluster size cannot retain 
the popular content sufficiently. Therefore, the cluster size 
is increased by one level to store them, and therefore the fre-
quency of cache updates decreases and falls within the upper 
and lower thresholds. In phase 3 after y seconds when the 
content popularity is heavily concentrated, the cache update 
frequency decreases and falls below the lower threshold be-
cause the current large cluster size has exceeded the sufficient 
cache capacity compared with the amount of main popular 
content. Therefore, it attempts to improve the delivery la-
tency by decreasing the cluster size by one level. However, 
this cluster size still has an excessive cache capacity, so the 
frequency of cache updates remains below the lower thresh-
old. Therefore, the cluster size is decreased by one more 
level, and therefore the frequency of cache updates increases 
and falls within the upper and lower thresholds. Through 
these procedures, the cluster size can be migrated to the ad-
equate cluster size in accordance with the change in content 
popularity. 

To achieve this function, we assume that a controller 
is located in a domain and each CR notifies the controller 
with the number of cache updates. The controller calculates 
the total number of cache updates separately in each clus-
ter by the information received from each CR. When at least 
one of the calculated values falls below or exceeds lower/up-
per thresholds, it reassigns a new CRID and hash function to 
each CR to decrease/increase cluster size. The cluster size 
is not changed for a certain period, which is defined as the 
reclustering interval parameter, immediately after recluster-
ing to mitigate the effect of the heavy fluctuation of cache 
updates. We believe that such information sharing between 
the controller and CRs can be achieved by a mechanism like 
software defined networking (SDN) and the detailed design 
of the scheme will be left as future work. 
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Table 1: Simulation parameters 
Link bandwidth 1 fGb/sl 

Propagation delay time 5 lmsJ 
Communication protocol UDP 

Amount of Contents 128 
Content size 64 lchunkJ 
Chunk size 1000 fBytel 

CS size on CR 128 lchunkJ 
Zipf a 0.6, 1.0, 1.4, 1.8 

Cluster size 2, 3, 4, 6, 12 
Upper threshold 70-280 
Lower threshold 10-150 

Reclustering interval 1-24 lsJ 

4. Simulation Model 

We evaluated the proposed scheme focusing on the effec-
tiveness of retrieving content from nearby clusters/caches 
in a large domain environment where content popularity 
changes through simulations using Network Simulator ns-
3 ver. 3.30.1 [21] with the implementation of our scheme. 
We used a simple grid topology with multiple paths to elim-
inate the effects of cluster shape and content cache placement 
within clusters as shown in Fig. 4(a) to enable us to focus 
on the essential effect of dynamically changing cluster size. 
One producer and 12 consumers were located on the upper 
and lower sides of the grid (12 x 12) of CRs, respectively. 
The parameters used in the simulation are summarized in Ta-
ble 1. The default path is the shortest path to the producer ( 13 
hops from each consumer) and it was set to the FIB of each 
CR. The ratio of the CS size on CR to the amount of content 
was set to approximately 1.5% on the basis of comparative 
papers [8], [22]. The flooding limit was set to 6, which was 
the best value in terms of cost performance between overhead 
and efficiency in a preliminary evaluation. As mentioned be-
fore, the proposed scheme needs to share information among 
CRs via the controller, which can be achieved by a number 
of mechanisms like SDN, and we ignore its effect in this sim-
ulation since the exchange of shared information is very in-
frequent and small compared with data delivery. Each CR 
notifies the controller of the number of cache updates at 1 
second intervals. 

Each consumer sent interest packets to request content 
toward the producer at normal distribution intervals with an 
average value of 0.3 seconds. The requested content was de-
termined on the basis of the content popularity, in which P2P 
content was generally known to follow a Zipf-mandelbrot 
distribution [23]. In this distribution, the degree of bias de-
pends on the parameters a and q. a is the skewness factor 
that controls the slope of the curve, while q (::::: 0) is known as 
the plateau factor that determines the flatness of the curve. In 
this simulation, we gave q a fixed value of 5 and changed the 
content popularity with a to avoid the complexity of the dis-
cussion. Furthermore, we assumed no packet loss occurs so 
we can focus on the fundamental characteristics of the dy-
namic clustering approach. The simulation was performed 
for 270 seconds. We set the Zipf parameter a to 1.0 at the 
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start of the simulation as shown in Fig. 4(b ). a changed to 0.6 
at 30 seconds after the simulation started, in which a wider 
range of content is requested, to 1.8 at 90 seconds, to con-
centrate on the requested content, and after that, it decreases 
by 0.4 every 60 seconds back to 1.0. 

