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Abstract—The performance of sound source localization is often
reduced by the presence of colored noise in the environment, such
as room reverberation. In this study, a method for estimating the
noise spatial covariance using a hierarchical model is proposed and
its performance is evaluated. By employing the hierarchical model
in joint Bayesian estimation, robust estimation of the covariance
is expected with a relatively small amount of data. Moreover, a
method of jointly estimating the number of sources is introduced so
that it can be used for cases in which the number of active sources
dynamically changes, for example, speech signals. The results of
the experiments performed using actual room reverberation show
the effectiveness of the proposed method.

Index Terms—Colored noise, hierarchical model, joint Bayesian
estimation, reversible jump MCMC method, the Markov chain
Monte Carlo method.

I. INTRODUCTION

S OUND source localization is a technique useful for various
applications such as distant speech recognition [1], sound

interfaces for robots [2], machine diagnostics in factories, and
sound source detection in disaster environments. Among the lo-
calization methods, the parametric modeling approach is widely
used. In this method, an observation model is built and opti-
mized under some criterion so that it matches the actual data
observed. Then, the parameters of interest, such as the location
of sound sources, are extracted. Among these approaches, the
maximum likelihood (ML) method (e.g., [3]), in which the like-
lihood of the observation model is maximized as a criterion,
is the most straight forward. The widespread delay-and-sum
beamformer (steered beamformer response power in some lit-
erature [1]), which is basically a heuristic method, can also be
viewed as a special form of the ML estimator, as briefly de-
scribed in Appendix A. The well-known MUSIC method [4] is
also a model-based approach in which the orthogonality of the
basis for the signal and noise is used as a criterion. In this study,
the observation model defined in the frequency domain is used
in the same manner as in many previous general-purpose local-
ization studies (e.g., [3]), because frequency domain modeling
has the following advantages:

Manuscript received September 21, 2012; revised January 31, 2013; accepted
May 04, 2013. Date of publication May 14, 2013; date of current version July
12, 2013. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Sharon Gannot.
F. Asano and H. Asoh are with Intelligent Systems Research Institute,

National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba 305-8568, Japan (e-mail: f.asano@aist.go.jp; h.asoh@aist.go.jp).
K. Nakadai is with Honda Research Institute Japan Co., Ltd., Wako-shi 351-

0188, Japan (e-mail: nakadai@jp.honda-ri.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASL.2013.2263140

• The observation model in the frequency domain is simpler
than that in the time domain as shown in Section II-A,
because convolution in the time domain is replaced by a
simple product in the frequency domain.

• A large number of methods developed for narrowband ap-
plications, such as radar/sonar and communication, can be
directly introduced.

On the other hand, the time domain approach, which is not dis-
cussed in this paper, is also widely used in sound source local-
ization. This approach is typically based on the estimation of the
time delay of arrival (TDOA) [1], [5]–[7].
In the model-based approach, model precision is an impor-

tant issue. In terms of the model precision, the model-based
approach has the following problems when applied to acoustic
source localization:
• The noise included in the observation is usually spatially
colored (i.e., there is some correlation between the sen-
sors), and this makes it difficult to build a precise model. A
typical example of the colored noise is room reverberation,
which is the main focus of this study.

• The number of sound sources, which corresponds to the
dimension of the model, is usually unknown.

Regarding the problem of noise, the noise in the model is typ-
ically assumed to be spatially white in most model-based ap-
proaches even when the actual noise is spatially colored. With
this assumption, the estimation algorithm becomes much sim-
pler. However, as discussed in Section II-B, this mismatch of
the model causes some degradation in performance, such as a
reduction in spatial resolution. To overcome this problem, the
prewhitening method using generalized eigenvalue decomposi-
tion (GEVD) was proposed by Roy et al. [8]. In this approach,
the spatial covariance of the noise must be known in advance.
However, for room reverberation, it is difficult to obtain the
noise covariance from the observation because the reverbera-
tion cannot be observed in isolation. An alternative approach
is to employ a more realistic noise model such as the isotropic
noise model [3], which is considered to be an appropriate ap-
proximation of the reverberant sound field. However, as shown
later in Fig. 6, the effect of this model on sound source localiza-
tion is sometimes limited for actual room reverberation, which
is not always isotropic.
Regarding the number of sources, Wax et al. proposed an

