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SimpleViTFi: A Lightweight Vision Transformer Model for 
Wi-Fi-based Person Identification 
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and Chong TAN·f a), Nonmembers 

SUMMARY Wi-Fi-based person identification (Pl) tasks are performed 
by analyzing the fluctuating characteristics of the Channel State Information 
(CST) data to determine whether the person's identity is legitimate. This 
technology can be used for intrusion detection and keyless access to re-
stricted areas. However, the related research rarely considers the restricted 
computing resources and the complexity of real-world environments, re-
sulting in lacking practicality in some scenarios, such as intrusion detec-
tion tasks in remote substations without public network coverage. In this 
paper, we propose a novel neural network model named SimpleViTFi, a 
lightweight classification model based on Vision Transformer (ViT), which 
adds a downsampling mechanism, a distinctive patch embedding method 
and learnable positional embedding to the cropped ViT architecture. We 
employ the latest IEEE 802.11 ac 80MHz CST dataset provided by f 11. The 
CSI matrix is abstracted into a special "image" after pre-processing and fed 
into the trained SimpleViTFi for classification. The experimental results 
demonstrate that the proposed SimpleViTFi has lower computational re-
source overhead and better accuracy than traditional classification models, 
reflecting the robustness on LOS or NLOS CST data generated by different 
Tx-Rx devices and acquired by different monitors. 
key words: Wi-Fi sensing, CS!, person identification, lightweight model, 
vision transformer 

1. INTRODUCTION 

With the continuous evolution of Wi-Fi protocols [2], [3] 
and the exponential growth of Wi-Fi devices, people are no 
longer solely focused on using Wi-Fi for Internet access. In-
stead, there is an increasing demand for higher bandwidth, 
more reliable connections, and improved service quality to 
accommodate applications such as high-immersive gaming 
and remote healthcare [4]. This shift has led to the emer-
gence of a more versatile and robust wireless communication 
infrastructure that not only provides seamless connectivity 
but also enables novel sensing and interaction capabilities. 
It is widely recognized that Wi-Fi sensing plays a crucial 
role in various tasks, including indoor activity recognition, 
object sensing, and localization [5], [6]. By leveraging the 
fine-grained channel variations captured in Wi-Fi CSI, re-
searchers can extract meaningful features that correlate with 
real-world positions, actions, and states [7]. This capabil-
ity paves the way for an array of novel prospects in the 
domain of pervasive and context-aware computing applica-
tions, including intelligent residential environments, assisted 
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living arrangements, and advanced security systems [5], [8]. 
However, there exist challenges in achieving efficient Wi-Fi 
sensing in resource-constrained environments. For instance, 
remote substations in underdeveloped areas need to deploy 
the intrusion detection system due to their critical energy 
supply role and potential security risks. Conventional cam-
era detection is difficult to illuminate at night and to guar-
antee dead-end coverage, not to mention the large demand 
for computing resources. Meanwhile, such substations often 
lack public network coverage because of the remote location, 
making it hard to access cloud servers for the deployment 
of highly resource-intensive detection applications [9], [10]. 
In such scenarios, the lightweight and effective Wi-Fi-based 
PI method is considered as a reliable alternative, which can 
operate with local, limited resources [6]. We aim to ad-
vance the state-of-the-art of Wi-Fi sensing at the edge and 
contribute to its broader applicability in challenging envi-
ronments. This will ultimately enable the deployment of 
Wi-Fi sensing technologies in a wider range of real-world 
scenarios, thus improving the efficiency and safety of criti-
cal infrastructure management [5]. 

At present, a multitude of research employs Wi-Fi sens-
ing technology for various tasks. [11] introduces Wisleep, 
a system that infers sleep duration using passively sensed 
smartphone network connections from Wi-Fi infrastructure, 
achieving comparable accuracy to client-side methods. An 
unavoidable limitation, though, is a reliance on users car-
rying devices, while current research trends are shifting to-
wards device-free detection methods for greater convenience 
and user comfort. [12] proposes Temporal Unet, a deep con-
volutional neural network for sample-level action recogni-
tion in the Wi-Fi sensing domain, enabling precise action 
localization and real-time recognition. Nevertheless, this 
paper does not address potential issues related to compu-
tational complexity and generalizability across diverse en-
vironments. [13] presents FewSense, a few-shot learning-
based Wi-Fi sensing system capable of recognizing novel 
classes in unseen domains using limited samples, achiev-
ing high accuracy on three public datasets (SignFi, Widar, 
and Wiar) and improving performance through collaborative 
sensing while limiting in the large model size, which may 
render it unsuitable for computationally constrained environ-
ments despite its effectiveness in cross-domain scenarios. 

