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SUMMARY With the development of drone technology, concerns have 
arisen about the possibility of drones being equipped with threat payloads 
for terrorism and other crimes. A drone detection system that can detect 
drones carrying payloads is needed. A drone's propeller rotation frequency 
increases with payload weight. Therefore, a method for estimating pro-
peller rotation frequency will effectively detect the presence or absence of 
a payload and its weight. In this paper, we propose a method for classifying 
the payload weight of a drone by estimating its propeller rotation frequency 
from radar images obtained using a millimeter-wave fast-chirp-modulation 
multiple-input and multiple-output (MIMO) radar. For each drone model, 
the proposed method requires a pre-prepared reference dataset that estab-
lishes the relationships between the payload weight and propeller rotation 
frequency. Two experimental measurement cases were conducted to inves-
tigate the effectiveness of our proposal. In case 1, we assessed four drones 
(DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and DJI Mavic Mini) to 
determine whether the propeller rotation frequency of any drone could be 
correctly estimated. In case 2, experiments were conducted on a hovering 
Phantom 3 drone with several payloads in a stable position for calculating 
the accuracy of the payload weight classification. The experimental results 
indicated that the proposed method could estimate the propeller rotation 
frequency of any drone and classify payloads in a 250 g step with high 
accuracy. 
key words: millimeter-wave MIMO radar,fast chirp, radar imaging, drone 
detection, payload weight estimation 

1. Introduction 

Drones have advanced rapidly and are widely used in vari-
ous fields, such as security, surveying, delivery, photography, 
disaster response, and agriculture in recent years [l]. How-
ever, along with their growing use, concerns have arisen 
about the possibility that drones can be equipped with pay-
loads of explosives, biological and chemical weapons, and 
illicit materials for terrorism and other crimes [2], [3]. There-
fore, antidrone systems must be able to detect the presence 
or absence of payloads and deal with these drones on a prior-
ity basis. Drone detection technologies, including cameras, 
microphones, and radars, are being actively studied and de-
veloped. Radars are attracting significant attention as an 
effective drone detection technology because they are not 
affected by weather conditions, unlike cameras and micro-
phones [4]. 

Most studies on drone detection using radars rely on 
the micro-Doppler signatures generated by the rotation of 
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drone propellers [5]-[9]; in these cited studies, drone mod-
els were classified based on differences in their micro-
Doppler signatures. In addition, several studies have been 
conducted recently on detection of drones carrying pay-
loads using micro-Doppler signatures [10]-[13]. In [10], 
the micro-Doppler signatures of two types of drones with 
different payloads were obtained using W-band, C-band, 
and S-band frequency-modulated continuous-wave (FMCW) 
radars. Different micro-Doppler signatures were observed 
with an increase in payload weight, and a payload weight 
classification algorithm based on micro-Doppler signatures 
was proposed. In particular, the W-band was found to be 
the preferred frequency band for payload classification using 
the FMCW radar. In [ 11], the micro-Doppler signatures of 
a drone with a payload were obtained using an S-band mul-
tistatic pulsed Doppler radar. In [12], a convolutional neural 
network was applied to the data acquired in [ 11], and payload 
weights were classified well. Of particular interest is a study 
about drones equipped with heavy payloads and dynamic 
payloads generating inertial forces, such as guns [13]. In this 
study, the micro-Doppler signatures of two types of drones 
were obtained using a K-band FMCW radar and a W-band 
continuous-wave radar. The authors discussed the effects of 
payloads on micro-Doppler signatures and showed that these 
signatures were inconsistent and not unique to the drones car-
rying the target payloads. [ 12] used micro-Doppler signa-
tures for achieving a highly accurate payload classification, 
similar to [10] and [ll]. Furthermore, [13] reported that no 
unique micro-Doppler signatures could clearly distinguish 
between drones with and without a payload. Hence, the 
robust discrimination between payload and no payload is 
challenging. These results show that depending on the radar 
specifications and measurement environments, the payload 
estimation using micro-Doppler signatures may be difficult. 
Therefore, methods for estimating payload weights that do 
not rely on micro-Doppler signatures should be explored. 
[13] and [14] revealed that the rotation frequency of a pro-
peller increases with the payload weight due to the need for 
additional thrust. The increase trend of the propeller rotation 
frequency depends on the drone model. Therefore, com-
bined with existing algorithms for classifying drone models, 
such trends can be used as a reference dataset for estimating 
payload weights. 