ML-based method using the AIC/MDL criterion [10]. However,
this method greatly depends on the assumption that the noise
is spatially white and is not effective for acoustic source lo-
calization [11]. An approach using pattern classification of the
eigenvalue distribution of the observation covariance matrix is
somewhat effective for spatially colored noise [12]. However,
the disadvantage of this method is that it requires training for
each target environment.
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As described above, the performance of the model-based ap-
proach is limited by the two unknown parameters of the ob-
servation model, i.e., the noise covariance and the number of
sources. Therefore, these parameters as well as the location pa-
rameter should be estimated from the observation data to en-
hance the estimation performance. This is themotivation for this
study. To estimate multiple parameters, the Bayesian approach,
which can provide a framework for several types of joint esti-
mation [13], [14], is considered to be promising. The Bayesian
approach has already been applied to localization/tracking ap-
plications. In this paper, the localization and tracking functions
are distinguished for the sake of simplicity, such that the local-
ization assumes that the sources are static (without movements),
while the tracking assumes that they are dynamic. A method for
implementing the Bayesian approach for source localization is
the Markov chain Monte Carlo (MCMC) method (e.g., [14]).
Andrieu et al. [15] proposed a method of source localization
using the MCMC method, in which the location and number of
sources are jointly estimated. However, in this method, the noise
was assumed to be spatially white and the noise covariance was
integrated out as a nuisance parameter. Our method extends the
method in [15] to explicitly include spatially colored noise. On
the other hand, in the Bayesian approach for source tracking,
the sequential Monte Carlo (SMC) method, which includes the
well-known particle filter, is widely used (e.g., [16]–[18] and
the references therein). The particle filter approach has already
been employed for sound source tracking [19], [20]. For source
tracking, both the observation model (measurement equation
[21]) and the motion model (process equation) are considered.
In this sense, the tracking problem is more difficult than that in
static source localization. The scope of this paper is limited to
the improvement of the observation model precision in sound
source localization. However, the discussion in this paper can
be extended to the tracking problem because tracking also uses
the observation model.
To estimate the noise covariance, the hierarchical model is

introduced as a main feature. In some applications, the time pe-
riod in which the location of target sources can be assumed to
be stationary is short. In this case, the amount of data for sound
source localization might be insufficient, resulting in large esti-
mation variance. However, as long as the observations are ob-
tained in the same environment (room), the spatial covariance
of room reverberation is expected to have a common factor.
This is because some environmental parameters such as reso-
nant frequencies and the mode of a room are independent of the
sensor/source location. By estimating this common factor in the
noise covariance using a hierarchical model, the estimation of
the noise covariance is expected to be robust even for limited
amounts of data.
This paper is organized as follows. In Section II, the obser-

vation model in the frequency domain is introduced. Moreover,
the problem associated with the assumption of spatially white
noise and how it is resolved by the application of a precise
noise model is illustrated by using GEVD-MUSIC as an ex-
ample. In Section III, the basic joint estimation procedure using
the MCMC method in [15] is extended so that the noise covari-
ance can also be estimated [22]. In Section IV, a hierarchical
model of the noise covariance is introduced [23]. In Section V,
the estimation of the number of sound sources is discussed. The

reversible jumpMCMCmethod proposed by Green [24], which
is also used in the MCMC source localization in [15], is intro-
duced in our hierarchical model approach [25]. In Section VI,
the proposed method is evaluated using the data with the rever-
beration measured in an actual room.

II. PROBLEM STATEMENT

A. Observation Model

In this study, the estimations are performed in the frequency
domain. The observation vector consists of the short-time
Fourier transform (STFT) of the sensor inputs, which is given
as

(1)

where denotes the STFT of the th sensor input
at the frequency and the time frame index . The symbol
denotes the index for the time block that consists of obser-
vations (frames) as . The source direction

within the block is assumed to be in-
variant. The symbols and denote the number of sensors
and sources, respectively. The number of sources, , may vary
at the different blocks. The observation vector is assumed to be
modeled as

(2)

where denotes the array manifold matrix. The
matrix is sometimes denoted as for the sake
of simplicity. The th column vector of (the array
manifold vector, AMV) has the form of

when microphones
are located in free field and the sources are distantly located
from the array (far-field condition) . The symbol denotes
the propagation time between the th source to the th mi-
crophone. When this free field and far field assumption dose
not hold, the AMV will include factors other than the time
delay. For example, when microphones are mounted on a rigid
surface as discussed in Section VI, the AMV should reflect the
diffraction of the surface. The symbols and are the
source vector and noise vector, respectively. Assuming that
and are uncorrelated, the observation covariance matrix
can be modeled as

(3)

where is the source covariance and
is the noise covariance.When is spatially white,

the noise covariance has the form of , and the estima-
tion algorithm becomes much simpler. However, as described
in the next section, when is spatially colored, the mismatch
between the model and the observation sometimes degrades the
performance.