Despite a great deal of research being conducted, there 
is still a lack of studies on Wi-Fi sensing focusing on 
resource-constrained environments. In this paper, we pro-
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pose a novel neural network model named SimpleViTFi 
based on ViT. This model performs well on person identifi-
cation tasks using CSI data generated from Wi-Fi devices. 
Our developments are inspired by works in [8], [ 14]. The 
developments can be concretely described as follows: 
(1) Drawing inspiration from the ViT model in the field of 

Computer Vision (CV), we propose a lightweight ViT 
model with distinctive patch segmentation, downsam-
pling operation, reduced number of layers, and efficient 
feature extraction capabilities, termed as SimpleViTFi, 
specifically designed for PI tasks in the Wi-Fi sensing 
domain under resource-constrained scenarios. 

(2) We conduct a comparative analysis of the impact of two 
types of position encoding methods - the sin-cos method 
and learnable embedding - on PL The results show 
that the learnable embedding method yields superior 
performance, and we delve into a discussion attempting 
to analyze the possible explanations for this outcome. 

(3) We benchmark SimpleViTFi against several popular 
models, including LeNet, ResNet18, and GRU. Sim-
pleViTFi significantly outperforms these models on Wi-
Fi-based PI tasks. Furthermore, we introduce an incre-
mental learning approach to further enhance the perfor-
mance and efficiency of SimpleViTFi, which requires a 
little extra time and data to achieve robust performance 
across different CSI datasets generated by various Wi-Fi 
devices. 
The structure of this paper unfolds as follows: Section 

2 delves into a comprehensive discussion on related works. 
Section 3 provides the detail of the proposed SimpleViTFi. 
Section 4 shows the experimental setup and comparisons of 
the results with existing works. Section 5 concludes this pa-
per and provides recommendations for some future research 
topics. 

2. Related Works 

In this section, we survey the existing literature on Wi-Fi 
sensing using CSI data. Research work in the Wi-Fi sens-
ing field bifurcates into two main directions: fundamental 
model research and application-oriented research. From a 
methodological perspective, there exists a gradual shift info-
cus from traditional statistical modeling methods to artificial 
intelligence (AI) methods. 

In terms of fundamental model research, Yang et al. [7] 
propose an automatic Wi-Fi human sensing learning frame-
work called AutoFi, which can achieve automatic Wi-Fi hu-
man sensing with minimal manual annotation. AutoFi can 
train a robust model from low-quality CSI samples, making 
it easier to use Wi-Fi sensing technology in new environ-
ments. The paper also analyzes the main gaps between ex-
isting learning-based methods and practical Wi-Fi sensing, 
proposing a novel self-supervised learning framework and a 
new geometric structure loss function to enhance the model's 
transferability. Extensive experiments are conducted on pub-
lic datasets and real-world scenarios, demonstrating the high 
accuracy and robustness of the AutoFi method in automatic 
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Wi-Fi human sensing. In another study, Hernandez and 
Bulut [15] present WiFederated, a federated learning ap-
proach for training machine learning models for Wi-Fi sens-
ing tasks. This method allows for parallel training at the 
edge, enabling devices to collaboratively learn and share 
location-independent physical behavior features. The au-
thors demonstrate that their method diminishes the necessity 
for extensive data collection at each new location, offering 
a solution that is more accurate and time-efficient compared 
to both transfer learning and adversarial learning solutions. 
Liu et al. [16] propose a deep learning-based Wi-Fi sensing 
approach using a CNN-BiLSTM architecture to identify vig-
orous activities. This architecture can simultaneously extract 
sufficient spatiotemporal features of action data and establish 
the mapping relationship between actions and CSI streams, 
thereby improving activity recognition accuracy. 