In this paper, we propose a method for classifying the 
payload weight of a drone by estimating its propeller rotation 
frequency from radar images obtained using a millimeter-
wave fast-chirp-modulation multiple-input and multiple-
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output (mmW FCM MIMO) radar. The proposed method 
requires a pre-prepared reference dataset that relates the pay-
load weight to the propeller rotation frequency for each drone 
model. To the best of our knowledge, the proposed method 
is the first report of a payload estimation method that does 
not rely on micro-Doppler signatures when investigating the 
radar-based payload classification. We studied the radar 
imaging of a drone using an mmW FCM MIMO radar in 
[15]. The results showed that the propeller rotation pro-
duced periodic variations in the signal intensity of the pixels 
corresponding to the propeller in radar images. The sam-
pling period of an mm W FCM MIMO radar is fast enough 
for observing a drone's propeller rotation. The use of the 
millimeter-wave radar in W-band is the preferred choice for 
the payload estimation, as revealed in [ 1 OJ, and the radar 
is considered to reflect off small components, such as drone 
propellers, due to its wavelength characteristics. The rotation 
frequency of a propeller can be estimated by applying fast 
Fourier transform (FFT) to the signal intensity variations. 
To demonstrate the estimation of the rotation frequency of 
propellers, we conducted measurement experiments on four 
drones: DJI Matrice 600, DJI Phantom 3, DJI Mavic Pro, and 
DJI Mavic Mini. Additionally, we performed experiments on 
a drone with several payloads in a stable position to investi-
gate the effectiveness of the proposed method for estimating 
payload weights from estimated rotation frequencies. 

The rest of this paper is organized as follows. Section 
2 is an explanation of the mmW FCM MIMO radar, radar 
imaging, and the payload weight estimation method. Section 
3 shows our measurement results and a discussion of the 
effectiveness of our proposal. Finally, we summarize this 
paper in Section 4. 

2. Payload weight estimation 

2.1 mmW FCM MIMO radar 

Fig. 1 shows a diagram of the mm W FCM MIMO radar. 
The FCM radar transmits and receives a sinusoidal signal 
called chirp, whose frequency is modulated over an ultraw-
ide bandwidth with time. The modulation and observation 
times of a chirp are called fast and slow times, respectively. 
A received chirp is mixed with a transmitted chirp to mea-
sure the intermediate-frequency (IF) signal. The IF signal is 
sampled using an analog-to-digital converter for each receive 
antenna and stored in memory as multiple-input, multiple-
output (MIMO) channel data. The MIMO channel data, 
consisting of the IF signals of the radio channels between 
the transmit and receive antennas, are reconstructed into 
single-input, multiple-output channel data of a contiguous 
virtual array (MIMO virtual array) [16]. The received ma-
trix R(n, m, l) obtained using the radar is a 3D data matrix 
(MIMO virtual array x fast time x slow time) that includes 
the propagation delay time, direction of arrival (DOA), and 
Doppler frequency. Here N(n = 1, 2, • • • , N) is the number 
of fast-time samples, M(m = l, 2, · • ·, M) is the number of 
MIMO virtual array elements, and L(l = 1, 2, • • • , L) is the 
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Fig. I mmW FCM MIMO radar. 

number of slow-time samples. 

2.2 Radar imaging procedure 

Fig. 2 shows the signal processing flow for 2D radar image 
generation. A 2D FFT process is performed on the received 
matrix R(n, m, l) to generate a 2D radar image (range-angle 
map). The distance from the radar to the object is estimated 
by performing FFT (range FFT) on the IF signal obtained by 
each element constituting the MIMO virtual array. The data 
matrix Rranqe (r, m, l) after range FFT is as follows: 

N 
1 ~ .2 1' lr Rranue(r,m,l) = N LJR(n,m,l)e-1 nnc, 

n=l 

(1) 

where r and c are the range bin and the speed of light, 
respectively. f 11 represents the frequency of the kernel of the 
Fourier transform. 

