
on Communications
DOI: 10.23919/transcom.2023EBP3152

This advance publication article will be replaced by the finalized version
after proofreading.

A PUBLICATION OF THE COMMUNICATIONS SOCIETY
The Institute of Electronics, Information and Communication Engineers
Kikai-Shinko-Kaikan Bldg .. 5-8, Shibakoen 3chome, Minato-ku, TOKYO, 105-0011 JAPAN

TETCE TRANS. COMMUN., VOL.Exx-''''. NO.xx XXXX 200x

PAPER
PopDCN: Popularity-Aware Dynamic Clustering Scheme for
Distributed Caching in ICN*

Mikiya YOSHIDAial, Yusuke ITO'i''i'bl, Yurino SATO'i'llcl,and Hiroyuki KOGAll<ll,Members

SUMMARY Information-centric networking (ICN) provides low-
latency content delivery with in-network caching, but delivery latency de-
pends on cache distance from consumers. To reduce delivery latency, a
scheme to cluster domains and retain the main popular content in each
cluster with a cache distribution range has been proposed, which enables
consumers to retrieve content from neighboring clusters/caches. However,
when the distribution of content popularity changes, all content caches may
not be distributed adequately in a cluster, so consumers cannot retrieve them
from nearby caches. We therefore propose a dynamic clustering scheme to
adjust the cache distribution range in accordance with the change in content
popularity and evaluate the effectiveness of the proposed scheme through
simulation.
key words: ICN, distributed caching, dynamic clustering

1. Introduction

Information-centric networking (ICN) [3], [4] has been at-
tracting attention as a new architecture that uses network
caching to satisfy the requirements (e.g., ultra-low latency,
ultra-high reliability, and massive connectivity) for emerg-
ing services such as IoT-like automation, robotics, and in-
dustrial automation [5], [6]. In ICN, a consumer sends inter-
est packets containing content names to request content. A
content router (CR), which is an intermediate router receiv-
ing the interest packets, forwards the packets to a producer
on the basis of a routing table called a forwarding informa-
tion base (FIB). The producer then returns data packets of the
requested content with the reverse path to consumers. The
CRs cache data packets on their content store (CS) during
forwarding, so they can return caches to consumers instead
of the producer if they store the requested data. Namely, this
in-network caching, which can satisfy the future requests of
consumers, significantly reduces the network load and im-
proves content delivery efficiency. To take full advantage of

-;-The author is with the Center for Information Technology and
Management, Okayama University, Okayama-shi, 700-8530 Japan.

i''i'The authors are with the Graduate School of Environmental
Engineering, The University of Kitakyushu, Kitakyushu-shi, 808-
0135 Japan.

i'i''i'The author is with the Department of Control Engineer-
ing, National Institute of Technology (KOSEN), Sasebo college,
Sasebo-shi, 857-1193 Japan.

*Earlier version of this paper was presented at ACM ICN2022
and APSIPA ASC2022 [ll, [2].

a) E-mail: m-yoshida@okayama-u.ac.jp
b) E-mail: y-ito@kitakyu-u.ac.jp
c) E-mail: y-sato@sasebo.ac.jp
d) E-mail: h.koga@kitakyu-u.ac.jp

in-network caching, an efficient content caching scheme is
needed, and various schemes have been proposed.

Simple content caching makes a cache decision on in-
dividual CRs, while distributed content caching distributes
content by considering nearby caches to satisfy content re-
quests. Distributed caching solves a cache efficiency prob-
lem that simple content caching causes cache duplication for
a small amount of highly popular content over neighboring
CRs. However, if the cached required content is distributed
over a large range, delivery latency may increase.

Therefore, cluster-based distributed caching schemes
have been proposed [7], [8] to control a distributed range.
These schemes group CRs into clusters in a domain·! and
retain the main popular content in each cluster using a dis-
tributed caching manner. This aims to avoid cache duplica-
tion among CRs in the cluster, enabling the caches of each
content to be distributed within it. As a result, the deliv-
ery latency can be controlled by cluster size, and it enables
consumers to retrieve content efficiently from the originating
clusters. However, a too-small distribution range decreases
cache utilization and causes delivery delays due to the deliv-
ery from producers, while a too-large distribution range in-
creases cache utilization but may cause delivery delays due
to long cache delivery. Therefore, we believe that the ade-
quate cache distribution range should be determined in ac-
cordance with content popularity on the basis of such trade-
off factors. In a practical environment, the distribution of
content popularity changes over time, so it is necessary to
determine the distribution range depending on the situation.

We therefore propose a dynamic clustering scheme to
adjust the cache distribution range, i.e., cluster size, in ac-
cordance with the change in content popularity, considering
cache utilization and delivery latency. Our scheme controls
the cluster size effectively using a simple threshold-based al-
gorithm based on the number of cache updates on CRs in a
cluster. Moreover, we evaluate the effectiveness of the pro-
posed scheme compared with conventional schemes through
simulation in a situation where content popularity changes.

The main contributions of this paper, updated from pre-
vious papers [I], [2], are as follows:

• We discuss recent studies that utilize clustering tech-
niques in ICN.

• We evaluate the proposed scheme compared with con-
ventional schemes in detail and discuss the effective

-;-In this paper, the term 'domain' refers to a large-scale network
consisting of one or more ISPs.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2

threshold settings.
• We investigate the effectiveness of the proposed scheme

in practical network topologies.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe our motivation for this study through a
discussion of related works. In Section 3, we describe our
scheme. In Section 4, we describe the simulation model and
evaluation details. In Section 5, we evaluate the performance
of our scheme in comparison with conventional schemes. Fi-
nally, in Section 6, we summarize our findings and conclude
the paper.

2. Related Work

In this section, we describe an issue of this study through
discussions of various content caching schemes to improve
content delivery efficiency.