In terms of application-oriented research, several ma-
ture systems have been developed, showcasing the unique 
charm of Wi-Fi sensing in various fields. Tong et al. [17] 
propose FreeSense, a combination of Principal Component 
Analysis (PCA), Discrete Wavelet Transform (DWT) and 
Dynamic Time Warping (DTW) techniques, using for CSI 
waveform-based human identification. The identification ac-
curacy of FreeSense ranges from 94.5% to 88.9% when the 
number of users changes from 2 to 6. Lin et al. [ 18] rep-
resent WiTL, a contactless authentication system based on 
Wi-Fi CSL It is devised using a transfer learning technology, 
in combination with ResNet and the adversarial network, to 
extract activity features and learn environment-independent 
representations. WiTL achieves a great accuracy over 93% 
and 97% in multi-scenes and multi-activities identity recog-
nition, respectively. 

In spite ofa few existing studies of Wi-Fi-based PI tasks, 
they rarely consider the feasibility in resource-constrained 
environments. Therefore, we would like to combine the 
latest research based on Wi-Fi sensing and AI methods to 
make innovations in resource-constrained PI tasks. 

3. Methodology 

3.1 Channel State Information 

Channel State Information (CSI) [19] is a critical compo-
nent in Wi-Fi sensing systems. It represents the combined 
effects of the wireless channel's propagation properties, in-
cluding path loss, shadowing, and multipath fading, which 
are affected by the environment and the presence of objects 
or people. CSI can be modeled as channel impulse response 
(CIR) in the frequency domain as 

L 

h(r) = Ia1ei¢>1o(r-r1), 
l=l 

(1) 

where a1 and <Pf respectively represent the amplitude and 
phase of the Lth multipath component, T/ is the time delay, 
L indicates the total number of multipath components, and 
o ( T) denotes the Dirac delta function. CSI has been widely 
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used in Wi-Fi sensing research to exploit the rich information 
it contains about the surrounding environment and human 
activities. 

CSI can be obtained from commodity Wi-Fi devices. 
When a transmitter transmits a signal x, it is received by the 
receiver as y = Hx + T/, where rt represents environmental 
noise and H represents the CSI complex-valued matrix. Each 
element in the matrix corresponds to the channel gain be-
tween a specific transmitter-receiver antenna pair in a MIMO 
system. The matrix's dimensions depend on the number of 
transmitting and receiving antennas. In addition, the CSI 
matrix is also influenced by the number of Orthogonal Fre-
quency Division Multiplexing (OFDM) subcarriers. The 
more subcarriers, the finer the frequency resolution, which 
allows for a more accurate representation of the channel 
characteristics [20]. 

The CSI matrix H for a system with N transmitting 
antennas and M receiving antennas can be represented as: 

h11 h12 h1M 
h21 h22 h2M 

CSINxM = (2) 

hN1 hN2 hNM 

In this representation, h;_; is a complex vector that represents 
the channel gain between the i-th transmitting antenna and 
the j-th receiving antenna. The amplitude and phase of each 
hiJ can be calculated as follows: 

(3) 

( Im(h;_;)) 
Pha(h;1) = LhiJ = arctan Re(h;_;) (4) 

3.2 Vision Transformer 

Vision Transformer (ViT) [21], [22] has emerged as a pow-
erful and flexible approach for solving various CV tasks, 
inspired by the success of Transformers in natural language 
processing (NLP). ViT is a type of neural network archi-
tecture that can process images by dividing them into non-
overlapping patches and treating these patches as a sequence 
of tokens, similar to how Transformers process texts. 

The core component ofViT is the self-attention mecha-
nism, which allows the model to learn long-range dependen-
cies between different parts of the image. This mechanism 
enables ViT to capture both local and global contextual in-
formation and adaptively focus on relevant regions in the 
image. 

ViT has demonstrated state-of-the-art performance on a 
wide range of CV tasks, such as image classification, object 
detection, and semantic segmentation [23], outperforming 
traditional convolutional neural networks (CNNs). The flex-
ibility and expressiveness of ViT make them a promising 
approach for various CV tasks, including those that require 
fine-grained visual understanding and adaptability to differ-
ent input modalities [24]. 
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In this paper, we treat the CSI matrix as a multi-channel 
"image" and attempt to address the CSI-based PI tasks with 
ViT. From our perspective, CSI images differ from traditional 
RGB images in two aspects: 
(1) The weights in CSI images are evenly distributed across 

all pixels, unlike conventional images that typically 
have a focal point and a background. The global re-
ceptive field of ViT can better capture the features of 
CSI images due to this uniform distribution. 