A drone has many scattering points from its compo-
nents, such as its body and propellers. The spatial reso-
lution must be improved to obtain clear radar images. As 
shown in Fig. 2, we apply the Khatri-Rao (KR) product vir-
tual array processing to the MIMO virtual array elements in 
each range bin [ 17]-[ 19] to improve the angular resolution. 
Here, assuming that K waves are observed using M uniform 
linear array (ULA) elements, the MIMO virtual array data 
Rranqe (rb, m, l) in a certain range bin rh are as follows: 

K 

Rrange(rb, m, l) = I a((h)sk(l) + n(l) 
k=l 

= As(l) + n(l) (2) 
A [a(81), a(82), • • ·, a(Bk)l (3) 

s(l) = [s1 (l), s2(l), .. • , Sk (l)f, (4) 

where a(Bk) E c M and sk(l) denote the mode vector 
and complex amplitude of the k-th wave, respectively; 
A E c MxK is the mode matrix; and n(l) is the noise vector. 
The correlation matrix Re of the MIMO virtual array data 
Rranqe (rb, m, l) is as follows: 
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Fig. 2 Flow of digital signal processing. 

Re = E[Rrange(rb, m, l)R;!,1119e(rb, m, l)] 

= ASAH +RN, (5) 

where E[] and H denote ensemble averaging and the complex 
conjugate transpose, respectively; S is the source correlation 
matrix; and RN is the noise correlation matrix. We also 
apply spatial smoothing processing (SSP) to this correlation 
matrix before the KR product virtual array processing to sup-
press the signal coherence of incident waves [20] because the 
correlation of incident waves leads to errors in virtual array 
signals [21]. The vectorization y of the spatially smoothed 
correlation matrix Re is as follows: 

y vec[Re] 

vec[ASAH] + vec[RN] 

(A* 0 A)s' + vec[RN ], (6) 

where vec[] and * are the vectorization operator and the 
complex conjugate, respectively; 0 denotes the KR product 
operator; s' E {f is the diagonal element of S; (A* 0 A) E 

rcM 2 xK is the KR product virtual array response matrix; and 
the vector y contains repeated elements that do not help 
increase the aperture length. The nonrepeating elements of 
vector y are extracted to obtain the KR virtual array data of 
2M -1 elements, so the aperture length is virtually increased. 

The DOA of reflected signals is estimated by perform-
ing a second FFT (angle FFT) over the indexes of the KR 
virtual array elements on all range bins of the data matrix 
RKR (r, m', l) after KR product virtual array processing. The 
radar image at the l-th slow time Jmage(r, a, l) generated af-
ter angle FFT is as follows: 

(7) 

where a is the angle bin and m'(= 1, 2, • • • , 2M - 1) is the 
index of the virtual antennas after KR product virtual array 
processing. 

3 

Fig. 3 Measurement environment for generating reference dataset. 

2.3 Proposed method 

We investigated the effect of payload weight on the propeller 
rotation frequency of a drone (Section 2.3.1) and developed 
a payload weight estimation method using the results of this 
investigation (Section 2.3.2). 

2.3.1 Reference dataset for payload weight estimation 

The proposed method requires a reference dataset of the 
relationship between payload weight and propeller rotation 
frequency. Therefore, to show an example, we created a 
reference dataset for a hovering Phantom 3. 

Fig. 3 shows the environment for measuring the rotation 
frequency of the drone's propeller. The hovering Phantom 
3 drone was suspended in the air using guide ropes and 
connected to a spring scale. A payload weight was applied 
to the drone because the tension between a drone and a spring 
scale increases with the drone's propeller rotation frequency. 
We measured the rotation frequency of the drone using a 
digital tachometer for 10 s when the spring scale showed 
values of 0, 250, 500, 750, and 1000 g. In this study, we 
consider that it is sufficient to detect a threatening payload 
by estimating rough weight. Therefore, measurement data 
were collected in a 250 g step. 

Fig. 4 shows the measured relationship between the 
payload weight and rotation frequency of the Phantom 3. 
The figure indicates an increase in the propeller rotation fre-
quency with the payload. When focused on each payload, 
it is clear that the frequency is not constant and varies be-
tween 16 and 17 Hz due to the drone's attitude control. The 
frequency variations do not overlap for payloads with 250 
g steps, indicating that the payload can be uniquely deter-
mined if the rotation frequency is estimated using the radar. 
However, these frequency variations overlap for steps below 
250 g and may cause errors in the payload estimation. The 
measurement results obtained with 250 g steps were defined 
as the reference dataset for the payload weight estimation in 
this study. 