2.1 Distributed Caching

Simple caching schemes such as LCE [3] and Prob(p) [9]
make a cache decision on individual CRs. This may cause
cache duplication for a few high-popular contents over neigh-
boring CRs because more frequently requested content is
likely to be cached. This becomes useless for other content
requests. Therefore, distributed caching schemes have been
proposed such as MCD [10], WAVE [11], MuNCC [12],
and Hash-routing [13], which distribute various content con-
sidering nearby caches to satisfy various content requests.
The key idea of MCD and WAVE schemes is that each CR
moves requested caches to downstream CRs. Namely, the
CR caching the requested content sends its cache to the
downstream CR and removes it from itself, so that each cache
is not duplicated on the default path, i.e., the shortest path to
consumers. However, it is unable to avoid cache duplication
among neighboring CRs outside the default path.

In contrast, in MuNCC and proposed in [14] schemes,
each CR shares cache summaries that are formed using a
Bloom filter among neighboring CRs to avoid cache duplica-
tion. When a data packet arrives, a CR determines whether it
caches it or not depending on the cache summaries of neigh-
boring CRs. The Hash-routing scheme distributes content
to CRs using a hash function that maps content identifiers
to each CR of the domain, without additional functionality
such as shared cache summaries. In particular, when an edge
router in the domain receives a request, it calculates the hash
value from the received content identifier and forwards it to
the responsible CR. Similarly, each CR caches the respon-
sible content whose hash value matches its identifier during
forwarding. As a result of this approach, since the cache lo-
cation of each content is limited to one CR over a domain,
it can avoid cache duplication among CRs. However, if the
cached required content is distributed over a large range, de-
li very latency may increase.

TETCE TRANS. COMMUN .. VOL.Exx-??. NO.xx XXXX 200x

2.2 Cluster-Based Distributed Caching

To control the cache distribution range considering deliv-
ery latency, network clustering-based distributed caching
schemes for ICN have been proposed [7], [8], [15], [16].
These schemes group CRs into clusters in a domain and re-
tain the main popular content in each cluster using a Hash-
routing-like distributed caching manner. The delivery la-
tency can thus be controlled by cluster size, enabling con-
sumers to retrieve content efficiently from the originating
clusters. As a scheme similar to the aforementioned ones, the
HCC [17] scheme has also been proposed. It centrally man-
ages the distributed caches by a cluster header constructed in
each cluster. The cluster header calculates the content pop-
ularity and importance of each node on the basis of infor-
mation collected from the cluster, and then assigns the more
popular content to the more important node to improve cache
efficiency and delivery latency.

However, the amount of content that can be cached in
the cluster depends on the cluster size. In other words, a
smaller cluster size is insufficient to reduce delivery latency
since it cannot cache necessary content sufficiently in the
cluster. As mentioned before, in this study, we believe that
it is necessary to determine the adequate cache distribution
range in accordance with content popularity on the basis of
the following trade-off factors. A too-small cache distribu-
tion range against the amount of main popular content will
not retain sufficient caches, so it decreases cache utilization
and causes delivery delays due to the delivery from produc-
ers. A too-large cache distribution range can satisfy most
user requests within the cluster but causes delivery delays
due to the delivery from widely distributed caches. In a prac-
tical environment, the distribution of content popularity, i.e.,
the amount of main popular content, will change over time
[18], so it is necessary to determine the distribution range
adequately depending on the situation.

3. Proposed Scheme

We propose a dynamic clustering scheme to adjust the cache
distribution range in accordance with the change in content
popularity. This scheme is an extended version of our pre-
vious work [7] that formed a fixed size of clusters. In this
section, we explain the operation of the proposed scheme.
We first explain the main points of the previous work in
Section 3.1, and then explain the extension in detail in Sec-
tion 3.2.

3.1 Cluster-Based Cache Distribution Scheme

To improve delivery latency and cache efficiency, we have
proposed the cluster-based cache distribution scheme. It
groups CRs into clusters in a domain and retains the main
popular content in each cluster using a distributed caching
manner, enabling consumers to retrieve content from the
originating clusters. Furthermore, it can also retrieve caches

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING TN TCN

@ Producer ® Consumer O CR

ChunkID (Keys)

• Cache it.

Cluster size

Fig. I: Cache placement

from closer CRs by advertising cache information among
CRs. In the following, we explain two functions of cluster-
based distributed caching and advertisement-based routing.

The distributed caching approach uniformly distributes
chunks of individual content to all CRs in each cluster, as
shown in Fig. I. This approach improves cache efficiency
by avoiding cache duplication in the cluster, leading to more
cached content in it. Furthermore, transmission efficiency
can also be improved by multi-path cache delivery from mul-
tiple CRs (i.e., load balancing).

To uniformly distribute chunks in a cluster, this scheme
partitions a domain into clusters of the same size and as-
signs unique identifiers (CRIDs) to each CR in advance. To
avoid cache redundancy among CRs in a cluster, it uses a
hash function that maps chunk identifiers to CRIDs. Specif-
ically, when a CR receives a chunk, it caches it as a responsi-
ble one if the hash value calculated from the received chunk
identifier matches its own CRID. The Least Recently Used
(LRU) cache replacement algorithm is used for spaces on
the CS. In this study, each cluster is assumed to be a square
shape. The cluster size is defined as the number of CRs on
one side (as shown in Fig. 1 is 2), which affects the cache effi-
ciency and distance from consumers. Note that the shape of
clusters is not important because the main popular content
will be retained in clusters if CRIDs are properly assigned
within clusters in any topologies. For example, it can be ac-
complished by defining the cost as the distance between a
CR and the nearest CR with a different CRID and solving
the problem of minimizing the total cost. This will ensure
that each CRID is assigned almost uniformly without bias
according to the cluster size, i.e., the number of CRIDs to be
assigned. Since each CR is neighboring to CRs with a CRID
different from its own, each cluster is nearly a circle shape.