In this simulation, we compared and evaluated the ef-
fectiveness of five representative schemes: LCE (LRU), 
Hash-routing [13], Hash-routing+ cluster [8], conventional 
(Static) [7], and proposed (Dynamic). Furthermore, the aver-
age number of hops needed to retrieve content, cache hit rate, 
and advertisement rate were used as evaluation indices to 
discuss the effectiveness of our scheme. Note that the Hash-
routing + cluster scheme uses the k-split algorithm with the 
number of hops as similarity metrics for clustering and forms 
k clusters. The average number of hops  focused on con-
tent retrieval time, which was defined as the total number of 
hops during the time when all consumers retrieved content 
divided by the total number of requests for all consumers. 
The cache hit rate focused on cache efficiency, which was 
defined as the total number of cache hits on all CRs divided 
by the total number of requests for all consumers. The ad-
vertisement rate focused on collllllunication overhead, which 
was defined as the amount of advertisement packets divided 
by the total amount of traffic. In this study, we assumed the 
average name length is 30 bytes, and the size of the advertise-
ment packet which includes the content name, the flooding 
limit, and the flag bit that indicates the cache information 
(newly cached/discarded), is the same as the Interest packet. 

5. Simulation Results 

In this section, we first show the effectiveness of our scheme 
compared with the conventional schemes. Then, we inves-
tigate how each parameter including the lower/upper thresh-
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olds and reclustering interval affects our scheme. Finally, 
we investigate the effect of the change interval of Zipf a and 
network topology to reveal the environmental tolerance and 
practicality of our scheme. 

5.1 Evaluation of Effectiveness Based on Estimation of 
Adequate Thresholds 

In this section, we first discuss the basis for determining 
threshold values of the proposed scheme through quan-
titative evaluations and estimate the effective lower/upper 
threshold values, which is a key point of the proposed 
scheme. As mentioned in Section 3.2, given an adequate 
cluster size, the number of cache updates in the cluster falls 
into a certain range. We believe that the adequate cluster 
size can be determined in accordance with the distribution 
of content popularity. Figure 5 shows the average number 
of hops and cache updates in the cluster when a varies from 
0.5 to 2.0. From Fig. 5(a), we can see that the adequate clus-
ter size is 6 when a is less than 0.9, 4 for a of 1.0-1. I, 3 
for a of 1.2-1.6, and 2 for a of 1.7 or larger, respectively, 
since these cluster size achieve the smallest number of hops 
for each content popularity. Correspondingly, the number of 
cache updates in the cluster falls into a certain range when the 
adequate cluster size is given as shown in Fig. 5(b ). Specifi-
cally, it is approximately 50 or more for the adequate cluster 
size of 6 (a = 0.9 or less), 90-280 for the size of 4 (a = 
1.0-1.1 ), 50-270 for the size of 3 (a= 1.2-1.6), and 250 or 
less for the size of 2 (a= 1.7 or above), respectively. From 
the aforementioned results, if the number of cache updates in 
the cluster is approximately 50 and more or 280 and less, the 
given cluster size will be adequate. Namely, the lower/up-
per threshold values can be set on the basis of the number of 
cache updates. 
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On the basis of the aforementioned discussion, we now 
show the simulation results and discuss the effectiveness 
of the proposed scheme as compared with the conventional 
schemes. Here, the lower/upper threshold values were set to 
50/280, the reclustering interval was set to 3 seconds, and 
the initial cluster size of Hash-routing + cluster (HRC), con-
ventional (Static), and proposed (Dynamic) schemes was set 
to 4, which was the appropriate value for an a of 1.0 at the 
start of the simulation. Figure 6 shows the average num-
ber of hops, cache hit rate, and cluster size as a function 
of time. From Figs. 6(a) and (b), the LCE scheme shows 
the worst performance among the other schemes because it 
causes duplicate caches on nearby CRs. The Hash-routing 
(HR) scheme improves the performance, especially cache 
efficiency, compared with the LCE scheme due to no du-
plicate cache occurrences, but the average number of hops, 
i.e., delivery latency is not good because the caches are dis-
tributed widely. The Hash-routing + cluster (HRC) scheme 
improves the performance compared with the HR scheme 
due to controlling the cache distribution range at the cost of 
a little cache efficiency. The conventional (Static) scheme us-
ing advertisement-based routing improves the performance 
compared with the HRC scheme due to the avoidance of de-
tour routing caused by the false-positive problem with the 
HR scheme as well as the effect of retrieving nearby caches 
regardless of cluster boundaries. The proposed (Dynamic) 
scheme further improves the delivery latency while main-
taining the cache hit rate compared with the conventional 
(Static) scheme in almost all ranges of time because it ad-
justs the cluster size to an adequate value. 