2.3.2 Signal processing 

Fig. 5 shows a flowchart of our proposed payload weight 
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Fig. 4 Relationship between payload weight and rotation frequency of 
Phantom 3. 

estimation method. The basis of this method is to find a pixel 
in a drone's radar image that corresponds to the propeller and 
analyze the temporal variation of its signal intensity. 

First, a 2D radar image of a drone is acquired by the 
mmW FCM MIMO radar. As an example, the 2D radar 
image of the Phantom 3 is shown in Fig. 6. The charac-
teristic shape of the drone could be imaged; specifically, the 
maximum peak at (0.1, 1.8 m) was an echo from the drone's 
body, and the peaks at (-0.2, 1.7 m) and (0.15, 1.6 m) were 
the echoes from the left and right propellers, respectively. 
Thus, a drone's propeller is the reflection point with the 
largest reflection intensity after that of the body. Therefore, 
the initial sampling point (r p, ap) for the propeller is the 
pixel of the peak of the second-largest reflection intensity 
in the radar image. The second and subsequent sampling 
points were obtained from the same coordinates. Since the 
reflection intensity of the pixel corresponding to the pro-
peller fluctuates periodically with the propeller rotation, the 
propeller rotation frequency is estimated by performing FFT 
on the reflection intensity fluctuation. With the propeller 
position coordinates in the radar image denoted as (r p, ap ), 
the propeller rotation frequency F (rp, ap, f) is as follows: 

L 
_ 1 '\' -j2n(l-l) f' F (rp, ap, f) - Lu Image(rp, ap, l)e L • , 

i=l 

(8) 

where f is frequency. The propeller rotation frequency 
should exceed a certain threshold for a drone to take off. 
A frequency gate is set for the FFT-calculated frequency 
spectrum to estimate the propeller rotation frequency. The 
propeller rotation frequency at takeoff is different for differ-
ent drones due to differences in their specifications, such as 
drone weight and motor power. Therefore, the frequency 
gate depends on the drone model and should be adjusted 
appropriately for each drone. For example, in the case of the 
Phantom 3, the frequency gate was set to 150 Hz or higher 
because its takeoff requires a propeller rotation frequency of 
150 Hz or higher. In this gate, the dominant frequency is due 
to propeller rotation and the peak frequency is sequentially 
stored in memory as a provisional estimation result of the 
propeller rotation frequency. Next, since the propeller rota-
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-15 

iii' 
~ 
ai -20 
~ a.. 

-25 -1 .1 0.55 0 
Cross range [m] 

2 .2 
0 
0 ::;: 
:::, 

1.7 ~ 
co 
(D 

3 
1.2 ~ 

0.55 1.1 

Fig. 6 Example of 2D radar image of Phantom 3. 

tion frequency varies with time due to disturbance, these pro-
visional estimation results are evaluated using a histogram 
of 300 samples, and the frequency with the mode is used as 
the final estimation result of the drone's propeller rotation 
frequency. A small sample size is preferred for the histogram 
since a large number of samples may affect the distribution 
because of disturbances due to long observation time. There-
fore, the sample size was set to empirically derived value of 
300. Finally, the payload weight is estimated by comparing 
the estimated propeller rotation frequency with the reference 
dataset. 

3. Experimental setup and results 

3.1 Experimental setup 

We measured propeller rotation frequencies in two exper-
imental measurement cases using an mmW FCM MIMO 
radar module. Case 1 involved four drones (Matrice 600, 
Phantom 3, Mavic Pro, and Mavic Mini) without payloads. 
Case 2 involved a Phantom 3 with several payload weights. 
Table 7 shows the specifications of the mmW FCM MIMO 
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Table 1 Specifications of mmW FCM MlMO radar module. 
Array shape Unfiorm linear array 