Even if caches are uniformly distributed within a clus-
ter, consumers may not efficiently retrieve all chunks of the
requested content from the originating cluster. This is be-
cause not all chunks will be cached due to the limitation of
total cache capacity in a cluster, or there may be caches on
closer CRs in neighboring clusters than those in the originat-
ing cluster. Therefore, requests should be forwarded to the
nearest caches even those not in the originating clusters re-
gardless of cluster boundaries for efficient content delivery,

3

B does not advertise to C
when smaller metric FIB already stored

cache information

When B caches the same chunk already cached in nearby A

Fig. 2: Cache information advertisement

so the advertisement-based routing approach is used, which
forwards interest packets to nearby caches on the basis of the
advertised cache information.

To achieve this behavior, each CR informs neighbor-
ing CRs of their own responsible cache status. Specifically,
CRs that newly cache or discard responsible chunks adver-
tise the cache information (newly cached/discarded) in the
flooding manner shown in Fig. 2. The CR receiving the
advertised packet updates its FIB entry with the received
cache information. Considering the overhead of this oper-
ation, the flooding range should be limited but would affect
the content retrieval efficiency, which is defined as the flood-
ing limit parameter (as shown in Fig. 2 is 2). This opera-
tion is performed only when responsible chunks are cached
or discarded, thereby reducing the overhead compared with
conventional schemes flooded for all cached chunks such as
proposed in [19]. Moreover, to reduce the load caused by
flooding, our scheme simply discards and does not forward
the flooding packets when it can be determined that neigh-
boring CRs do not need to update their FIB. Let us explain
this process using the example shown in Fig. 2. When CR
A caches responsible chunks, it advertises its cache infor-
mation to neighboring CRs (gray-colored range). After that,
when CR B caches the same chunk, it can decide not to flood
to CR C and advertises the cache information to neighboring
CRs except it (red-colored range). This is because CR B has
an FIB entry with metric of 2 hops for the chunk by adver-
tised information from CR C and it indicates that CR C al-
ready has a valid metric of I hop that does not need updating.
Namely, if the CRs already have FIB entries of plus 2 hops or
fewer metrics than the flooding one, it does not need to adver-
tise it in that direction. Note that this scheme increases over-
heads including cache information sharing and FIB entry in-
creases to improve acquisition efficiency compared to on-
path routing schemes as an inherent issue of off-path routing
schemes. To resolve this issue (overheads caused by off-path
extension), several solutions (e.g., a Bloom filter approach
[12], [14], [20]) have been proposed, while we focus on re-
ducing delivery latency by adjusting cache distribution range
while considering only communication overheads caused by
flooding in this study so that we will leave this issue for fu-
ture work.

4

Concentrate Phase 1 X
'

Domain

Cluster

Phase 2 y

TETCE TRANS. COMMUN., VOL.Exx-??, NO.xx XXXX 200x

Phase 3

•••• •••• •••• ••••
Fig, 3: Operation of dynamic clustering

3,2 Popularity-Aware Dynamic Clustering Scheme

As previously mentioned, the cluster size, i,e,, cache dis-
tribution range, should be adequately determined in accor-
dance with content popularity. In a practical environment,
the distribution of content popularity changes over time, so
it is necessary to determine the distribution range depending
on the situation. We therefore propose a dynamic clustering
scheme to adjust the cache distribution range in accordance
with the change in content popularity, considering cache uti-
lization and delivery latency. Our scheme controls the clus-
ter size effectively using a simple threshold-based algorithm
based on the number of cache updates in the cluster.

To discuss the adequate cluster size, we focus on the
frequency of cache updates in a cluster. This is because
this metric is useful to estimate whether the current cluster
size is suitable to cache the main popular content. When the
frequency of cache updates is high, it indicates that caches
are updated by incoming data packets from outside the clus-
ter. Namely, requested content cannot be retrieved inside the
cluster as well as the cluster size is too small. A low fre-
quency of cache updates indicates that caches are not up-
dated since requested content can be retrieved inside the
cluster. Namely, the cluster size may be decreased to reduce
delivery latency. Thus, we consider that the frequency of
cache updates in a cluster would fall into a certain range with
the appropriate cluster size.

From the aforementioned strategy, the proposed scheme
adjusts the cluster size using a simple threshold-based algo-
rithm based on the frequency of cache updates. Specifically,
it uses the number of cache updates in a cluster as a metric,
and decreases/increases the cluster size when the metric falls
below or exceeds lower/upper thresholds. Figure 3 explains
how the proposed scheme migrates to the adequate cluster
size in accordance with the change in content popularity. Let
us consider at-second scenario when the content popularity
will disperse after x seconds, and then heavily concentrate
after y seconds. In phase 1 until x seconds, we assume that
each cluster, which represents the domain divided into four

parts, can store most of the popular content, so the frequency
of cache updates fits between the upper and lower thresh-
olds. Namely, the current cluster size is adequate. In phase
2 from x toy seconds when the content popularity disperses,
the frequency of cache updates increases and exceeds the up-
per threshold because the current cluster size cannot retain
the popular content sufficiently. Therefore, the cluster size
is increased by one level to store them, and therefore the fre-
quency of cache updates decreases and falls within the upper
and lower thresholds. In phase 3 after y seconds when the
content popularity is heavily concentrated, the cache update
frequency decreases and falls below the lower threshold be-
cause the current large cluster size has exceeded the sufficient
cache capacity compared with the amount of main popular
content. Therefore, it attempts to improve the delivery la-
tency by decreasing the cluster size by one level. However,
this cluster size still has an excessive cache capacity, so the
frequency of cache updates remains below the lower thresh-
old. Therefore, the cluster size is decreased by one more
level, and therefore the frequency of cache updates increases
and falls within the upper and lower thresholds. Through
these procedures, the cluster size can be migrated to the ad-
equate cluster size in accordance with the change in content
popularity.

