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I PAPER 

Overfitting Problem of ANN- and VSTF-based Nonlinear Equalizers 
Trained on Repeated Random Bit Sequences 

Kai IKUTAtal, Jinya NAKAMURAtt, Student Members, and Moriya NAKAMURA\ Member 

SUMMARY In this paper, we investigated the overfitting characteristics of 
nonlinear equalizers based on an artificial neural network (ANN) and the 
Volterra series transfer function (VSTF), which were designed to 
compensate for optical nonlinear waveform distortion in optical fiber 
communication systems. Linear waveform distortion caused by, e.g., 
chromatic dispersion (CD) is commonly compensated by linear equalizers 
using digital signal processing (DSP) in digital coherent receivers. However, 
mitigation of nonlinear waveform distortion is considered to be one of the 
next important issues. An ANN-based nonlinear equalizer is one possible 
candidate for solving this problem. However, the risk of overfitting of 
ANNs is one obstacle in using the technology in practical applications. We 
evaluated and compared the overfitting of ANN- and conventional VSTF-
based nonlinear equalizers used to compensate for optical nonlinear 
distortion. The equalizers were trained on repeated random bit sequences 
(RRBSs), while varying the length of the bit sequences. When the number 
of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting 
characteristics were comparable to those of the VSTF. However, when the 
number of hidden-layer units was 10, which is usually enough to 
compensate for optical nonlinear distortion, the overfitting was weaker than 
that of the VSTF. Furthermore, we confirmed that even commonly used 
finite impulse response (Fl R) filters showed overfitting to the RRBS when 
the length of the RRBS was equal to or shorter than the length of the tapped 
delay line of the filters. Conversely, when the RRBS used for the training 
was sufficiently longer than the tapped delay line, the overfitting could be 
suppressed, even when using an ANN-based nonlinear equalizer with 10 
hidden-layer units. 
key words: optical nonlinear compensation, nonlinear equalizers, artificial 
neural network, Volterra series transfer function, overfitting 

1. Introduction 

Data traffic through communication systems has been 
continuing to grow exponentially with the technological 
development of cloud computing and fifth-generation (50) 
mobile communications. Increasing the capacity further will 
require optical fiber communications technology that 
supports these services. To meet this demand, multi-level 
modulation, including quadrature amplitude modulation 
(QAM), is an important technology that can increase the 
spectral efficiency in the limited optical bandwidth. 
However, a QAM signal has a large peak-to-average power 
ratio (PAPR) and is susceptible to nonlinear waveform 
distortion caused by optical nonlinear effects such as self-
phase modulation (SPM) and cross-phase modulation 
(XPM). Techniques to compensate for the nonlinear 
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waveform distortion using digital signal processing (DSP), 
digital backpropagation (DBP) and nonlinear equalizers 
based on the Volterra series transfer function (VSTF) have 
been studied [1-4]. However, the significant computational 
complexity of these methods poses a technical barrier to 
their practical implementation. On the other hand, nonlinear 
equalizers based on artificial neural networks (ANNs) are 
attracting attention as another possible candidate. ANN-
based nonlinear equalizers have been experimentally 
demonstrated with various modulation formats, including 
intensity modulation and direct detection (IM/DD), QAM, 
and orthogonal frequency-division multiplexing (OFDM) 
[5-7]. The effectiveness of the equalizers has been verified 
not only in laboratory experiments but also with an 11,000-
km live-traffic carrying submarine cable [8]. Recently, 
several field-programmable gate array (FPGA) 
implementations of ANN-based nonlinear equalizers have 
been demonstrated [9,10]. One implementation realized 
both the equalization and training stages within the same 
FPGA simultaneously [ 11]. In our research group, we 
demonstrated complex-valued ANN-based nonlinear 
equalizers, which showed improved learning speed and 
reduced computational complexity compared to a 
conventional real-valued ANN [12]. Furthermore, we 
clarified the necessary number of ANN units for 
compensating for chromatic dispersion (CD) and SPM [13]. 
We also reported that an ANN can effectively compensate 
for nonlinearities using significantly less computational 
effort compared to DBP and the VSTF [14,15]. 