Number of elements Tx 3 
Rx 4 

Antenna spacing Tx 8mm 
Rx 2mm 

Beamwidth Azimuth ±35 deg 
Elevation ±4 deg 

Center frequency 78.72 GHz 
Frequency bandwidth 3.44GHz 
Sweep time 57 µ s 
Pulse repetition interval 0.97 ms 
Number of sampling points in fast time (N) 240 
Number of sampling points in slow time (L) 256 

radar module. The MIMO radar, which is composed of a 
3x4 ULA as shown in Fig. 7, presents a MIMO virtual ar-
ray of 12 elements. Subarrays of IO elements ( = M) were 
selected from the MIMO virtual array and used for SSP to 
suppress the coherence of the echoes from each target. The 
application of KR product virtual array processing increased 
the number of virtual elements to 19 elements ( = 2M - 1), 
so the angular resolution was 6.0 degrees. The frequency 
bandwidth was 3.44 GHz, resulting in a range resolution of 
4.4 cm. The number of slow-time samples was 256 (0.25 
s), causing a frequency resolution of 4 Hz. The pulse recep-
tion interval was set to 0.97 ms, which was fast enough for 
observing the propeller rotation. 

In case I, we assessed four drones with different shapes, 
sizes, numbers of rotors, and propeller geometries, as shown 
in Table 2, and investigated whether the propeller rotation 
frequency of any drone could be estimated correctly. Each 
target was placed on a low-density styrofoam cylinder with 
its propeller rotating, as shown in Fig. 8(a). The antenna 
height was set to the height of the drone body. The distance 
between the radar and the target was adjusted for each drone 
so that the entire drone, including its propellers, would be 
covered by the antenna beam. Each drone was positioned so 
that one propeller was the closest to the radar to observe the 
echoes from the propeller in a manner that maximizes the 
signal-to-noise ratio. 

In case 2, we tested the Phantom 3 with several payload 
weights W(= 0, 250, 500, 750, 1000 g) using the spring 
scale (Section 2.3.1) to investigate the effectiveness of the 
proposed payload weight estimation approach. The hovering 
target was suspended in the air using guide ropes to prevent 
it from flying outside the antenna beam, as shown in Fig. 
8(b ). The target was positioned so that the camera faced 
its front, as seen in Fig. 3. Since drones were expected 
to enter the radar coverage area at various flight altitudes, 
we evaluated the accuracy of the payload weight estimation 
method at different antenna elevation angles 8( =0 °, 10°, 20°, 
and 30°). 

Fig. 7 MIMO radar. 
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3.2 Experimental results and discussion 

3.2.1 Case 1 

5 

Fig. 9 shows the Phantom 3 measurement results. Several 
strong echoes are seen in Fig. 9(a). The strong peak at (0, 
1.2 m) is an echo from the body, and the peaks at (0, 1.0 
m), (-0.30, 1.1 m), and (0.25, 1.2 m) are the echoes from 
the propellers.  Since the rear propeller was obscured by the 
body, no echo from the rear propeller is observed. Fig. 9(b) 
shows the waveform of the signal intensity fluctuation due 
to a propeller. This waveform was generated through the 
time-series sampling of the signal intensity of the (0, 1.0 
m) pixel, which corresponds to a propeller in the 2D radar 
image. The DC component of the waveform was removed. 
The waveform amplitude fluctuates due to changes in the 
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Table 2 Tested drones. 

Matrice 600 Phantom 3 

Width x Depth [mm] 1200 X 1200 400 X 400 

Propeller diameter [ 111111] 535 235 

Exterior 

radar cross section during propeller rotation. The fluctuation 
period is related to the propeller rotation speed, and similar 
periodic fluctuations are observed in the other tested drones. 