(2) CSI images have a temporal dimension, necessitating 
a focus on the relationships and changes along this di-
mension. ViT, with its unique sensitivity to positional 
relationships, is well-suited to this task. 

Therefore, this paper aims to explore the potential of ViT in 
the realm of CSI-based classification, hoping to uncover the 
unique capabilities of this technology in handling such tasks. 

3.3 SimpleViTFi 

As shown in Fig 1, we propose SimpleViTFi, which is de-
signed for processing CSI images with a focus on efficient 
feature extraction and classification. SimpleViTFi is inspired 
by the ViT and incorporates several key components with 
data flow as shown by the bold red arrows. SimpleViTFi 
comprises the following main components: 

Patch Embedding: The input CSI matrix X E 

RBxAxSxT is first downsampled and divided into non-
overlapping patches along the temporal dimension, where 
the dimensions represent the number of antennas(A), 
subcarriers(S), and the time sequence(T) respectively. Then 
the patches are linearly embedded into a higher-dimensional 
feature space. A Layer Normalization operation is applied 
to the embedded patches. Unlike traditional image patch 
segmentation methods, we do not partition the data along 
the subcarrier dimension, as we prefer the model to focus on 
the temporal dimension. 

Position Encoding: Learnable positional embeddings 
PE Rsxr are added to the patch embeddings to capture the 
spatial relationships between the patches in SimpleViTFi. 
There are two main types of positional embeddings: 
(1) Fixed Positional Embbdings follow the original method 

in [25], which are initialized with a sinusoidal function. 
(2) Learnable Positional Embeddings are initialized ran-

domly and then updated through backpropagation dur-
ing the training process. 

The CSI dataset involves complicated spatial and temporal 
relationships across different antennas and subcarriers. This 
multi-dimensional complexity could pose challenges to tra-
ditional sinusoidal position encodings such as the sin-cos 
method used in the Transformer model, which provides a 
fixed encoding based on the position of data points in these-
quence. In contrast, learnable positional embeddings, added 
to the patch embeddings to capture the spatial relationships 
between time sequences, offer a more flexible approach. By 
allowing the model to learn the position embeddings from 
the data itself, it could enable the discovery of more intricate 
or subtle patterns in the sequence order, thereby improving 
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Transformer Encoder 

Embedded Patches 

Fig. 1: SimpleViTFi Model 

its ability to identify individuals. 
We compare two methods mentioned above: the sin-

cos method and learnable embedding. Fig 2a shows that the 
learnable embedding achieves a more consistent high rate of 
accuracy within 20 replicate experiments, as it enables the 
model to adapt to the specific patterns present in the CSI data. 
Although using learnable embedding increases the number 
of parameters and requires additional optimization during 
training, it results in a shorter inference time compared to 
the other as shown in Fig 2b. This is attributable to the 
learnable embedding being computed in parallel, whereas 
the sin-cos method requires sequential computation. The 
combined embeddings can be represented as X' = X + Pexp, 
where Pexp E RBxAxSxT is the expanded version of P. 

~ 
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~ 
~ 

"' ~0.00 
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Position Encoding Methods 
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S1nuso1dal Learned 
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(a) Test Accuracy with Two Po- (b) Inference Time with Two Po-
sition Methods sition Methods 

Fig. 2: Test Accuracy and Inference Time of Two Position 
Methods 

Transformer Encoder: The combined patch and posi-
tional embeddings are fed into a Transformer encoder, which 
consists of multiple layers of multi-head self-attention and 
feedforward neural networks. In the experiments that fol-
low, we employ 2 layers of self-attention and feedforward 
networks. 

Pooling: Following the Transformer encoder, a global 
average pooling operation is performed to aggregate the fea-
tures across the sequence dimension. This operation reduces 
the dimensionality of the output and prepares it for the clas-
sification head. The pooled features can be represented as 
Z = mean(X', 1). 

Classifier Head: The pooled features Z are then passed 
through a LayerNormalization layer, which can be repre-
sented as: 

Znorm = z - E[Z] 
✓var[Z] + E' 

(5) 

where E[.] is the expectation operation, Var[.] is the variance 
operation, and E is a small constant for numerical stability. 
The normalized features Znorm are subsequently processed 
by a Linear layer that maps the features to the desired number 
of output classes. This can be represented as: 

y = W ( Z - E[Z] ) + b 
✓var[Z] + E , 

(6) 

where W is the weight matrix and b is the bias vector of the 
Linear layer. 