B. Effect of Spatially Colored Noise

In this subsection, using theMUSIC estimator as an example,
it is briefly shown how information in the noise covariance

affects source localization. Fig. 1 shows an example of the
eigenvalue distribution of and the corresponding MUSIC
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Fig. 1. Eigenvalues and the MUSIC spectrum using SEVD. (a) Eigenvalue. (b)
MUSIC Spectrum.

Fig. 2. Eigenvalues and theMUSIC spectrum using GEVDwith a known noise
covariance. (a) Eigenvalue. (b) MUSIC Spectrum.

spectrum. The location of the two sources is (0 , 20 ), as
depicted by the dash-dot line in the figure. The observation
condition is the same as that in the experiment described in
Section VI. The eigenvalues and eigenvectors are obtained
from the standard eigenvalue decomposition (SEVD) problem

, where and denote the eigenvalue and eigen-
vector, respectively. The SEVD-based MUSIC estimator
assumes that the noise is spatially white, whereas the
actual noise in the observation consists of room reverberation
and is spatially colored. It can be seen that the two peaks that
should appear at (0 , 20 ) were merged into a single peak.
Fig. 2 shows the case when GEVD is employed. In GEVD,

the eigenvalues and eigenvectors are obtained from the general-
ized eigenvalue problem , and the noise whitening
process is included in the joint diagonalization of and

[26]. From Fig. 2(a), two dominant eigenvalues corresponding
to the number of sources can be seen, whereas the other
eigenvalues are almost flat. This is attributed to noise whitening.
In Fig. 2(b), two peaks appear at (0 , 20 ). From these, it can
be seen that the spatial resolution of the estimator is improved
by the information included in the noise covariance. To obtain

in this example, the measured room impulse responses were
divided into direct sound and reverberation, and the responses
corresponding to the reverberation were then convolved with
the source signal to obtain the noise observation (reverberation)
separately. However, in a real application, is not avail-

able. Therefore, in the present study, is estimated using the
joint Bayesian estimation and the hierarchical model.

III. BASIC MCMC ESTIMATION

A. Overview

In Section III, a basic method for estimating the multiple
parameters within a block is proposed [22].
The symbol denotes the source signals in the th block as

. When multiple parameters are present,
it is often difficult to estimate them simultaneously because
the joint posterior distribution might not be
tractable. However, in some cases, it is easy to obtain samples
of the parameters from the full conditional distribution (e.g.,
the full conditional distribution of is ).
In such cases, it is known that the joint posterior distribution

can be approximated by the Gibbs sampler
[14]. On the other hand, in cases where the sample cannot
be easily obtained from its full conditional distribution, the
Metropolis algorithm [14] can be used. In the Metropolis
algorithm, the sample is drawn from an arbitrary distribution
called the proposal distribution. However, the proposed sample
is accepted/rejected on the basis of an acceptance ratio. Gibbs
sampling and the Metropolis algorithm are related in that Gibbs
sampling is an ideal case of the Metropolis algorithm when the
full conditional distribution is used as the proposal distribution.
In this study, the samples of and can be drawn from their
full conditional distributions. On the other hand, the samples
of are obtained using the Metropolis algorithm because of
the nonlinearity between and [15]. Sections III-C – III-F
describe the sampling model used for each parameter, whereas
Section III-G describes the entire sampling procedure.

Assumptions

In preparation for developing the proposed algorithm, the as-
sumptions required for it are described.

A-1) The source vectors are i.i.d. (inde-
pendent and identically distributed) and have a complex
Gaussian prior distribution.
A-2) The noise vectors are i.i.d. and has a
complex Gaussian prior distribution.
A-3) The source direction has a uniform prior
distribution.
A-4) The noise covariance has an inverseWishart prior
distribution.
A-5) The random variables , and are mutually
independent.

Regarding the choice of the prior distribution, it will be ideal
to select a distribution that is close to the actual distribution.
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For example, for the application of speaker tracking, the speech
source is known to have a sharper distribution than the Gaussian
distribution. However, its true distribution is usually unknown.
Therefore, in this paper, the prior distribution is selected from
the mathematical viewpoint in which conjugacy is an important
issue. The prior distribution is called conjugate if the prior and
posterior (conditional) distributions belong to the same class
(e.g., Gaussian). The conjugate prior distribution makes the al-
gorithm tractable.

B. Likelihood

Assuming that has the complex Gaussian distribution
(Assumption A-2 in Section III-B), the likelihood for

the observation is written as follows:

(4)

Using Assumptions A-1 and A-2 ( Section III-B), the likeli-
hood of the block observation can be written as follows (e.g.,
[14]):

(5)

where indicates the trace of a matrix and

(6)

C. Conditional Distribution of

Assuming that the signal has the complex Gaussian prior
distribution (Assumption A-1 in Section III-B), its
full conditional distribution becomes the following Gaussian
distribution (see Appendix A for the derivation) :

(7)

where

(8)

(9)

The reason for the choice of the prior is the considera-
tion of conjugacy, as described in Section III-B. With respect to
the parameter , where is a scaling constant, when
assuming that the source signals are mutually uncorrelated. Be-
cause only appears in (9), the constant is determined in
terms of regularization so that the existence of is guaran-
teed. In this paper, the largest eigenvalue of

.