To achieve this function, we assume that a controller
is located in a domain and each CR notifies the controller
with the number of cache updates. The controller calculates
the total number of cache updates separately in each clus-
ter by the information received from each CR. When at least
one of the calculated values falls below or exceeds lower/up-
per thresholds, it reassigns a new CRID and hash function to
each CR to decrease/increase cluster size. The cluster size
is not changed for a certain period, which is defined as the
reclustering interval parameter, immediately after recluster-
ing to mitigate the effect of the heavy fluctuation of cache
updates. We believe that such information sharing between
the controller and CRs can be achieved by a mechanism like
software defined networking (SDN) and the detailed design
of the scheme will be left as future work.

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING TN TCN

Table 1: Simulation parameters
Link bandwidth 1 fGb/sl

Propagation delay time 5 lmsJ
Communication protocol UDP

Amount of Contents 128
Content size 64 lchunkJ
Chunk size 1000 fBytel

CS size on CR 128 lchunkJ
Zipf a 0.6, 1.0, 1.4, 1.8

Cluster size 2, 3, 4, 6, 12
Upper threshold 70-280
Lower threshold 10-150

Reclustering interval 1-24 lsJ

4. Simulation Model

We evaluated the proposed scheme focusing on the effec-
tiveness of retrieving content from nearby clusters/caches
in a large domain environment where content popularity
changes through simulations using Network Simulator ns-
3 ver. 3.30.1 [21] with the implementation of our scheme.
We used a simple grid topology with multiple paths to elim-
inate the effects of cluster shape and content cache placement
within clusters as shown in Fig. 4(a) to enable us to focus
on the essential effect of dynamically changing cluster size.
One producer and 12 consumers were located on the upper
and lower sides of the grid (12 x 12) of CRs, respectively.
The parameters used in the simulation are summarized in Ta-
ble 1. The default path is the shortest path to the producer (13
hops from each consumer) and it was set to the FIB of each
CR. The ratio of the CS size on CR to the amount of content
was set to approximately 1.5% on the basis of comparative
papers [8], [22]. The flooding limit was set to 6, which was
the best value in terms of cost performance between overhead
and efficiency in a preliminary evaluation. As mentioned be-
fore, the proposed scheme needs to share information among
CRs via the controller, which can be achieved by a number
of mechanisms like SDN, and we ignore its effect in this sim-
ulation since the exchange of shared information is very in-
frequent and small compared with data delivery. Each CR
notifies the controller of the number of cache updates at 1
second intervals.

Each consumer sent interest packets to request content
toward the producer at normal distribution intervals with an
average value of 0.3 seconds. The requested content was de-
termined on the basis of the content popularity, in which P2P
content was generally known to follow a Zipf-mandelbrot
distribution [23]. In this distribution, the degree of bias de-
pends on the parameters a and q. a is the skewness factor
that controls the slope of the curve, while q (::::: 0) is known as
the plateau factor that determines the flatness of the curve. In
this simulation, we gave q a fixed value of 5 and changed the
content popularity with a to avoid the complexity of the dis-
cussion. Furthermore, we assumed no packet loss occurs so
we can focus on the fundamental characteristics of the dy-
namic clustering approach. The simulation was performed
for 270 seconds. We set the Zipf parameter a to 1.0 at the

®&
®®

12 nodes

1
@ Producer ® Consumer (bJ) CR

(a) Topology

~ 1 ·8 -------:------:--------,.---,..: --..-1 ------:------r-----r-------

-~ : :: -------t-----r----- ------r--------.----1------:-------

0.6 ---- ___ ,1 ____ ,._ ______ l ______ J _______ L ______ l_ _____ J ______ _
30 90 150 210

(b) Fluctuation of zipf a

Fig. 4: Simulation model

270

5

l'imelsl

start of the simulation as shown in Fig. 4(b). a changed to 0.6
at 30 seconds after the simulation started, in which a wider
range of content is requested, to 1.8 at 90 seconds, to con-
centrate on the requested content, and after that, it decreases
by 0.4 every 60 seconds back to 1.0.

In this simulation, we compared and evaluated the ef-
fectiveness of five representative schemes: LCE (LRU),
Hash-routing [13], Hash-routing+ cluster [8], conventional
(Static) [7], and proposed (Dynamic). Furthermore, the aver-
age number of hops needed to retrieve content, cache hit rate,
and advertisement rate were used as evaluation indices to
discuss the effectiveness of our scheme. Note that the Hash-
routing + cluster scheme uses the k-split algorithm with the
number of hops as similarity metrics for clustering and forms
k clusters. The average number of hops focused on con-
tent retrieval time, which was defined as the total number of
hops during the time when all consumers retrieved content
divided by the total number of requests for all consumers.
The cache hit rate focused on cache efficiency, which was
defined as the total number of cache hits on all CRs divided
by the total number of requests for all consumers. The ad-
vertisement rate focused on collllllunication overhead, which
was defined as the amount of advertisement packets divided
by the total amount of traffic. In this study, we assumed the
average name length is 30 bytes, and the size of the advertise-
ment packet which includes the content name, the flooding
limit, and the flag bit that indicates the cache information
(newly cached/discarded), is the same as the Interest packet.

5. Simulation Results

In this section, we first show the effectiveness of our scheme
compared with the conventional schemes. Then, we inves-
tigate how each parameter including the lower/upper thresh-

6

Cluster size 2 --+-
Cluster size 3 -M--
Cluster size 4 --------
Cluster size 6 --e-

0.6 0.8 I 1.2 1.4 1.6 1.8 2
Zipf a

(a) Avera ge number of bop s

~ 450 ~- ~~-~---~ ~
.g 400 g~~i:~ ~r~: ~ ::: 2'. 350 Cluster size 4 ~
rJ 300 Cluster size 6 -a-

i l~ • I 11 !11 !1111 111
E o~-~~-~---~~
" z 0.6 0.8 I 1.2 1.4 1.6 1.8 2

Zipf a
(b) Number of ca che updat es

Fig. 5: Estimation of adequate thresholds

olds and reclustering interval affects our scheme. Finally,
we investigate the effect of the change interval of Zipf a and
network topology to reveal the environmental tolerance and
practicality of our scheme.