An issue that has been pointed out with the ANN-based 
nonlinear equalizers is overfitting. In particular, when a 
pseudo-random binary sequence (PRBS) is used in the 
training, the ANN configures a logic circuit that is optimized 
for the specific PRBS [16-18]. Consequently, the ANN 
predicts the incoming PRBS signals, resulting in 
overestimation of the compensation performance. 
Conversely, when the compensation performance is 
evaluated using a PRBS different from the one used in the 
training, the compensation performance is underestimated. 
Some reports investigated the dependence of the tap length 
of the ANN and the length of the PRBS on the overfitting 
characteristics [19,20]. It is also reported that the overfitting 
becomes stronger when the number of hidden-layer of the 
ANN is increased from three to four [21]. We evaluated the 
overfitting characteristics of VSTF-based nonlinear 
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equalizers using the same method that has been employed to 
evaluate the overfitting of ANN-based nonlinear equalizers. 
As a result, we revealed that the overfitting of the ANN- and 
VSTF-based nonlinear equalizers occurs under the same 
conditions when PRBSs are used in the training [22]. This is 
because the VSTF has a high function representation 
capability and thus acquires the logic circuit of the PRBS as 
well as the ANN. We should consider that the overfitting is 
not a  problem that is unique to ANN-based nonlinear 
equalizers but possibly occurs with any equalizers using 
learning algorithms. 

In addition to PRBSs, the overfitting characteristics of 
the ANN-based nonlinear equalizers have also been 
investigated in a case where finite-length repeated random 
bit sequences (RRBSs) were used in the training [16-18]. As 
the number of input and hidden layer units in the ANN is 
increased, the ANN-based nonlinear equalizers have a 
higher function representation capability to memorize the 
random bit sequence, resulting in overfitting. However, it is 
known that the overfitting of ANN-based nonlinear 
equalizers with an RRBS is weaker than that with a PRBS. 
On the other hand, the overfitting characteristics of VSTF-
based nonlinear equalizers with an RRBS have not been 
investigated, to the authors' best knowledge. Therefore, it 
remains unclear whether the overfitting of ANN-based 
nonlinear equalizers with an RRBS is larger than that of the 
VSTF. This paper focuses on comparing the overfitting 
characteristics of the ANN- and VSTF-based nonlinear 
equalizers trained on RRBSs, in contrast to the 
characteristics of the ANN trained on PRBS, which were 
investigated in [19,20]. 

In this study, we evaluated and compared the 
overfitting characteristics of nonlinear equalizers based on 
the ANN and VSTF which were trained on a finite-length 
RRBS. We clarified that the overfitting characteristics of the 
ANN-based nonlinear equalizer were comparable to those of 
the VSTF when the number of hidden-layer units of the 
ANN was as large as 100 or 1000. However, when the 
number of hidden-layer units was 10, which is usually 
enough to compensate for optical nonlinear distortion, the 
overfitting was weaker than that of the VSTF. 

The remainder of this paper is organized as follows: 
Section 2 summarizes the theory and computational 
complexity of ANN- and VSTF-based nonlinear equalizers. 
In Section 3, we explain the system setup for evaluating 
overfitting characteristics. Section 4 offers a comparison 
between the overfitting of the ANN and that of the VSTF. 
Finally, Section 5 provides the conclusion of this paper. 

2. ANN- and VSTF-based Nonlinear Equalizers and 
Computational Complexity 

2.1 ANN-based Nonlinear Equalizer 

Figure l(a) shows the construction of the ANN-based 
nonlinear equalizer used for optical nonlinear compensation 
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[12]. The ANN consists of three layers: an input layer, a 
hidden layer, and an output layer. Input signal x(n) is fed to 
the input layer through a feedforward tapped delay line, 
where n represents the time index of the sampled signal with 
a sampling interval of T. L = 2N+ 1 expresses the tap length 
of the tapped delay line. y(n) is the output signal of the ANN-
based nonlinear equalizer. x(n) and y(n) are real values, 
while complex values are employed in [12]. This is because 
binary signals are used in this investigation of the overfitting. 
Therefore, we employed a real-valued ANN. Input-layer 
units simply distribute the input signal to the hidden-layer 
units. Figure 1 (b) shows a hidden-layer unit used in the ANN. 
The inner potential of the j-th hidden-layer unit, u;(n), is 
described as 