D. Conditional Distribution of

It is assumed that the covariance has a complex inverse
Wishart distribution as its prior distribution (Assumption A-4 in
Section III-B):

(10)

where is the virtual sample size. The full conditional distri-
bution of is then the following inverse Wishart distribution
(e.g., [14]):

(11)

The reason for the choice of the prior is the considera-
tion of conjugacy (see Section III-B). The parameters
are estimated using the hierarchical model as described later in
Section IV.

E. Conditional Distribution of

As described in Section III-A, the samples for are ob-
tained using the Metropolis algorithm (e.g., [14]). The proposal
distribution used in the Metropolis algorithm is the following
Gaussian distribution:

(12)

where is the index for the iteration in the Gibbs sampling de-
scribed in Section III-G. The symbol is an appropriate con-
stant which controls the search width. The proposed sample
is accepted/rejected as follows:

with probability

with probability
(13)

where is the acceptance ratio defined as

(14)

In (14), Assumption A-5 in Section III-B is used. The ratio
is assumed to be unity in this paper. Equation (13)

can be accomplished by sampling and accepting
when [14]. Regarding the prior distribution , a uni-
form distribution is assumed (Assumption A-3 in Section III-B)
because no assumption can be made for the source location.

F. Joint Parameter Estimation Using the MCMC Method

The iterative algorithm for the joint estimation is as follows:
1) Set and

2) Sample
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3) Sample

4) Sample as follows: , and accept/
reject according to (13).

5) Go back to Step 2 with .

IV. HIERARCHICAL MODEL

A. Overview

From the results in the previous section, we now have the
sample estimates of the noise covariance for
observation blocks. However, in some blocks where the

signal-to-noise ratio (SNR) is low, the precision of the estima-
tion might be low. Moreover, when the number of observations
in each block is small, the variance of the estimation might be
large. As described in Section I, the covariance for the room
reverberation may have a common factor between the blocks
as long as the observations are taken in the same environment
(room). Based on this consideration, a method for increasing
the precision and the stability of the estimation of the noise
covariance is proposed in this section by introducing the hi-
erarchical model. In the hierarchical model, it is assumed that

are the samples from the same population, as
described later in Section IV-B, and the distribution of this
population is estimated. By considering this population, the
probability of generating samples far from the mean of this
population is reduced.

B. Sampling Model

We assume the following sampling model:

(15)

where the parameter set is common between the
block observations. Fig. 3 provides a schematic depiction of this
model.

C. Conditional Distribution of

According to the sampling model (15), the full conditional
distribution of can be decomposed as follows:

(16)

Assuming that has the complex Wishart distribution
as the prior distribution, the full

conditional distribution becomes

(17)

Fig. 3. Schematic of the hierarchical model of the noise covariance matrix.

where

(18)

Equation (18) is analogous to the harmonic mean in the case
of a scalar parameter [14]. The reason for the choice of the
prior distribution is the consideration of conjugacy (see
Section III-B). Regarding the parameter , where
is a scaling constant. The parameter functions as a weighting
factor for in (16), and is chosen to have a small value
compared to ( in this paper.)

D. Conditional Distribution of

Assuming that has the prior distribution
[14], its full conditional distribution becomes

(19)

where
The symbol denotes the Gamma function. The term

in (19) is the normalizing constant in the
inverse Wishart distribution. This normalizing constant was
omitted in the previous equations such as (10) when it does not
affect the conditional distribution to be obtained. The reason
for the choice of the prior distribution is to impose an
exponentially decaying weight on so
that does not grow infinitely.

E. Iterative Algorithm

The procedure used to obtain samples of and is as
follows:
1) Set and .
2) Sample using the procedure de-
scribed in Section III-G.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD AND THE

CONVENTIONAL ML METHOD FOR OBTAINING A SINGLE SAMPLE

3) Sample as

4) Sample as

5) Go back to Step 2 with .

F. Computational Complexity

Table I shows a rough estimate of the computational com-
plexity for obtaining a single sample in the proposed method
(Sections III–IV). In the ML method (estimation of only),
the complexity for obtaining a value of the likelihood at a single
grid point is indicated for comparison. The operations with low
complexities ( ) are omitted. From this, it can be seen
that for a single sample the computational complexity of the
proposed method is approximately 2–3 times higher than that of
the conventional ML method. The total complexity depends on
the sampling strategy. For the ML method with full grid search,
the total number of samples (grid points) grows exponentially
with the number of sources . On the other hand, for the pro-
posed method, this exponential growth with is avoided by
employing the Monte Carlo sampling.