The SimpleViTFi architecture is designed to be 
lightweight and efficient while maintaining high perfor-
mance on the task of processing and classifying CSI matri-
ces. By leveraging the strengths of both Vision Transformers 
and learned positional embeddings, the SimpleViTFi model 
demonstrates the robustness and adaptability to various CSI 
data patterns. 

4. Experiment 

4.1 80MHz CSI Dataset of IEEE 802.11 ac 

The datasets mentioned in [ 1]. [14] consisting of three types 
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of datasets applicable to activity recognition(AR), person 
identification(PI), and people counting(PC), are produced 
by the University of Padova. Our focus is on the subset 
dedicated to PI in this paper. 

Dataset Experiment Setup:As shown in Fig 3, the 
experiments are set within a meeting room. Two pairs of 
devices are strategically positioned. Specifically: 

• Tx I communicates with Rx I, establishing a line-of-
sight (LOS) condition. 

• Tx2 communicates with Rx2, resulting in a non-line-
of-sight (NLOS) condition. 

Additionally, two monitors, M 1 and M2, are positioned to 
sniff and calculate the CSI data from both communication 
links. Consequently, each monitor stores two distinct sets of 
CSI data, named PI-1- PI-4 shown in Table 1. 

CSI Collection Method: An iPerf3 session is estab-
lished between each pair of Tx and Rx, transmitting at a 
consistent rate of 173 packets per second. This rate cor-
responds to time intervals of approximately 6ms between 
each packet. The monitors configure the Nexmon-CSI ex-
traction tool [26] to sniff packets continuously. The dataset 
involves 10 participants, each of whom moves individually 
and randomly within the colored areas in Fig 3. 

Table I: Measurement Conditions of the Dataset 

PI-1 PI-2 I PI-3 PI-4 

wxlxh 7mx7.5mx3.5m 

obst. X ✓ X ✓ 

devices 
Ml-Txl-Rxll M 1-Tx2-Rx21 M2-Txl-Rxll M2-Tx2-Rx2 pos. 

Tx Netgear            Netgear Netgear Netgear 

Rx Netgear TP-Link Netgear TP-Link 

furniture 7 desks , chairs 

Fig. 3: Devices and Users' Positions in the Meetingroom 
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4.2 Data Preprocessing 

Taking PI2_p03 as an example, this file represents the CSI 
data of Participant-3 created by Tx2 and Rx2, which is mon-
itored by Ml in NLOS condition. It is a complex matrix 
of size 187264 x 256, where 256 represents the number of 
OFDM subcarriers under the 80MHz bandwidth, and 187264 
represents the CSI indices of 46816 packets obtained sepa-
rately by the four antennas. We preprocess this data file as 
follows: 
(1) Load raw data and apply a Fast Fourier Transform shift 

operation. 
(2) Remove invalid subcarriers and zero-sum rows from the 

CSI matrix, retaining 242 subcarriers. 
(3) Calculate the number of complete groups of 4-antenna 

CSI data. 
(4) Due to hardware artifact, negate the data from the 64th 

column onwards in each group. 
( 5) Convert the original complex values to amplitude values 

by taking the modulus. 
(6) Divide the matrix into submatrices of size (4, 242, 

2000) using a boundary of 2000 packets, facilitating 
subsequent analysis. 

Time 

Fig. 4: CSI Amplitude Matrix 

4.3 Experiment Setup 

To demonstrate the effectiveness of the proposed method, 
we use the dataset mentioned in 4.1, and implement the 
SimpleViTFi based on Pytorch. Then, we conduct extensive 
experiments to evaluate the performance of SimpleViTFi 
concerning classification accuracy, model parameters and 
inference time of PI task. 

System Design: The edge server in resource-
constrained scenarios is simulated by the PC equipped with 
one NVIDIA RTX 3060 GPU. To fully evaluate the perfor-
mance of SimpleViTFi and the others, we attempt to set up 
multiple experiments comprising different data sets. Four 
sets of experiments are set up as shown in Table 2. Specifi-
cally: 
(1) Experiment 1: Utilizing ~ of the PI-1 dataset as the 

training set and the remaining ½ as the test set, this 
experiment aims to validate the model's classification 
ability in handling CSI data generated from LOS con-
dition. 
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(2) Experiment 2: By employing ~ of the PI-4 dataset 
for training and the rest for testing, this experiment is 
designed to assess the model's classification ability with 
CSI data stemming from NLOS condition. 