N 

uj(n)= Iw;;lx(n+i)+by>, (1) 
i=-N 

where w;? is the weight between the i-th input-layer unit 
and thej-th hidden-layer unit, and b;1l is the bias. The units 
in the hidden layer have a sigmoid function expressed as 

I z(n)--~ 
J - l -u .(n) ' +e , (2) 

where zt(n) is the output of the hidden-layer unit. The units 
in the output layer have a linear function. The output of the 
ANN-based nonlinear equalizer, y(n), is described as 

L =ZN+ 1 

x(n - N) x(n - l) x(n) x(n + l) x(n + N) 

Input layer 

(a) ANN-based nonlinear equalizer 

x(n-N) 

x(n + N) 
(b) Hidden-layer unit 

Fig. 1 ANN-based nonlinear equalizer and hidden-layer unit. 
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M 

y(n)= Iw;2lzJn)+b(2), (3) 
1~1 

where w;2l is the weight between the j-th hidden-layer unit 
and the output-layer unit, and b(2l is the bias.Mis the number 
of hidden-layer units. We trained the ANN by using the error 
back.propagation (EBP) method, a type of least mean square 
(LMS) algorithm. We trained the ANN sample by sample. 
We did not use batches or minibatches. The error function is 
described as 

(4) 

where t(n) is the ideal signal point at the time index n, 
namely a supervised signal. The error, e(n), is minimized by 
updating the weights using the equation described as 

ae(n) 
w(n + 1) = w(n)- p--, aw (5) 

whereµ is the step size parameter which decides the learning 
speed and its stability. w represents all the weights in the 
ANN. The number of hidden layer units required to 
compensate for SPM is about ten or less [13]. The required 
number of input layer units, which is equal to the number of 
taps of the tapped delay line, is decided by the amount of CD 
[13]. 

2.2 VSTF-based Nonlinear Equalizer 

Figure 2 shows the VSTF-based nonlinear equalizer. Here, 
the Volterra kernels for the nonlinear compensation are 
acquired using the LMS algorithm. Optical nonlinearity of 
the optical fibers can be approximated by using only first-
and third-order Volterra kernels [3,4]. We omitted second-
order Volterra kernels, because it is known that the second-
order terms of the VSTF are not effective in equalizing the 
optical-fiber nonlinearity. The output of the VSTF is 
expressed as 

N 

y(n) = 2,)m?(n-111i) 

N        N        N 

+ L L Lhmi1,½m3x(n-111i)x(n-m2)x'(n-~), (6) 
m1=-N m2 =H~ m::,,=-N 

where x(n) and y(n) are the real-valued input and real-valued 
output of the VSTF at time index, n, respectively, hm1 and 
hm1 m2 m3 are the first- and third-order Volterra kernels, 
respectively, and L = 2N+ 1 expresses the number of taps of 
the tapped delay line. If we use only first-order Volterra 
kernels, omitting third- order terms in Eq. (6), the equalizer 
is equivalent to an FIR filter. 

3 
2.3 Computational Complexity of ANN- and VSTF-based 
Nonlinear Equalizers 

The number of multiplications required for the ANN-based 
nonlinear equalizer to compensate for a symbol is expressed 
as 

MANN =LxShidden +Shidden, (7) 

where MANN is the number of real-valued multiplications, L 
is the number of taps of the tapped delay line, and Srudden is 
the number of hidden-layer units [14, 15]. Here, we neglect 
the calculations for the sigmoid functions of the hidden-
layer units, assuming that a lookup table is employed. The 
number of real-valued multiplications required for a first-
order VSTF ( equivalent to an FIR filter) is expressed as 

M VSTF(lst. ocdec) = L · (8) 

The number of real-valued multiplications per symbol of 
first- and third-order VSTF-based nonlinear equalizers can 
be expressed as 

MVSTF(lst.3cdo,dec) = L+3L2 (L+ J)/2 
3       3 =-L3 +-L2 +L 
2       2          ' (9) 

where we eliminated the redundant terms, taking into 
account the symmetry of the Volterra kernels [14,15]. Figure 
3 shows the number of multiplications of the equalizers 

L = 2N + 1 

x(n - N) x(n - 1) x(n) x(n + 1) x(n + N) 

VSTF 
y(n) 

Fig. 2 VSTF-based nonlinear equalizer. 