V. ESTIMATION OF THE NUMBER OF SOURCES

A. Overview

Thus far in the preceding discussion, the number of sources
has been assumed to be known. However, in many prac-

tical applications, is not known in advance. Moreover,
when using the frequency domain approach for a wideband
time-varying signal such as speech, the number of active
sources in each frequency bin is also time varying. Therefore,
the joint estimation of at every block and every frequency
bin is inevitable.
In this section, the reversible jump MCMC method [24]

is introduced in the proposed method to jointly estimate the
number of sources. The number of sources, , corresponds to
the dimension of the parameter space. In the reversible jump
MCMC method, the samples of the parameters are obtained
by the MCMC method with jumps between the parameter sub-
spaces having different dimensions. This jump is implemented
using the {Birth,Death,Update} moves [15]. In the birth move,
a new source with an arbitrary location is proposed, and the

current parameter subspace is switched to the higher-dimen-
sional subspace. In the death move, one of the current sources
is removed and the parameter subspace is switched to the
lower-dimensional subspace. In the update move, the number
of sources, and hence the parameter subspace, is unchanged.

B. Reversible Jump MCMC Algorithm

To introduce the reversible jump MCMC method, Step 4 of
the joint estimation procedure described in Section III is re-
placed by the following {Birth,Death,Update} moves:
• Birth:
1) Increase the number of sources:
2) Propose a new source with the location randomly
selected from the possible locations and add this to the
parameter vector: .

3) Evaluate the acceptance ratio described in
Section V-C.

4) Accept the proposal (i.e., and
) with probability in the same way as (13).

• Death:
1) Decrease the number of sources: .

2) Eliminate one of the sources randomly from to
yield .

3) Evaluate the acceptance ratio .
4) Accept the proposal with probability in the
same way as (13).

• Update:
1) Conduct Step 4 in Section III with .

One of these three moves is randomly selected during the
iteration.

C. Acceptance Ratio

The acceptance ratio in the reversible jump MCMC method
[15], [24] is defined as

(20)

In this paper, the proposal ratio is assumed to be unity for the
sake of simplicity. Thus, the acceptance ratio is given by the
same expression as (14). However, cannot be used in

(14) because the dimension of may be changed by the

move. Therefore, must be eliminated from (14) through
integration.
From the integration of in and the omis-

sion of unnecessary terms (see Appendix B for the derivation
and definition of the symbols), becomes

(21)

From this, the logarithm of the acceptance ratio becomes

(22)
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As shown in Section VI, the dependency of on is
low1. Thus, when the number of sources is unchanged by
the move (update), . In this case, the
acceptance ratio is mainly determined by the second term,

.

When (birth move), the second term tends to
increase. This can be explained by the fact that the likelihood
generally increases as the degree of freedom in the model
increases. Therefore, when the model order is determined
on the basis of the likelihood, a “penalty” term is usually
introduced as in AIC/MDL (e.g., [3]). In (22), the first term

functions as a penalty. The determi-

nant of can be decomposed using its eigenvalues as follows:

(23)

where denotes the eigenvalues of . By the appropriate
scaling of data , the eigenvalues can also be scaled as

. Thus, when , the first term in (22) decreases.
Similarly, in the case of the death move, the first term increases.
In the first term of (22), the constant can be considered as

the factor that controls the magnitude of the penalty, and an ap-
propriate value should be selected. However, is the number
of frames in a block and is usually determined by the applica-
tion. Therefore, in the proposed method, instead of using the
actual value of , it is replaced by the arbitrary constant in
(22). The value of can be chosen experimentally to improve
the performance.

VI. EXPERIMENT

A. Condition

Sensor observations were generated by convolving the
measured room impulse responses with the source signal. In
Sections VI-B and VI-C, Gaussian noise was employed as the
source, whereas in Section VI-D, a speech signal was used.
The room used for the measurement of the impulse response
was a medium-sized meeting room (8 m 9 m 2.5 m) with a
reverberation time of approximately 0.5 s. The sound sources
were located on a circle of radius 1.5 m. The angular distance
between the sources was 20 and the location of the source-set
consisting of multiple sources with a 20 interval was randomly
selected on the circle. The number of sources in the source-set
is shown in Table II. Twenty observation blocks with different
source-set locations were used for the estimation of the hierar-
chical model, i.e., . A microphone array with 8 elements
mounted on the head of a robot was placed at the center of
the circle. The microphone array configuration is shown in
Fig. 4. Array manifold vectors , which are candidates
of the column vectors of , were prepared for the angle
range at every 1 . The components of were
generated by the Fourier transform of the direct part of the
measured impulse response. The head-related transfer function
(HRTF) of the robot was thereby considered. The impulse

1An exception is the case when the locations of two or more of the sources
are identical and the column of is linearly dependent.