Fig. 10 shows the frequency spectrum of the time wave-
form of each drone. The frequency corresponding to the 
maximum value in the frequency spectrum is denoted as T 
in the figure, which is the estimated propeller rotation fre-
quency. The true value of the propeller rotation frequency 
was measured using a digital tachometer. Figs. lO(a), (c), 
and (d) show strong peaks in the low-frequency component 
(under 50 Hz). These peaks may have been caused by the 
vibration of the drone arms due to propeller rotation; each 
drone was placed on the styrofoam cylinder, so the drone 
body could not have caused vibration. Arm vibration is a 
unique characteristic of drones that have separate bodies and 
arms, such as the Matrice 600, Mavic Pro, and Mavic Mini. 
These peaks can be removed through filter processing using 
a high-pass filter or by setting a frequency gate. Fig. 11 
shows the estimated and measured rotation frequencies for 
each drone. Measurements were obtained for 556 slow-time 
samples. Subsequently, a total of 300 estimates of the pro-
peller rotation frequency were obtained by performing FFT 
on the measured data while shifting the FFT window length 
of 256 samples by one sample at a time. From Fig. 11, 
in Case 1, where there are almost no fluctuations other than 
that caused by the propeller, the propeller rotation frequency 
can be estimated with an error of less than a few hertz for 
all tested drones. The main factor that causes the estimated 
value to vary more than the true value is the estimation error 
caused by the FFT. 

3.2.2 Case 2 

Measurements were obtained for 556 slow-time samples. 
Further, a total of 300 propeller rotation frequency estimates 
were obtained by applying FFT on the measured data while 
shifting the FFT window length of 256 samples by one sam-
ple at a time. Fig. 12 shows an example of the signal intensity 
waveform in Case 2, in which an increase is observed in the 
irregular fluctuation components compared to that exhibited 
by the waveform of Case 1 shown in Fig. 9(b ). This ir-
regularity is attributed to the shaking and vibration of the 
drone's body during hovering. The frequency spectrum of 
the waveform in Fig. 12 is shown in Fig. 13, along with its 
corresponding estimated propeller rotation frequency (T). 
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In addition to the peak representing the propeller rotation 
frequency (Fig. lO(b) ), the spectrum has a large peak in the 
low-frequency region, attributed to the shaking and vibration 
of the drone body. However, the propeller rotation frequency 
can be estimated by performing a peak search after passing 
the frequency spectrum through a frequency gate, similar 
to Case 1. Fig. 14 shows the provisional estimates of the 
propeller rotation frequency at each payload weight. The 
blue circles ( o) and red crosses (x) in the graphs denote the 
correct and incorrect estimates, respectively, compared with 
the reference dataset. Fig. 14 indicates that the estimates 
increase with the payload weight, as shown in Fig. 4. In 
addition, the correct estimates (blue circles) at each payload 
weight vary due to temporal changes in the propeller rotation 
frequency caused by drone attitude control. The incorrect es-
timates (red crosses) are insufficient or excessive frequencies 
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Fig.10 Examples of propeller rotation frequency spectra. 

for maintaining the drone's hovering state. These misesti-
mates may have been caused by random disturbances, such 
as body sway due to attitude control or body vibration due 
to propeller rotation. 

The histogram of provisional estimates was evaluated 
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Fig.11 Estimation results of the propeller rotation frequency for each 
drone. 
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Fig.12 An example of the signal intensity waveform in Case 2. 
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Fig.13 An example for the estimation result of the propeller rotation 
frequency in Case 2. 

to determine the final estimate of the propeller rotation fre-
quency, thus avoiding the abovementioned misestimates. 
When the propeller rotates at a rotation frequency closer 
to the frequency boundary in the reference dataset, the esti-
mation accuracy of the propeller rotation frequency would 
be affected by the bin size of the histogram. In this study, 
the bin size was set to 1 Hz to align with the measurement 
resolution of the digital tachometer. For example, Fig. 15 
shows the histogram of the provisional estimates at an ele-
vation angle (} = 20° and a payload weight W = 250 g. Most 
of the provisional estimates are at approximately 197 Hz, 
which is within the frequency range of the reference dataset 
at W = 250 g. However, approximately 30% of the estimates 
are outside the frequency range, leading to payload weight 
misestimation. Therefore, 197 Hz, which has the highest 
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Fig.14 Provisional estimates of propeller rotation frequency vs. payload 
weight. 

occurrence probability, is the propeller rotation frequency in 
our experiment. Final estimates presented in Fig. 14 corre-
spond to the propeller rotation frequency determined using 
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Fig. 15 Histogram of provisional estimates (0 = 20°, W = 250 g). 