-VSTF(lst order) - VSTF(lst, 3rd order) 
- • - ANN(Hidden units: 10) -   - ANN(Hidden units: 100) 
- - - ANN Hidden units: 1000 

10s 

10 20 30 
Number of taps 

Fig. 3 Required number of multiplications versus the number of taps. 
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Fig. 5 EVM versus the number of taps. (Trained on 15-bit RRBS) 

versus the number of taps. The number of multiplications in 
the ANN-based nonlinear equalizer increases linearly with 
the number of taps and hidden layer units. The number of 
multiplications in the first-order VSTF also increases 
linearly. On the other hand, for the first- and third-or?er 
VS TF, the number of multiplications increases in proport10n 
to the cube of the number of taps. Therefore, if we need a 
long tapped delay line, the VSTF-based nonlinear equalizer 
will require significantly more multiplications than the 
ANN-based nonlinear equalizer. 

3. System Setup for Evaluating Overfitting 

Figure 4 shows the system setup used to evaluate the 
overfitting, which had been employed in previous studies on 
the overfitting evaluation of ANN-based nonlinear 
equalizers [16-18]. By employing this setup, we c~n 
simplify the evaluation to focus on the essential 
characteristics of the overfitting, eliminating the effects of 
the transmission parameters such as CD, SPM, pulse shape, 
and modulation formats. Even in actual transmission 
systems, the effects of the transmission parameters can be 
compensated by the equalizers, theoretically. Therefore, the 
essential characteristics of the overfitting are also applicable 
in actual transmission systems. A binary RRBS was 
generated by the Mersenne Twister (MT) algorithm. White 
Gaussian noise (WGN) was added to this binary baseband 
signal so that the signal-to-noise ratio (SNR) was adjusted 
to 4 dB. The bit lengths were changed from 15 to 31, 127, 
and 511 bits. The nonlinear equalizers were trained to try to 
"compensate" for the noise. The signal quality after the 
"compensation" was evaluated using the error vector 
magnitude (EVM). Essentially the noise cannot be 
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compensated for using the equalizers. When the overfitting 
occurs, however, the equalizers predict the next incoming 
signals, resulting in an improvement of the apparent EVM 
values. The numbers of hidden-layer units of the ANN were 
1 O, 100, and 1000. As noted in Section 2.1, only about ten 
or fewer hidden layer units are enough to compensate for the 
fiber nonlinearity [13]. Nevertheless, we attempted to use as 
many as 100 or 1000 hidden layer units to evaluate the 
overfitting characteristics of the ANN-based nonlinear 
equalizers with a computational complexity comparable to 
that of the VSTF. We employed the first-order VSTFs and 
the first- and third-order VSTFs. In the training of the ANN 
and VSTF, we did not employ the techniques such as ba~ch 
normalization,   a dropout layer, and an early stoppmg 
algorithm. This approach was chosen to . comp~re the 
overfitting characteristics of ANN and VSTF m the simplest 
condition. This simplicity of the training algorithm is 
important in high-speed optical communication systems. We 
trained the equalizers over 100,000 epochs, which we 
confirmed to be a sufficient number of epochs. Each epoch 
involved the training and test samples with different noise 
generated using different seeds. We used the same RRBS 
generated using one seed through the training over 100,000 
epochs to observe the overfitting to the RRBS. The ~umbers 
of the training and test samples correspond to the bit length 
of the RRBS used. The learning rate was adjusted to 
minimize the average learning error for each combination of 
the number of taps, the number of hidden units, and RRBS 
length. 