Fig. 4. Microphone array mounted on the head of robot HRP-2.

TABLE II
PARAMETERS OF THE EXPERIMENT AND THE SIGNAL ANALYSIS

responses for the array manifold were measured independently
of those used for generating the observations.
The parameters used for the signal analysis are summarized

in Table II. The frequency range was selected such that the ef-
fectiveness of the proposed method could be demonstrated on
the basis of the preliminary experiment described in [22]. In the
lower frequency range, both the proposed and the conventional
methods showed low spatial resolutions owing to a small phase
difference between the microphones, which is a physical limi-
tation of the array used. In the higher frequency range, the in-
fluence of the reverberation is considered to be smaller because
at higher frequencies, the sound absorption by the walls of the
room used in the experiment is larger. For the initial value ,
the ML estimate fluctuated by adding a Gaussian noise was em-
ployed. For the initial value , the identity matrix was em-
ployed. The number of iterations (samples) was selected to be
1000 on the basis of the results of the preliminary test.

B. Hierarchical Model

Fig. 5 shows the variation of over the course of the iter-
ations. It is observed that the sample values converged on the
true values (the dotted line) with a small number of iterations.
The final estimate was obtained as the mean of the samples.
Fig. 6 compares the mean absolute error (MAE) of the pro-

posed method with those of the conventional location estima-
tors described in Appendix C. Thirty trials were conducted,
i.e., . MAE was calculated as

, where indicates the trial index. The pro-
posed method has the smallest MAE compared with the other
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Fig. 5. Variation of over the course of the iterations. The dashed lines
show the true .

Fig. 6. MAE for the different parameter estimation methods. “HM” denotes
the proposed method using hierarchical model. See Appendix C for the abbre-
viations of the other methods.

Fig. 7. MAE for the different methods used to obtain .

methods. It is worth noting that the MV adaptive beamformer,
in which the noise model is adapted to the actual noise, shows
the second smallest MAE. Therefore, we deduced that the es-
timation/adaptation of the noise model to the actual noise (re-
verberation) is essential to improve the spatial resolution under
the current experimental condition. The difference in MAE be-
tween the proposed method and the MV beamformer is consid-
ered to be the difference in the precision of the model due to
the amount of data available. The proposed method estimates
the model using the data in observation blocks with the hier-
archical model while the MV beamformer estimates it from a
single block.
Fig. 7 indicates MAE for the different methods used to obtain
. “Wishart” corresponds to the proposed method described

Fig. 8. MAE for different values.

Fig. 9. Variation of and over the course of the iterations. The dashed
lines in (a) show the true .

Fig. 10. Value of for different .

in Section IV-C. For “Harm,” in (18), which is the condi-
tional mean of the Wishart distribution, was employed as .
For “Arith,” the arithmetic mean of was em-
ployed. It should be noted that MAE was small for “Wishart”
and “Harm.” From these results, it can be deduced that the har-
monic-mean-like operation in (18) is essential for the hierar-
chical modeling of . For “Reg,” was employed as
where is the scaling constant. In this case, only joint estima-
tion without hierarchical modeling was conducted. The role of

is the regularization of . By comparing “Wishart”
and “Reg,” it can be seen that the estimation performance was
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Fig. 11. Histograms of for various true when employing the reversible jump MCMC method. The value of “Correct” indicates the probability of a correct
estimation of . (a) Case-A:Without hierarchical model, . (b) Case-B: Without hierarchical model, . (c) Case-C:
With hierarchical model, .

considerably improved by employing the proposed hierarchical
model in the case where the quantity of data in a block was
small.
Fig. 8 shows MAE when the value of is fixed at a cer-

tain value during the iteration. It is observed that MAE has a
minimum at around . Regarding , it is difficult to
obtain samples from (19). Therefore, this optimum value was
employed in the other experiments.

C. Estimation of the Number of Sources

In this section, the estimation of the number of sources, ,
using the reversible jump MCMC method is examined.
First, the case without the hierarchical model was evaluated

as a baseline (denoted as Case-A). A block length of 2.0 s, which
is ten times longer than that of the other experiment, was em-
ployed. The number of blocks was . The true number of
sources was , and this number was selected from
the uniform distribution. The estimate was also selected
from the set {1, 2, 3}.