(3) Experiment 3: This experiment combines ~ of the PI-
1 dataset with ½ of the PI-3 dataset to form the training 
set, while the remaining data serves as the test set. Both 
PI-1 and PI-3 generate CSI data using Txl and Rxl 
communication link but utilize different monitors. The 
primary objective is to evaluate the model's robustness 
to variations in devices' locations. 

(4) Experiment 4: Incorporating a mixed dataset from PI-
I to PI-4, with ~ used for training and the remainder 
for testing, this experiment seeks to gauge the model's 
resilience under the complexities of different devices 
and different monitors. 

Table 2: Experiment Setup 

Experiment TrainSet TestSet Method Index 
1 Pl-1(2/3)      Pl-1(1/3) 
2 Pl-4(2/3)      Pl-4(1/3) 

3 PI-1 (2/3) PI-1(1/3) LeNet 
PI-3(1/3)      PI-3(2/3) ResNetl 8 
PI-1 (2/3) PI-1(1/3) GRU 

4 PI-2(2/3) PI-2(1 /3) SimpleViTFi 
Pl-3(2/3)      Pl-3(1/3) 
Pl-4(2/3)      Pl-4(1/3) 

Network Implementation: The network design has been 
shown in Table 3. Note that Transformer Encoder is a se-
quence of 2 attention and feed-forward layers. The atten-
tion layer uses the scaled dot-product attention mechanism 
with 8 heads, and the feed-forward layer is a two-layer fully 
connected network with a hidden dimension of 2048 and a 
GELU activation function in between. The model is trained 
with the Adam optimizer with a learning rate of 0.0001 and 
a weight decay of 0.1. The loss function used is CrossEn-
tropyLoss. The model employs an early stopping mechanism 
during training, which halts the training process if there is 
no improvement in validation loss for 8 consecutive epochs, 
preventing overfitting and ensuring better generalization. 

Criterion: In our experiments, we evaluate and com-
pare the models based on three key metrics: the number of 
training parameters, inference time, and identification accu-
racy. The identification accuracy is denoted as the ratio of 
true predicted samples and all testing samples. 

Baselines: We compare our method with three tradi-
tional methods. LeNet, as one of the earliest convolutional 
neural networks, has made significant contributions to the 
field of image classification, setting the foundation for future 
advancements [27]. ResNetl8, with its innovative residual 
learning framework, has further improved the performance 
of deep neural networks in image classification tasks, no-
tably reducing the training error [28]. On the other hand, 
GRU (Gated Recurrent Unit) has shown exceptional perfor-
mance in time series prediction due to its efficient gating 
mechanisms, which handle the vanishing gradient problem 
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Table 3: Network Design of SimpleViTFi 

Layer _Index Components I details 

input 

1 

2 

3 

4 

5 

output 

CSLamp: 4 X 242 X 2000 
( antenna pairs x subcarriers x time sequence) 

Patch 
Embedding 

Position 
Encoding 

Transformer 
Encoder 

Pooling 

Classifier 
Head 

1) downsampling: 4 X 121 X 500 
2) 100 patches: 100 x 4 x 121 x 5 

learnable embedding 

dim: 64 
depth: 2 
heads: 8 

mlp_dim: 2048 
dropoutJate: 0.3 

learning_rate: 0.0001 
weighLdecay: 0.1 

loss_function: CrossEntropyLoss 

average pooling 

y = W ( Z-ElZJ ) + b 
✓varrz]+c 

Classificaition Results 

and allow for long-term dependencies [29]. In light of our 
approach where we interpret the Channel State Information 
(CSI) matrix as an image, and considering the substantial 
temporal correlations this 'image' embodies, we deem it 
appropriate to draw comparisons with the aforementioned 
methods. 

4.4 Evaluation 

The proposed SimpleViTFi is compared with baselines. Fig 5 
illustrates the efficiency of SimpleViTFi in comparison to the 
others. Notably, SimpleViTFi demonstrates the shortest av-
erage inference time clocking in at 1.338 ms and requires the 
least number of parameters with a total of 1,079,923, which 
makes it consume the fewest computational complexity and 
memory usage with high efficiency for real-time tasks. 