5.1 Evaluation of Effectiveness Based on Estimation of
Adequate Thresholds

In this section, we first discuss the basis for determining
threshold values of the proposed scheme through quan-
titative evaluations and estimate the effective lower/upper
threshold values, which is a key point of the proposed
scheme. As mentioned in Section 3.2, given an adequate
cluster size, the number of cache updates in the cluster falls
into a certain range. We believe that the adequate cluster
size can be determined in accordance with the distribution
of content popularity. Figure 5 shows the average number
of hops and cache updates in the cluster when a varies from
0.5 to 2.0. From Fig. 5(a), we can see that the adequate clus-
ter size is 6 when a is less than 0.9, 4 for a of 1.0-1. I, 3
for a of 1.2-1.6, and 2 for a of 1.7 or larger, respectively,
since these cluster size achieve the smallest number of hops
for each content popularity. Correspondingly, the number of
cache updates in the cluster falls into a certain range when the
adequate cluster size is given as shown in Fig. 5(b). Specifi-
cally, it is approximately 50 or more for the adequate cluster
size of 6 (a = 0.9 or less), 90-280 for the size of 4 (a =
1.0-1.1), 50-270 for the size of 3 (a= 1.2-1.6), and 250 or
less for the size of 2 (a= 1.7 or above), respectively. From
the aforementioned results, if the number of cache updates in
the cluster is approximately 50 and more or 280 and less, the
given cluster size will be adequate. Namely, the lower/up-
per threshold values can be set on the basis of the number of
cache updates.

IETCE TRANS. COMMUN .. VOL.Exx- ??. NO.xx XXXX 200x

On the basis of the aforementioned discussion, we now
show the simulation results and discuss the effectiveness
of the proposed scheme as compared with the conventional
schemes. Here, the lower/upper threshold values were set to
50/280, the reclustering interval was set to 3 seconds, and
the initial cluster size of Hash-routing + cluster (HRC), con-
ventional (Static), and proposed (Dynamic) schemes was set
to 4, which was the appropriate value for an a of 1.0 at the
start of the simulation. Figure 6 shows the average num-
ber of hops, cache hit rate, and cluster size as a function
of time. From Figs. 6(a) and (b), the LCE scheme shows
the worst performance among the other schemes because it
causes duplicate caches on nearby CRs. The Hash-routing
(HR) scheme improves the performance, especially cache
efficiency, compared with the LCE scheme due to no du-
plicate cache occurrences, but the average number of hops,
i.e., delivery latency is not good because the caches are dis-
tributed widely. The Hash-routing + cluster (HRC) scheme
improves the performance compared with the HR scheme
due to controlling the cache distribution range at the cost of
a little cache efficiency. The conventional (Static) scheme us-
ing advertisement-based routing improves the performance
compared with the HRC scheme due to the avoidance of de-
tour routing caused by the false-positive problem with the
HR scheme as well as the effect of retrieving nearby caches
regardless of cluster boundaries. The proposed (Dynamic)
scheme further improves the delivery latency while main-
taining the cache hit rate compared with the conventional
(Static) scheme in almost all ranges of time because it ad-
justs the cluster size to an adequate value.

Next, let us take a look at adjusting the cluster size of
the Dynamic scheme focusing on three periods where the
content popularity changes. First, in the period of 30-90
seconds, a wider range of content becomes to be requested,
so that the cluster size is adjusted to a larger value (it is 6,
which is an adequate value when a= 0.6 (Fig. 5(a))) due to
the high frequency of cache updates as shown in Fig. 6(c).
It improves the cache hit rate as well as delivery latency, al-
though it takes time to distribute new caches in the cluster.
Second, in the period of 90-150 seconds, the requested con-
tent becomes to be concentrated, so that the cluster size is ad-
justed to a smaller value (it is 2, which is an adequate value
when a = 1.8) due to the low frequency of cache updates.
It improves the delivery latency, although it takes time to
discard unnecessary caches from the cluster, and comes at
the cost of a slight decrease in cache hit rate. Finally, in the
period of 150-270 seconds, similar to 30-90 seconds the re-
quested content becomes to be a wider range gradually, so
that the cluster size is adjusted to larger values (they are 3
and 4, which are adequate values when a = 1.4 and 1.0, re-
spectively). It improves delivery latency while maintaining
a high cache hit rate. This adjustment of cluster size is per-
formed by searching for the cluster size that keeps the num-
ber of cache updates in the range of 50 to 280. Therefore, the
proposed scheme can adapt effectively to the environment
where content popularity changes.

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING TN TCN
7

12
100 ,-------7 ==:,;;;;;;;;;:;;;;;:;;;--7

'JO
80

if 70

E ~~
] 40 1 30
C,

20
10

LCE -
HR -

TJRC -

0 L_____::-"==---~-~-~_J 50 100 150 200 250
50 100 150 200 250 0 50 100 150 200 250 l'imelsl

rime Isl rime Isl Static - - Dynamic -

(a) Average number of hops (b) Cache hit rate (c) Cluster size

Fig. 6: Effectiveness of our scheme

5.5 ,---------------~ 96,---------------~
5.4 Static - 95

if) 53 lJpper50 ----M--

! ~:~ Upper 100 ------Upper 150 -e-
~ 5.1 Upper 200
- ~ 0 Upper 250 ---e---

~ 94

~ 93

i 92 1,:: 1~ Uppcr280 --+-

~ 4.7

"5 91
U 90 _ __,__==- ---=-=-..:-=------1

4/J
4.5 ~-~-~----~~---"

20 ~ W 80 100 120]~
T .owcr threshold

89

20 ~ W 80 100 120]~
T .owcr threshold

20 40 (}{) 80 100 120 140
J ,OWCT threshold

(a) Average number of hops (b) Cache hit rate (c) Advertisement rate

Fig. 7: Effect of thresholds

Static --
Dynamic 50/280 --
Dynamic 711/ICX) -- 95

~ 90
!cl
2 :B 85

"5 80
u 75

Static --
Dynamic 50/280 --

10

2----~------~ 70 ~----D~y_nam_ic_7_11/_1C_Xl_-_-_ ---L-J 50 100 150 200 250
Tllne lsJ II 50 1011 150 2CXJ 2511 0 50 100 150 2110 2511 Dynamic 70/100 -

rimc[sl rimc[s]