Fig. 9 shows an example of the variation of along with

those of over the course of the iterations. For the final esti-

mate , with the highest frequency was employed. Then,

with was averaged to obtain the final esti-

mate .
Fig. 10 shows the value of for different . From the

figure, it can be seen that the value decreases as increases
while the variation in the same is relatively small. From this
observation, it can be understood that the term functions
as the penalty in (22). The optimum value of was determined
so that the sum of MAE for for all true is
minimized.
Fig. 11(a) shows the histogram of for 600 trials. From

this, it can be seen that the correct is estimated with high
probability, as shown in the upper right corner of each panel.
Table III(a) showsMAE for different true .MAE is defined

as . The values of C4 and C8 indicate the
probabilities of and , respectively. From
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TABLE III
MAE AND THE PROBABILITY OF MAE BEING (C4) AND (C8) FOR

DIFFERENT TRUE WITH THE REVERSIBLE JUMP MCMC METHOD

this table, it can be seen that MAE for is comparable to
that in Section VI-B, whereas MAE for and is
slightly higher.
Next, the block length was reduced to 0.2 s (1/10th of that in

Case-A), as employed in Section VI-B. In Case-B, the estima-
tion was performed without the hierarchical model, whereas in
Case-C, the hierarchical model was employed. In Case-C, the
number of blocks was as employed in Section VI-B.
In a single trial (20 blocks), the true was invariant while the
location of the source-set was randomly selected (angular dis-
tance between the sources is 20 ). Thirty trials were conducted
so that the number of final estimates was the same as that in
Case-A and Case-B.
Fig. 11(b) and (c) show the histograms of . For both

Case-B and Case-C, the performance of the estimation of the
number of sources was reduced to some extent by reducing the
amount of data in each block.
Table III(b) and (c) show the MAE and C4/C8 values for
. By comparing the values in (b) and (c) with that in (a), it

can be seen that the case with the hierarchical model (Case-C)
achieved a performance closer to the baseline case with a suf-
ficient amount of data (Case-A) (e.g., when , MAE is
2.89, 9.68, and 4.44 in Case-A, B, and C, respectively, as indi-
cated by the bold text in Table III.)

D. Time-Varying Source Signal

In this subsection, we examine the performance of the
proposed method for a more realistic source signal. We chose
speech as an example of a real source signal because speech
signals are time varying and are sparse in the frequency do-
main. In this case, the number of active sources dynamically
changes. This is a more realistic and challenging condition for
the estimation of the number of sources.
As speech sources, single sentences included in the Japanese

continuous speech corpus (JNAS [27]) were used. Because
speech is time varying and sparse in the frequency domain as
described above, the ratio of the direct signal to reverberation
(hereafter denoted as DRR) dynamically changes. For example,
the sections in which the direct sound of a consonant overlaps
with the reverberation of a vowel in the previous sections have
lower DRR. DRR also varies at different frequencies. Fig. 12

Fig. 12. DRR distribution of the observation for speech sources.

Fig. 13. Histgram of the number of active speech sources, .

Fig. 14. Histogram of the estimated number of speech sources, .

TABLE IV
MAE AND THE PROBABILITY OF MAE BEING (C4)

AND (C8) FOR SPEECH SOURCES

shows the distribution of DRR for all combinations of fre-
quency bins and blocks. The number of frequency bins tested
was 30 (1250–2156 Hz). DRR was calculated by splitting the
measured room impulse into the direct sound and reverberation
(reflection) components and convolving them with the speech
source separately. When the direct sound is weak and DRR is
low, the source is effectively off. In this experiment, the sources
are assumed to be active when , where

denotes the threshold, which was set at 0 dB. Fig. 13
shows the histogram of the number of active sources denoted
as . In the evaluation, the cases with are omitted.
Fig. 14 shows the number of sources, , estimated by the

proposed method. It can be seen that the histogram shown in
Fig. 13 was approximately recovered. The correct rate was
62%. Table IV shows the MAE and C4/C8 values for the
estimated direction together with those obtained using the
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ML and MUSIC methods. For the ML and MUSIC methods,
the number of sources was assumed to be two. For the case
of / , the number of active sources , which is
unknown in real applications, was given to the ML/MUSIC
estimator. Thus, / shows an achievable optimal
performance for the ML/MUSIC estimator. It can be seen that
the performance of the proposed method is slightly better than
that of / . The reason for the small difference
between the proposed and / methods relative
to Fig. 6 is considered to be the trade-off that exists between
the improvement in the directional resolution realized by the
proposed method and an imperfect estimation of using the
reversible jump MCMC method.