the mode in their histograms. 
Each payload weight is classified by comparing the 

propeller rotation frequency determined from the histogram 
with the corresponding value in the reference dataset in Fig. 
4. Table. 3 shows the payload weight classification results at 
each antenna elevation angle. Each column (row) in the ta-
ble represents the instances of the estimated (actual) payload 
weights. "Other" means that the payload weight could not be 
estimated because the estimated propeller rotation frequency 
was outside the range of the reference dataset. To evaluate 
the accuracy of the payload classification, we performed 100 
classification runs by taking a 54-second (55600 samples in 
slow-time) measurement and dividing the measured data into 
I 00 segments (556 samples in slow-time per segment). Each 
cell in the table represents the probability of I 00 classifica-
tion runs corresponding to each measurement of the actual 
payload weight W. The blue cells in the table represent the 
probability of correct classification, which is defined as the 
classification accuracy. The average classification accuracy 
of all blue cells, is more than 94.4% at each elevation angle. 
The results show that the proposed method can accurately 
classify most of the payload weights, and there is almost 
no difference in the average classification accuracy between 
elevation angles. 

In Table. 3(b ), 22% are classified as "Other" at the 
actual payload weight W = 250 g. This is probably because 
the case of W = 250 g caused more body shaking and vi-
bration than other cases, thereby affecting the original signal 
intensity fluctuations of the propeller. Tables. 3 (a), (c), and 
(d) show misclassifications where the payload is classified as 
lighter or heavier than its actual weight. Misclassifications 
occurred irregularly for any weight at any elevation angle, in-
dicating the absence of a consistent error trend that depends 
on the elevation angle. The main reasons of these misclas-
sifications are sudden random body shaking and frequency 
estimation errors caused by the FFT. Further, we discuss the 
FFT estimation error in detail. 

We investigated the effect of the FFT window length 
on estimation accuracy. Fig. 16 shows the classification 
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Table 3 Payload weight classification results. 
(a) 0 = 0° 
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accuracy for different FFT window lengths (LFr ), where o, 
x, and + indicate the classification accuracy for e = 0° and 
W = 1000 g, for e = 20° and W = 0 g, and for e = 30° and 
W = 500 g, respectively. Fig. 16 confirms that the classifica-
tion accuracy improves with longer window lengths because 
the frequency resolution increases with the window length. 
Fig. 17 shows the average classification accuracies at all 
elevation angles and payload weights. The figure indicates 
that the average classification accuracy degrades in the case 
of LFT = 512 despite the improved frequency resolution 
compared with that of LFT = 256. With longer window 
lengths, the effects of drone body shaking and vibration are 
more likely to show in the signal intensity waveform, which 
is used to estimate the propeller rotation frequency. Since the 
frequency components due to these disturbances became the 
mode in the histogram, the average classification accuracy 
declined. Therefore, a trade-off exists between the effect 
of disturbances and the frequency resolution, and setting a 
window length that considers the effect of disturbances is 
important for the proposed method. 
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Fig.16 Comparison of classification accuracy for different FFT window 
lengths. 
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Fig.17 Average classification accuracy for different FFT window 
lengths. 

4. Conclusions 

In this paper, we propose a method for classifying the payload 
weight of a drone by estimating the propeller rotation fre-
quency from radar images obtained using an mmW FCM 
MIMO radar. The proposed method necessitates a pre-
prepared reference dataset that can relate the payload weight 
to the propeller rotation frequency for each drone model. 
Two experimental measurement cases were conducted to in-
vestigate the effectiveness of our proposal. In case 1, we 
tested four drones to determine whether the propeller rota-
tion frequency of any drone could be correctly estimated. 
The experimental results showed that the propeller rotation 
frequencies of all drones could be estimated. In case 2, mea-
surement experiments were conducted on a hovering drone 
with five different payloads in a stable position to evalu-
ate the accuracy of payload weight classification. Results 
revealed that the proposed method could classify the pay-
loads in a 250 g step with an average accuracy of more than 



94.4%. However, as the FFf window length for estimating 
the propeller rotation frequency increased, the classification 
accuracy decreased due to the increased influence of distur-
bances. Therefore, an appropriate window length should be 
set for accurate classification. 

We plan to investigate the possibility of classification 
of payloads in moving drones at far range in the future. 
Moreover, we aim to implement algorithms that are robust 
to disturbances, such as body shaking and vibration. 
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