(a) Average number of hops (b) Cache hit rate (c) Cluster size

Fig. 8: Estimated and adequate thresholds

5.2 Effect of Thresholds

Next, we investigate the effect of the thresholds. Figures 7(a),
(b), and (c) show the average number of hops, cache hit rate,
and advertisement rate, respectively, when the lower/upper
thresholds vary. Here, the reclustering interval was set to
3 seconds. Figures 7(a) and (b) indicate that the upper and
lower threshold values should be set to an appropriate range
(neither too large nor too small) to reduce delivery latency
and maintain the high cache hit rate. When the upper thresh-
old value is too large, it is difficult to migrate to a larger
cluster size despite high frequent cache updates. As a re-
sult, it worsens cache efficiency as well as delivery latency.
When the upper threshold value is too small, it is easy to mi-
grate to a larger cluster size despite low frequent cache up-
dates. As a result, it improves cache efficiency but increases
delivery latency because the caches are widely distributed.
The lower threshold observes a similar trend. Consequently,

the adequate threshold values should be determined on the
basis of the delivery latency and cache hit rate considering
these trade-offs. The adequate lower/upper thresholds are
70/100 in this simulation environment, which achieves the
lowest number of hops (Fig. 7(a)) and the high cache effi-
ciency (Fig. 7 (b)). Furthermore, the adequate cluster size
does not cause frequent cache updates and reduces the flood-
ing of advertisement packets for dynamic FIB updates, so
the proposed (Dynamic) scheme with adequate thresholds
also improves the advertisement rate, i.e., communication
overhead, to approximately 2% of the total amount of traffic
(Fig. 7(c)).

Here, it is noted that the estimated threshold values and
adequate ones are largely different. This indicates that it
should aggressively migrate to various sizes of clusters with
the setting of larger/smaller lower/upper threshold values to
maintain cache hit rates in the environment where the con-
tent popularity changes significantly. Figure 8 shows the av-
erage number of hops, cache hit rate, and change of cluster

TETCE TRANS. COMMUN .. VOL.Exx-??. NO.xx XXXX 200x
8

4.2
92

91.5

91

90.5
Static -

4 .4 ~-~---~l_)y_nai_nic~· ----~ 90 ~---~---~~ l.S ~-~-~-~D)_'n'_"n~ic _ _,.___~
(I 1(] 15 20 25 (I 1(] 15 20 25]] lll 15 20 25

Rcclus\cring interval Isl Rccluslcring interval Isl Rcclus\cring interval Isl

(a) Average number of hops (b) Cache hit rate (c) Advertisement rate

Fig. 9: Effect of reclustering intervals

6.0 -----------

5.8

4.6
88 '---~-~-~-_,__----'----------' 2~~-~------~

10 20 30 40 50 60
Change interval [s]

(I 10 20 30 40 50 60
Change interval [s]

(I 10 20 30 40 50 60
Change interval [s]

(a) Average number of hops (b) Cache hit rate (c) Advertisement rate

Fig. 10: Effect of change intervals of Zipf a

size in the conventional (Static) scheme and proposed (Dy-
namic) scheme with the estimated (50/280) and adequate
(70/100) threshold values. Figure 8(c) clearly shows that
the proposed scheme with adequate thresholds can more fre-
quently migrate closer to the appropriate cluster size than
that with estimated thresholds. Moreover, Fig. 8(a) and
(b) show that such migration quickly improves the deliv-
ery latency and cache hit rate when the content popularity
changes. Consequently, although the proposed scheme with
estimated thresholds achieves good performance, it can be
further improved by setting adequate thresholds on the basis
of the aforementioned trade-offs as well as detecting sensi-
tive changes in content popularity to quickly adjust the clus-
ter size with appropriate cache distribution. However, the
adequate threshold values may need to be adjusted dynam-
ically in accordance with network conditions (the topology,
frequency of requests, etc.), which will be tackled in future
work.

5.3 Effect of Reclustering Intervals

We investigate the effect of reclustering intervals. Figure 9
shows the average number of hops, cache hit rate, and adver-
tisement rate when the reclustering interval varies. Here, the
lower/upper thresholds were set to 70/100 (adequate values
in this environment). Figure 9(a) shows that shorter reclus-
tering intervals improve delivery latency except for too-short
ones. This is because the shorter intervals can quickly mi-
grate to the adequate cluster size and improve cache hit rates
as shown in Fig. 9(b). However, too-short intervals inhibit
migration to the adequate cluster size due to heavy cache up-
dates immediately after reclustering. In addition, Fig. 9(c)

shows that shorter reclustering intervals improve the over-
head. This is because unnecessary cache updates are reduced
by quickly migrating to the adequate cluster size. Conse-
quently, the reclustering interval should be set to an ade-
quately short value, which is 3 seconds in this environment.

5.4 Effect of Change Intervals of Zipf

We investigate the effect of change intervals of Zipf a to
show the environmental tolerance. For example, when the
change intervals are set to 20 seconds, 30 seconds after the
simulation starts with Zipf a of 1.0 and a cluster size of 4,
Zipf a sequentially changes to 0.6, 1.4, 1.8, and 1.0 every
20 seconds, and these changes are repeated for 240 seconds
(until the end of simulation). Figure 10 shows the average
number of hops, cache hit rate, and advertisement rate when
the change intervals of Zipf a vary. Here, the thresholds of
lower/upper were set to 70/100, and the reclustering interval
was set to 3 seconds (adequate values in this environment).
From Fig. 10, the proposed (Dynamic) scheme always im-
proves the delivery latency, cache hit rate, and overhead com-
pared with the conventional (Static) scheme in a wide range
of change intervals. This is because the proposed scheme
can adapt cluster sizes smoothly to environments where the
content popularity changes frequently.