VII. DISCUSSION AND CONCLUSION

In this study, a method for estimating the noise covariance
matrix using a hierarchical model was proposed and applied
to sound source localization in a reverberant environment.
The experimental results showed that the spatial resolution
was improved by the proposed method compared with the
conventional methods, which assume a spatially white noise.
The advantage of employing the hierarchical model is that high
resolution can be achieved with a relatively small amount of
data. Moreover, the reversible jump MCMC method was intro-
duced into this method so that the number of sources would be
jointly estimated. The experimental results indicated that the
proposed method is effective in the case where the number of
active sources dynamically changes.
In this paper, some basic aspects of the MCMC-based sound

source localization technique were described and evaluated.
However, for practical applications, further developments and
detailed evaluation are required in the future. For application
to speaker tracking, for example, an extension of the proposed
method to dynamic environments is required. For this purpose,
the unification of the MCMC and SMC approaches may be a
possibility. In addition, a means of combining the results in
each frequency bin should be addressed. The simplest way
of combining them is to average the samples with the

same number of sources over the entire frequency range.
However, the method of combination is application specific,
and each individual application should therefore be discussed.
Regarding the evaluation, real room reverberation (room im-
pulse responses), a real microphone array mounted on the robot,
and real speech source signals were used in the experiment dis-
cussed in Section VI-D. However, the movement of speakers,
which is inevitable in speaker tracking applications, was not
considered. The results of a brief test in which the proposed
method is applied to the data recorded with moving speakers
are available in [25]2. However, a more detailed evaluation is
required.

2It should be noted that when recorded observations are used instead of sim-
ulated data in the evaluation, the precision of the evaluation is limited to some
extent. This is because the number of active sources in each frequency bin
cannot be known. In [25], it was assumed that the estimated number of sources

was always true. This assumption affects the evaluation of the MAE of

On the other hand, in applications such as machine diagnos-
tics and sound source detection in disaster environments, the
independent estimation of the number of sources and their lo-
cations in each frequency bin as in the proposed method is ex-
pected to be useful. The reason for this is that in these appli-
cations, the target sources (e.g., leaking sound of gas from a
pipeline) may have certain resonant frequencies, and the identi-
fication of the frequency and location of sources will therefore
lead to the source classifications. However, further evaluation
in a realistic situation is also required.

APPENDIX A
DERIVATION OF (8) AND (9)

Using Bayes’ theorem and the Assumptions A-1 and A-5,

(24)

Because the expressions inside of have a quadratic
form of , is a Gaussian distribution.
Assuming this Gaussian distribution to be ,

can also be expressed as follows:

(25)

where denotes a term that does not include (a part of the
normalizing constant). By comparing (24) with (25), the fol-
lowing terms can be identified as:

(26)

(27)

(28)

(29)

It is worth noting that when the prior distribution of is a
uniform distribution ( const) instead of a Gaussian dis-
tribution, in (26) vanishes and (27) becomes the well-known
ML beamformer (e.g., [3], extended to multiple sources):

(30)

Furthermore, when the noise is spatially white ( )
and the number of source is , (30) is reduced to the
delay-and-sum beamformer .
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APPENDIX B
DERIVATION OF (21)

Using the Bayes’ theorem and Assumptions A-3 and A-5,

(31)

By using this and Appendix A, the integration of in (31)
yields

(32)

A general integration of the exponential of the quadratic form
yields

(33)
This result can be easily verified from the general definition of
the complex Gaussian distribution. From this, (32) becomes

(34)

where

(35)

APPENDIX C
CONVENTIONAL LOCATION ESTIMATOR

In this appendix, the conventional location estimators used
for comparison in Section VI are briefly described. The ML es-
timator with white noise assumption [28] is given by

(36)

Equation (36) is an -dimensional maximization problem. The
other conventional estimators employ a spatial spectrum ap-
proach, in which a single dimensional spectrum is first esti-
mated, and then peaks are detected. TheMUSIC (MU) spec-
trum is given by

(37)

where is the noise-subspace eigenvector matrix. The spatial
spectrum for a general adaptive beamformer [29] is given by

(38)

The matrix is the covariance matrix, and its choice is depen-
dent on the algorithm. The isotropic noise model (ISO), which
is a set of many random waves propagating in all possible di-
rection with equal probability [3], is often introduced in (38)
by employing corresponding to the isotropic noise [9]. In
this paper, is used where

with an interval of 1 , and is the regularization
constant. On the other hand, when employing , (38) be-
comes the minimum variance (MV) adaptive beamformer [3].
When employing , (38) becomes the delay-and-sum
(DS) beamformer. It should be noted that in the MV adaptive
beamformer, the noise model is adapted to the actual noise,
while other conventional methods (MU,ISO,DS) use a fixed
noise model without adaptation.
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