4. Results and Discussion 

First we evaluated the overfitting with a short RRBS of 15 
bits 'which is comparable to or shorter than the number of 
tap; of the tapped delay line of the nonlinear equalizers. 15 
bits is impractically short, and it is easily expected that 
strong overfitting is prone to occur. However, we performed 
this investigation using the short RRBS to evaluate the 
overfitting of the first-order VSTFs ( equivalent to FIR 
filters). Figure 5 shows the EVM versus the number of taps 
of the first-order VSTF-based nonlinear equalizer when 
trained on the 15-bit RRBS. In the figure, the characteristics 
of the first- and third-order VSTF and ANN are also 
presented for comparison. We plotted the averages_ of ten 
trials of the training, with the error bars representmg the 
standard deviation at each tap length of the equalizers. The 
RRBSs for the ten trials were generated using different seeds. 
In the case of the first-order VSTF with one tap, the 
equalizer simply multiplies the input signal by a Volterra 
kernel. Therefore, the equalizer does not change the EVM of 
the input signal with WGN, and the value was about 55%. lt 
should be noted that the EVM was decreased by overfitting 
when we increased the number of taps of the first-order 
VSTF. When the number of taps was as large as 31, the EVM 
was decreased by about 23%. In the case of the first- and 
third-order VSTFs and ANNs, the EVM values were 
decreased to about 48% and 41 %, respectively, even when 
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the number of taps was one. This is not due to the overfitting, 
but due to the clipping of WGN caused by the nonlinearity 
of the third-order terms of the VSTFs and the sigmoid 
functions of the ANNs. 

Figure 6(a) shows the waveforms of the RRBSs with 
WON before and after the first-order VSTF-based nonlinear 
equalizer with only one tap. As noted above, the equalizer 
simply multiplies the input signal by a Volterra kernel. 
Therefore, a linear relationship exists between the input and 
output waveforms. Figure 6(b) shows the waveforms before 
and after the first- and third-order VSTFs with one tap. In 
this case, we can observe that the amplitude of the WGN was 
clipped by the nonlinearity of the third-order terms of the 
VSTF. When the overfitting is evaluated by using the EVM, 
we have to take into account the effect of the clipping caused 
by the nonlinearity of the equalizers. Figure 6( c) shows the 
waveforms before and after the ANN with ten hidden-layer 
units and one tap. The saturation curve of the sigmoid 
functions of the hidden-layer units causes stronger clipping 
than the VSTF. Figure 6(d) shows the principle of the 
clipping caused by the nonlinearity of the equalizers. When 
the transfer function of the equalizer is nonlinear, the large 
amplitude of the input signal is clipped to some extent, 
according to the nonlinear curve of the function. The first-
and third-order VSTF-based nonlinear equalizers caused 
this clipping due to the nonlinear operation in the second 
term of Eq. (6), whereas the ANN-based nonlinear 
equalizers caused the clipping due to the nonlinearity of the 
activation function. These clippings decreased the apparent 
EVM, as shown in Fig.5 and Fig.6 (b) and ( c ). 

To eliminate the effects of the clipping, we plotted the 
variations in EVM, ~EVM, from the value that was 
evaluated with one tap. Figure 7(a) is the replotted version 
of Fig. 5, showing the variations, ~EVM, versus the number 
of taps of the VSTF- and the ANN-based nonlinear 
equalizers when trained on the 15-bit RRBS. In the case of 
the first-order VSTF, the EVM decreased by about 23% 
when the number of taps was 31, as mentioned above. When 
we used the first- and third-order VSTFs, the EVM 
decreased by about 35% with 31 taps, which shows larger 
overfitting than that which occurred in the case of the first-
order VSTF. When we used the ANNs with 10, 100, and 
1000 hidden-layer units, we observed stronger overfitting 
than observed with the VSTF. This result implies the high 
function representation capability of the ANN-based 
equalizers. However, when the number of taps was 31, the 
EVM decreased by about 35%, which was approximately 
equal to that of the first- and third-order VSTFs. This is due 
to the lower limit of the EVM, as shown in Fig. 5. Figure 
7(b) shows ~EVM versus the number of taps of the 
equalizers when trained on 31-bit RRBS. In the case of the 
first-order VSTF, the EVM decreased by 7% when the 
number of taps was 31. When we used the first- and third-
order VSTFs, the EVM decreased by 27% with 31 taps. 
When we used the ANN with 10 hidden-layer units, the 
overfitting characteristics were comparable to those of the 
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Fig. 7 6. EVM versus the number of taps. 