5.5 Effect of Network Topology

Finally, we evaluate the proposed and conventional schemes
comparatively in a practical network topology. We used the
Interoute topology of 110 nodes from the Internet Topology
Zoo [24] on the basis of comparative paper [8]. Since the

YOSHIDA et al.: POPDCN: POPULARITY-AWARE DYNAMIC CLUSTERING SCHEME FOR DISTRIBUTED CACHING TN TCN

LCE --

Hk~ ===\t::t:;:::~["""'~4
S1a1ic --

Dynamic
2~------~--~-~

0

'!', 80

~ 70

:.E 60

411

50 1m 150 200
TimelsJ

(a) Average number of hops

LCE --
IIR --

IIRC --
Stalic --

Dynamic

250

311 ~-~-~--~-~-~~

0 50 j(X) 200 250
TimelsJ

(b) Cache hit rate

Fig. 11: Effect of network topology

dataset shows the relationship of pop-level routers, we de-
fined each node as CR and placed producers and consumers
on each CR. Content was randomly placed on each producer.
Each consumer sent interest packets requesting content to-
ward the producer at normal distribution intervals with an
average value of 1.0 seconds. The Dynamic scheme used the
clustering algorithm described in Sec. 3.1 and its initial clus-
ter size was set to approximately 4 (16 CRs in each cluster).
The HRC scheme formed 6 clusters by the k-split algorithm.
These settings were the appropriate value for an a of 1.0 at
the start of the simulation. The Dynamic scheme can mi-
grate the cluster size, which consists of 4, 9, 16, 36, or 110
CRs in each cluster, during the simulation. The reclustering
interval was set to 3 seconds, the flooding limit was set to
6, and the lower/upper threshold values were set to 70/130,
which were the appropriate values in this simulation. Other
simulation parameters shall conform to Table 1.

Figure 11 shows the average number of hops and cache
hit rate as a function of time. It indicates that the trend is
almost the same as the results for the grid topology shown in
Section 5.1, and the Dynamic scheme always maintains the
high cache hit rates and reduces the average number of hops.
In addition, regarding collllllunication overheads, the Dy-
namic scheme achieves smaller advertisement rates of 4.37%
than the Static scheme of 6.07%. Therefore, the proposed
scheme is effective even in practical network topologies.

6. Conclusion

We proposed a dynamic clustering scheme to adjust the
cache distribution range in accordance with the change in
content popularity. Our scheme adjusts the cluster size ef-
fectively using a simple threshold-based algorithm based on
the number of cache updates in the cluster. Simulation eval-

9

uations have indicated that the proposed scheme can reduce
the delivery latency while consistently maintaining a high
cache hit rate in a large domain environment where content
popularity changes. In future work, we will investigate more
flexible clustering schemes considering content attributes in
practical topologies.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant-
in-Aid for Scientific Research (C) Number 21 K 11872.

References

fll M. Yoshida, Y. Ito, Y. Sato, and H. Koga, "Popularity-aware
dynamic-clustering scheme for distributed caching in ICN,"
Proc. ACM ICN2022, pp. 192-193, Sept. 2022. DOI:10.1145/
3517212.3559482

l2J M. Yoshida, Y. lto, Y. Sato, and H. Koga, "Performance evaluation of
popularity-aware dynamic-clustering scheme for distributed caching
in ICN," Proc. APSIPA ASC2022, pp. 185-190, Nov. 2022.

l3J V. Jacobson, D.K. Smelters, J.D. Thornton, M. Plass, N. Briggs,
and R. Braynard, "Networking named content," Communications of
the ACM, vol. 55, no. I, pp. 117-124, Jan. 2012. DOI: 10. 1145/
2063176.2063204

f41 L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crow-
ley, C. Papadopoulos, L. Wang, and B. Zhang, "Named data network-
ing," ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 66-73, Jul. 2014. DOI: 10. 1145/2656877. 2656887

f51 S. Arshad, M.A. Azam, M.H. Rehmani, and J. Loo, "Recent ad-
vances in information-centric networking-based internet of things
(ICN-IoT)," IEEE Internet of Things Journal, Vol. 6, no. 2,
pp.2128-2158,Apr.2019. DOI:10.1109/JIOT.2018.2873343

l6J M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and S.Al-
Ahmadi, "Named data networking: A promising architecture for the
internet of things (IoT)," International Journal on Semantic Web and
Information Systems, Vol. 14, no. 2, pp. 86-112, Apr. 2018. DOI:
10.4018/IJSWIS.2018040105

l 7 J M. Yoshida, Y. Ito, Y. Sato, and H. Koga, "A cluster-based cache
distribution scheme in content-centric-networking," Proc. ACM
ICN2018, pp. 196-197, Sept. 2018. DOI: 10. 1145/3267955.
3269012

l 8 J V. Sourlas, I. Psaras, L. Saino, and G. Pavlou, "Efficient hash-routing
and domain clustering techniques for information-centric networks,"
Elsevier Computer Networks, vol. 103, pp. 67-83, July 2016. DOI:
10.1016/j.comnet.2016.04.001

f91 N. Laoutaris, H. Che, and I. Stavrakakis, "The LCD interconnection
of LRU caches and its analysis," Elsevier Performance Evaluation,
vol. 63, no. 7, pp. 609-634, July 2006. DOI:10.1016/j.peva.
2005.05.003

llOJ N. Laoutaris, S. Syntila, and I. Stavrakakis, "Meta algorithms for
hierarchical web caches," Proc. IEEE IPCCC2004, pp. 445-452,
Apr.2004. DOI:10.1109/PCCC.2004.1395054

lllJ K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack,
"Wave: Popularity-based and collaborative in-network caching for
content-oriented networks," Proc. IEEE INFOCOM2012 Work-
shops, pp. 316-321, May 2012. DOI: 10 .1109/INFCOMW. 2012.
6193512