Following this, we examine the performance of Simple-
ViTFi on PI-1 (Experiment 1). In addition to the amplitude-
based results shown in Fig 6, we also incorporate phase-
based results shown in Fig 7. However, the phase-based re-
sults are not as anticipated. For all four models, the accuracy 
barely surpasses 25%, indicating that the models are virtu-
ally non-functional with the phase value. We believe that 
the potential reasons for this could be the inherent instabil-
ity and sensitivity of phase to environment. Under complex 
multipath effects, the phase undergoes multiple cumulative 
changes, making it highly unstable. This heightened sensi-
tivity can lead the model to overfit, making it challenging to 
capture essential features. 

Returning to the amplitude-based results, as presented 
in Fig 6, SimpleViTFi outperforms the others, achieving the 
highest accuracy on the test set. The box plot visualizes the 
range and distribution of accuracy scores achieved by Sim-
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pleViTFi and the others across multiple runs. The central 
line in the box plot represents the median accuracy, which 
for SimpleViTFi is an impressive 0.9566, about at least 10% 
higher than the others such as 0.8525 for ResNet 18. The 
box itself spans from the first quartile (QI) to the third quar-
tile (Q3), representing the interquartile range (IQR). For 
SimpleViTFi, Ql is 0.91037 and Q3 is 0.9566. This range 
captures the middle 50% of accuracy scores, providing a 
sense of the model's consistency. This consistency, coupled 
with the high median accuracy, underscores the robustness 
of SimpleViTFi, indicating that it consistently delivers high 
performance under various conditions. 

In Experiment 2 shown in Fig 8, similar trends are ob-
served. The two experiments utilize CSI data generated from 
two distinct sets of devices. After training on their respec-
tive train sets, the model achieved commendable results on 
their test sets, with classification accuracies exceeding 95%. 
This indicates that SimpleViTFi is adept at adapting to both 
LOS and NLOS scenarios. Furthermore, the results from 
the NLOS condition in Experiment 2 even surpass those 
from the LOS condition in Experiment 1. This suggests 
that the model might be benefiting from the distinct noise 
characteristics introduced by different devices. 
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ues. TrainSet and TestSet consist of PI- I & PI-3. 

We get similar results through Experiment 3 and 4. 
Through analyzing the box plots from Fig 6 to Fig 10, it 
is obvious that SimpleViTFi not only gets a high median 
accuracy but also demonstrates consistent performance, as 
indicated by the relatively small IQR, either on individual or 
mixed data sets generated by different devices or acquired 
by different monitors. 
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In conclusion, our experiments showcase the superior 
performance of the SimpleViTFi model in terms of both 
user identity recognition accuracy and inference time. By 
outperforming traditional methods, the SimpleViTFi model 
demonstrates its robustness and adaptability to various CSI 
data patterns. 

4.5 Insights and Analysis 

In the preceding subsections, we detail the architecture, Im-
plementation, and evaluation of SimpleViTFi. Although the 
quantitative results indicate the model's efficacy, it is es-
sential to dive deeper into the underlying mechanisms that 
contribute to its performance. In this subsection, we try 
to elucidate some of the key factors that are pivotal for the 
observed results. 
(1) Model Architecture: SimpleViTFi employs a ViT-

based architecture, which fundamentally differs from 
traditional convolutional (such as LeNet and ResNetl 8) 
and recurrent (such as GRU) neural networks. Sim-
pleViTFi utilizes self-attention mechanisms to process 
input data. The self-attention mechanism is computa-
tionally expressed as: 

( QKT) Attention(Q, K, V) = softmax -- V, 
yr4 

(7) 

where Q, K, and V are the query, key, and value ma-
trices, respectively, and d1c is the dimension of the key. 
The self-attention mechanism allows each element in 
the input sequence to focus on other parts, governed by 
the weight calculated in the softmax term. 
The self-attention mechanism's ability to weigh and 
capture relationships between different parts of the in-
put is particularly crucial for tasks involving WiFi CSL 
In the context of CSI "images" classification, these re-
lationships can be both spatial, as in different antenna 
pairs, and temporal, as in different time slots. There-
fore, the self-attention mechanism, defined by the for-
mula above, enables SimpleViTFi to capture these com-
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plex relationships efficiently. 
On one hand, convolutional models struggle to cap-
ture the long or short-range dependencies inherent in 
time series data. On the other hand, while GRU can 
capture these temporal features, it computes in a time-
step manner. In contrast, the self-attention mechanism 
stands out with its ability to address these challenges, 
offering both flexibility and parallelized computation. 
This makes SimpleViTFi highly effective and efficient 
in handling tasks that involve both spatial and sequential 
data. 