first- and third-order VSTFs. When we used the ANNs with 
100 and 1000 hidden-layer units, we observed stronger 
overfitting than observed with the VSTF. This result shows 
the tendency toward weaker overfitting with an increase in 
the length of the RRBS used for the training. In order to 
investigate the overfitting characteristics with longer RRBS 
than the number of taps, we set the length to 127 bits. Figure 
7( c) shows ~EVM versus the number of taps of the 
equalizers which was trained on 127-bit RRBS. In the case 
of the first-order VSTF, EVM decreased by only 2% when 
the number of taps was 31, indicating the weak overfitting. 
When we used the first- and third-order VSTFs, the EVM 
decreased by 22% when the number of taps was 31. When 
we used the ANN with 10 hidden layer units, however, the 
EVM decreased by 7%, which is much smaller than that of 
the first- and third-order VSTFs. When we used the ANNs 
with 100 and 1000 hidden-layer units, the overfitting 
characteristics were comparable to those of the first- and 
third-order VSTFs. Figure 7(d) shows ~EVM versus the 
number of taps when a 511-bit RRBS was employed for the 
training. In the case of the first-order VSTF, the EVM 
variation was about 0%, even when the number of taps was 

as large as 31. When we used the first- and third-order 
VSTFs, the EVM decreased by 13%, when the number of 
taps was 31. On the other hand, when we used the ANN with 
10 hidden-layer units, ~EVM was only about 1%, even 
when the number of taps was as large as 31. In this case, the 
overfitting was suppressed enough, although we employed 
the ANN-based nonlinear equalizer. However, when we 
used the ANN and the number of hidden-layer units was as 
many as 100 and 1000, the overfitting characteristics were 
comparable to that of the first- and third-order VSTFs. 

Figures 8(a) and (b) show the variations ~ EVM 
versus the bit length of the RRBS used for the training under 
the condition where the number of taps of the nonlinear 
equalizers was 31. First, we should note that the first-order 
VSTF, which is equivalent to an FIR filter, showed strong 
overfitting when the RRBS was as short as 31 or less. 
However, when the RRBS was longer than 127, the 
overfitting was sufficiently suppressed. In the case of the 
first- and third-order VSTFs, we observed strong overfitting, 
even when the RRBS was as long as 511. This result 
indicates that the first- and third-order VSTFs have a high 
function representation capability, and the VSTF-based 

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers 
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nonlinear equalizer memorized the trained RRBS. 
Consequently, the equalizer predicted the incoming RRBS, 
and the EVM decreased. The ANN-based nonlinear 
equalizers have a high function representation capability as 
good as one based on the VSTF. However, when the number 
of hidden-layer units was as small as 10, the ~EVM was 
only about 1 %, and the overfitting was sufficiently 
suppressed against the 511-bit RRBS, whereas the first- and 
third-order VSTF showed strong overfitting in the same 
condition. As mentioned in Section 2.1, only about ten or 
fewer hidden layer units are sufficient to compensate for the 
fiber nonlinearity [13]. It should be noted that the 
computational complexity of the ANN-based nonlinear 
equalizer is much smaller than that of the VSTF, as shown 
in Fig. 3. However, when we increased the number of 
hidden-layer units to more than required, namely, 100 or 
1000, we observed strong overfitting similar to the case of 
the VSTF. The results indicate that we need to carefully 
consider the overfitting and the required number ofhidden-
layer units of ANN-based nonlinear equalizers. In [22], the 
overfitting characteristics of the ANN- and VSTF-based 
nonlinear equalizers were compared using PRBSs. In this 
case, both equalizers showed stronger overfitting than what 

7 
was observed in this study using RRBSs. This is because the 
ANN and VSTF can learn the simple generation rule of the 
PRBSs and consequently predict the received pattern. The 
overfittings of the nonlinear equalizers with RRBSs were 
weaker than that with PRBSs. In particular, when the 
number of the hidden-layer units of the ANN was as small 
as 10, the overfitting of the ANN was weaker than that of 
VSTF in the case ofRRBSs. 

5. Conclusion 

We investigated the overfitting of ANN- and VSTF-based 
nonlinear equalizers trained on a finite-length RRBS. The 
results show that the VSTF used for nonlinear compensation 
in optical communication causes stronger overfitting than 
the ANN, depending on the conditions, in particular, the 
length of the RRBS and the number of taps. Nevertheless, it 
should be noted that we have to take care in deciding the 
number of hidden-layer units of the ANN. If we use more 
hidden-layer units than necessary, this will result in stronger 
overfitting. The problem of overfitting occurs not only with 
ANN-based nonlinear equalizers but also with general 
equalizers using learning algorithms. Depending on the 
conditions, the overfitting can occur even when we use a 
simple FIR filter. 
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