Next, let us take a look at adjusting the cluster size of 
the Dynamic scheme focusing on three periods where the 
content popularity changes. First, in the period of 30-90 
seconds, a wider range of content becomes to be requested, 
so that the cluster size is adjusted to a larger value (it is 6, 
which is an adequate value when a= 0.6 (Fig. 5(a))) due to 
the high frequency of cache updates as shown in Fig. 6(c). 
It improves the cache hit rate as well as delivery latency, al-
though it takes time to distribute new caches in the cluster. 
Second, in the period of 90-150 seconds, the requested con-
tent becomes to be concentrated, so that the cluster size is ad-
justed to a smaller value (it is 2, which is an adequate value 
when a = 1.8) due to the low frequency of cache updates. 
It improves the delivery latency, although it takes time to 
discard unnecessary caches from the cluster, and comes at 
the cost of a slight decrease in cache hit rate. Finally, in the 
period of 150-270 seconds, similar to 30-90 seconds the re-
quested content becomes to be a wider range gradually, so 
that the cluster size is adjusted to larger values (they are 3 
and 4, which are adequate values when a = 1.4 and 1.0, re-
spectively). It improves delivery latency while maintaining 
a high cache hit rate. This adjustment of cluster size is per-
formed by searching for the cluster size that keeps the num-
ber of cache updates in the range of 50 to 280. Therefore, the 
proposed scheme can adapt effectively to the environment 
where content popularity changes. 
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5.2 Effect of Thresholds 

Next, we investigate the effect of the thresholds. Figures 7(a), 
(b), and (c) show the average number of hops, cache hit rate, 
and advertisement rate, respectively, when the lower/upper 
thresholds vary. Here, the reclustering interval was set to 
3 seconds. Figures 7(a) and (b) indicate that the upper and 
lower threshold values should be set to an appropriate range 
(neither too large nor too small) to reduce delivery latency 
and maintain the high cache hit rate. When the upper thresh-
old value is too large, it is difficult to migrate to a larger 
cluster size despite high frequent cache updates. As a re-
sult, it worsens cache efficiency as well as delivery latency. 
When the upper threshold value is too small, it is easy to mi-
grate to a larger cluster size despite low frequent cache up-
dates. As a result, it improves cache efficiency but increases 
delivery latency because the caches are widely distributed. 
The lower threshold observes a similar trend. Consequently, 

the adequate threshold values should be determined on the 
basis of the delivery latency and cache hit rate considering 
these trade-offs. The adequate lower/upper thresholds are 
70/100 in this simulation environment, which achieves the 
lowest number of hops (Fig. 7(a)) and the high cache effi-
ciency (Fig. 7 (b) ). Furthermore, the adequate cluster size 
does not cause frequent cache updates and reduces the flood-
ing of advertisement packets for dynamic FIB updates, so 
the proposed (Dynamic) scheme with adequate thresholds 
also improves the advertisement rate, i.e., communication 
overhead, to approximately 2% of the total amount of traffic 
(Fig. 7(c)). 

Here, it is noted that the estimated threshold values and 
adequate ones are largely different. This indicates that it 
should aggressively migrate to various sizes of clusters with 
the setting of larger/smaller lower/upper threshold values to 
maintain cache hit rates in the environment where the con-
tent popularity changes significantly. Figure 8 shows the av-
erage number of hops, cache hit rate, and change of cluster 
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size in the conventional (Static) scheme and proposed (Dy-
namic) scheme with the estimated (50/280) and adequate 
(70/100) threshold values. Figure 8(c) clearly shows that 
the proposed scheme with adequate thresholds can more fre-
quently migrate closer to the appropriate cluster size than 
that with estimated thresholds. Moreover, Fig. 8(a) and 
(b) show that such migration quickly improves the deliv-
ery latency and cache hit rate when the content popularity 
changes. Consequently, although the proposed scheme with 
estimated thresholds achieves good performance, it can be 
further improved by setting adequate thresholds on the basis 
of the aforementioned trade-offs as well as detecting sensi-
tive changes in content popularity to quickly adjust the clus-
ter size with appropriate cache distribution. However, the 
adequate threshold values may need to be adjusted dynam-
ically in accordance with network conditions (the topology, 
frequency of requests, etc.), which will be tackled in future 
work. 