fl21 T. Mick, R. Tourani, and S. Misra, "MuNCC: Multi-hop neigh-
borhood collaborative caching in information centric networks,"
Proc. ACM ICN2016, pp. 93-101, Sept. 2016. DOI:10.1145/
2984356.2984375

ll3J L. Saino, I. Psaras, and G. Pavlou, "Hash-routing schemes for in-
formation centric networking," Proc. ACM ICN2013, pp. 27-32,
Aug.2013. DOI:10.1145/2491224.2491232

f141 H.M. Ju and L. Hyesook. "Cache sharing using Bloom filters in
named data networking," Journal of Network and Computer Applica-
tions, vol. 90, pp. 74-82, July 2017. DOI: 10. 1016/ j . jnca. 2017.
04.011

ll5J C. Li and K. Okamura, "Cluster-based in-networking caching for
content-centric networking," International Journal of Computer Sci-
ence and Network Security, vol. 14, no. 11, pp. 1-9, 2014. http:
//paper.ijcsns.org/07_book/201411/20141101.pdf

ll6J B. Alahrnri, S. Al-Ahmadi and A. Belghith, "Efficient pooling and
collaborative cache management for NDN/ToT networks," IEEE Ac-
cess, vol. 9, pp. 43228-43240, Mar. 2021. DOI: 10. 1109/ ACCESS.
2021.3066133

ll7J H. Yan, D. Gao, W. Su, C.H. Foh, H. Zhang and A.Y. Vasilakos,
"Caching strategy based on hierarchical cluster for named data net-
working," IEEE Access, vol. 5, pp. 8433-8443, Mar. 2017. DOI:
10.1109/ACCESS.2017.2694045

f181 S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, "Temporal locality in today's content caching: why it
matters and how to model it," SIGCOMM Computer Communica-
tion Review, vol. 43, no. 5, pp. 5-12, Oct. 2013. DOI:10.1145/
2541468.2541470

ll9J W. Wong, L. Wang, and J. Kangasharju, "Neighborhood search and
admission control in cooperative caching networks," Proc. IEEE
GLOBECOM2012, pp. 2852-2858, Dec. 2012. DOI: 10. 1109/
GL0C0M.2012.6503549

f201 S. Nayak, R. Patgiri, A. Borah, "A survey on the roles of Bloom
Filter in implementation of the Named Data Networking," Elsevier
Computer Networks, vol. 196, art. no. l 08232, Sept. 2021. DOI:
10.1016/j.comnet.2021.108232

l21J G.F. Riley, and T.R. Henderson, "The ns-3 Network Simulator,"
in Modeling and Tools for Network Simulation, ed. K. Wehrle,
M. Giine~, J. Gross, pp. 15-34, Springer, Berlin, Heidelberg, 2010.
DDI:10.1007/978-3-642-12331-3_2

f221 A. Toannou, and S. Weber, "A survey of caching policies and forward-
ing mechanisms in information-centric networking," IEEE Commu-
nications Surveys & Tutorials, vol. 18, no. 4, pp. 2847-2886, May
2016. D0I:10.1109/C0MST.2016.2565541

f231 M. Hefeeda and 0. Saleh, "Traffic modeling and proportional partial
caching for peer-to-peer systems," IEEE/ACM Transactions on Net-
working, vol. 16, no.6,pp.1447-1460,Mar.2008. DOI:10.1109/
TNET.2008.918081

l24J S. Knight, H. Nguyen, N. Falkner, R. Bowden, M. Roughan, "The
internet topology zoo," IEEE Journal on Selected Areas in Commu-
nications, vol. 29, no. 9, pp. 1765-1775, Oct. 2011. DOI: 10. 1109/
JSAC.2011.111002

Mikiya Yoshida received the B.E. degree
in Information Science and Electrical Engineer-
ing from the Kyushu Sangyo University, Japan,
in 2017, and his M.E. degree in Information
Engineering from the University of Kitakyushu,
Japan, in 2019. He is now a doctoral student
at the University of Kitakyushu, Japan. His re-
search interests include network architecture and
information-centric networking.

Yusuke Ito received the B.E., M.E., and
D.E. degrees in Information and Media En-
gineering from the University of Kitakyushu,

TETCE TRANS. COMMUN .. VOL.Exx-??. NO.xx XXXX 200x

Japan in 2014, 2016, and 2019, respectively.
From 2019 to 2022, he was an Assistant Pro-
fessor at the Tokyo University of Science. Cur-
rently, he is a Lecturer in the Department of In-
formation Systems Engineering, Faculty of En-
vironmental Engineering, The University of Ki-
takyushu, Japan. His research interests include
network architecture and edge cloud computing.

Yurino Sato received the B.E., M.E.,
and D.E. degrees in Information and Media En-
gineering from the University of Kitakyushu,
Japan in 2012, 2014, and 2019, respectively. She
has been an assistant professor since April 2018
in the Department of Control Engineering, Na-
tional Institute of Technology (KOSEN), Sasebo
College, Japan. Her research interests include
network architecture, transport protocol, and for-
ward error correction.

Hiroyuki Koga received the B.E., M.E.,
and D.E. degrees in Computer Science and Elec-
tronics from the Kyushu Institute of Technol-
ogy, Japan in 1998, 2000, and 2003, respectively.
From 2003 to 2004, he was a postdoctoral re-
searcher in the Graduate School of Information
Science, Nara Institute of Science and Technol-
ogy. From 2004 to 2006, he was a researcher
in the Kitakyushu JGN2 Research Center, Na-
tional Institute of Information and Communica-
tions Technology. From 2006 to 2009, he was an

assistant professor in the Department of Information and Media Engineer-
ing, Faculty of Environmental Engineering, The University of Kitakyushu,
and has been an associate professor in the same department since April
2009. His research interests include performance evaluation of computer
networks, mobile networks, and communication protocols.