(2) Feature Representation Capability: In traditional 
CNN architectures, the receptive field is generally lo-
calized, focusing primarily on capturing local features 
such as edges and textures. In contrast, SimpleViTFi 
leverages self-attention mechanisms to offer a dynamic 
receptive field, which allows the model to adaptively 
adjust its focus and capture features at various scales 
and complexities. The dynamic nature of its receptive 
field enables SimpleViTFi to integrate both local and 
global information more effectively, thereby providing 
an extra layer of flexibility and power in representing 
features. 

(3) Training and Implementation Efficiency: A signifi-
cant advantage of SimpleViTFi lies in its efficiency. By 
utilizing only two transformer layers, the model inher-
ently has fewer parameters as shown in Fig 5. This 
streamlined architecture not only expedites the training 
process but also ensures a swift inference time. Fur-
thermore, the inherent parallel computation capability 
of the architecture further boosts the inference speed. 
As a result, SimpleViTFi boasts the shortest inference 
time among the four models, making it highly suitable 
for real-time applications. 

(4) Robustness to Noise and Deformation: SimpleViTFi 
incorporates dropout layers in both the FeedForward 
and Attention modules. Dropout is a regularization 
technique that helps prevent overfitting, especially when 
the model might be exposed to sharp noise features in 
the data. Meanwhile, self-attention mechanism offers 
a more adaptive response to noise compared to other 
methods. Furthermore, the parallel processing capa-
bility ensures that SimpleViTFi remains resilient even 
when faced with temporal distortions in the data. 

4.6 Incremental Learning 

Based on the SimpleViTFi model trained in Experiment 
3, we implement incremental learning [30]-[32] by train-
ing with a small amount of data from PI-4. As presented 
in Fig 11, the loss curve of the incremental learning model 
converges faster than the normal one. Meanwhile, the accu-
racy of the incremental learning model is higher under the 
same training conditions. 

5. Conclusion 

In this paper, we introduce a novel Wi-Fi sensing method, 
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SimpleViTFi, designed for Wi-Fi-based PI in cross-device 
sensing scenarios. To address the limitations of existing al-
gorithms, we develop a lightweight neural network model 
based on ViT with learnable embedding. The original CSI 
data are generated by 2 pairs of Netgear and TP-Link Wi-Fi 
devices, which enable a single antenna to enforce the com-
munication over a single spatial stream. The packets trans-
mitted over-the-air by the Tx are monitored by 2 Asus routers 
equipped with 4 antennas and then form 4 folders contain-
ing both LOS and NLOS scenarios. Subsequently, we train 
the proposed SimpleViTFi under 4 experimental conditions, 
utilizing data generated by different devices or acquired by 
different monitors. Extensive experiments demonstrate that 
SimpleViTFi achieves state-of-the-art performance in test 
accuracy, inference time and model parameters compared to 
baseline methods (LeNet, ResNetl8 and GRU). Finally, we 
experiment with incremental learning to obtain a new model 
at a low cost. Here, a SimpleViTFi model initially trained 
on one set of devices is subjected to incremental training 
on another set of devices with a small amount of additional 
data. The results show that better accuracy and faster con-
vergence are gained compared to training directly with data 
from another set of devices. 

In the future, we have several avenues of exploration 
to further enhance our research. Firstly, we plan to propose 
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a new method of position encoding that is better adapted 
to the CSI-based classification. Our experiments have un-
derscored the significant impact of this aspect on the results. 
Furthermore, we aim to delve deeper into the potential of uti-
lizing various CSI parameters, such as phase values, Doppler 
shifts and AoA, to improve the model's performance. In ad-
dition, we intend to test our model on Wi-Fi devices based on 
Open Wrt and then conduct pilot tasks in substations within 
the State Grid of China. By pursuing these avenues, we hope 
to further refine our model and broaden its applicability, ul-
timately contributing to the advancement of Wi-Fi sensing 
technologies. 
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