5.3 Effect of Reclustering Intervals 

We investigate the effect of reclustering intervals. Figure 9 
shows the average number of hops, cache hit rate, and adver-
tisement rate when the reclustering interval varies. Here, the 
lower/upper thresholds were set to 70/100 (adequate values 
in this environment). Figure 9(a) shows that shorter reclus-
tering intervals improve delivery latency except for too-short 
ones. This is because the shorter intervals can quickly mi-
grate to the adequate cluster size and improve cache hit rates 
as shown in Fig. 9(b ). However, too-short intervals inhibit 
migration to the adequate cluster size due to heavy cache up-
dates immediately after reclustering. In addition, Fig. 9(c) 

shows that shorter reclustering intervals improve the over-
head. This is because unnecessary cache updates are reduced 
by quickly migrating to the adequate cluster size. Conse-
quently, the reclustering interval should be set to an ade-
quately short value, which is 3 seconds in this environment. 

5.4 Effect of Change Intervals of Zipf 

We investigate the effect of change intervals of Zipf a to 
show the environmental tolerance. For example, when the 
change intervals are set to 20 seconds, 30 seconds after the 
simulation starts with Zipf a of 1.0 and a cluster size of 4, 
Zipf a sequentially changes to 0.6, 1.4, 1.8, and 1.0 every 
20 seconds, and these changes are repeated for 240 seconds 
(until the end of simulation). Figure 10 shows the average 
number of hops, cache hit rate, and advertisement rate when 
the change intervals of Zipf a vary. Here, the thresholds of 
lower/upper were set to 70/100, and the reclustering interval 
was set to 3 seconds (adequate values in this environment). 
From Fig. 10, the proposed (Dynamic) scheme always im-
proves the delivery latency, cache hit rate, and overhead com-
pared with the conventional (Static) scheme in a wide range 
of change intervals. This is because the proposed scheme 
can adapt cluster sizes smoothly to environments where the 
content popularity changes frequently. 

5.5 Effect of Network Topology 

Finally, we evaluate the proposed and conventional schemes 
comparatively in a practical network topology. We used the 
Interoute topology of 110 nodes from the Internet Topology 
Zoo [24] on the basis of comparative paper [8]. Since the 
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dataset shows the relationship of pop-level routers, we de-
fined each node as CR and placed producers and consumers 
on each CR. Content was randomly placed on each producer. 
Each consumer sent interest packets requesting content to-
ward the producer at normal distribution intervals with an 
average value of 1.0 seconds. The Dynamic scheme used the 
clustering algorithm described in Sec. 3.1 and its initial clus-
ter size was set to approximately 4 (16 CRs in each cluster). 
The HRC scheme formed 6 clusters by the k-split algorithm. 
These settings were the appropriate value for an a of 1.0 at 
the start of the simulation. The Dynamic scheme can mi-
grate the cluster size, which consists of 4, 9, 16, 36, or 110 
CRs in each cluster, during the simulation. The reclustering 
interval was set to 3 seconds, the flooding limit was set to 
6, and the lower/upper threshold values were set to 70/130, 
which were the appropriate values in this simulation. Other 
simulation parameters shall conform to Table 1. 

Figure 11 shows the average number of hops and cache 
hit rate as a function of time. It indicates that the trend is 
almost the same as the results for the grid topology shown in 
Section 5.1, and the Dynamic scheme always maintains the 
high cache hit rates and reduces the average number of hops. 
In addition, regarding collllllunication overheads, the Dy-
namic scheme achieves smaller advertisement rates of 4.37% 
than the Static scheme of 6.07%. Therefore, the proposed 
scheme is effective even in practical network topologies. 

6. Conclusion 

We proposed a dynamic clustering scheme to adjust the 
cache distribution range in accordance with the change in 
content popularity. Our scheme adjusts the cluster size ef-
fectively using a simple threshold-based algorithm based on 
the number of cache updates in the cluster. Simulation eval-

9 

uations have indicated that the proposed scheme can reduce 
the delivery latency while consistently maintaining a high 
cache hit rate in a large domain environment where content 
popularity changes. In future work, we will investigate more 
flexible clustering schemes considering content attributes in 
practical topologies. 
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