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Abstract—In this study, a new algorithm for automatic accent
evaluation of native and non-native speakers is presented. The pro-
posed system consists of two main steps: alignment and scoring.
In the alignment step, the speech utterance is processed using a
Weighted Finite State Transducer (WFST) based technique to au-
tomatically estimate the pronunciation mismatches (substitutions,
deletions, and insertions). Subsequently, in the scoring step, two
scoring systems which utilize the pronunciation mismatches from
the alignment phase are proposed: (i) a WFST-scoring system to
measure the degree of accentedness on a scale from (non-native
like) to (native like), and a (ii) Maximum Entropy (ME) based
technique to assign perceptually motivated scores to pronunciation
mismatches. The accent scores provided from the WFST-scoring
system as well as the ME scoring system are termed as the WFST
and P-WFST (perceptual WFST) accent scores, respectively. The
proposed systems are evaluated on American English (AE) spoken
by native and non-native (native speakers of Mandarin-Chinese)
speakers from the CU-Accent corpus. A listener evaluation of 50
Native American English (N-AE) was employed to assist in vali-
dating the performance of the proposed accent assessment systems.
The proposed P-WFST algorithm shows higher and more consis-
tent correlation with human evaluated accent scores, when com-
pared to the Goodness Of Pronunciation (GOP) measure. The pro-
posed solution for accent classification and assessment based on
WFST and P-WFST scores show that an effective advancement is
possible which correlates well with human perception.

Index Terms—Automatic accent assessment, pronunciation
scoring, finite state transducers (FST), maximum entropy models
(MEMs), perception based measures.

I. INTRODUCTION

E FFECTIVE pronunciation training for L2 learners can
be delivered by training and intensive feedback which

usually requires skilled and trained teachers [1]–[3]. However,
this type of training is expensive and requires large amounts of
time and commitment. In recent years, Computer Assisted Lan-
guage Learning (CALL) and Computer Assisted Pronunciation
Training (CAPT) applications which make use of Automatic
Speech Recognition (ASR) have emerged as complementary
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tools that can automate proficiency assessment. In fact, CALL
and CAPT applications can potentially automate assessment
of a number of language skills such as pronunciation, fluency,
and grammar. Reliable and automatic estimation of language
specific speaking skills can be beneficial to language learners
since it provides a flexible and customizable learning envi-
ronment. This study focuses on developing a new automatic
accent assessment algorithm which utilizes knowledge learned
from human perception of accents to automatically score
phone mismatches in pronunciation. In the past, a variety of
accent measurements techniques have been developed, namely,
Hidden Markov Model (HMM) log likelihood scores, segment
classification error scores, segment duration scores, syllabic
timing scores [4], [5], Goodness of Pronunciation (GOP) mea-
sure [6], linear and non-linear combination of confidence scores
[7], and phonological features based pronunciation scores [8].
In two early studies [9], [10], an evaluation of speech features
was conducted and employed for accent classification including
voice-onset-time, vowel formant locations, phone duration,
vowel spectral slope, stop release time, pitch slope, and other
speech production features. HMM and GMM based classifiers
were used for German, Turkish, and Chinese accents in Amer-
ican English. In [4], [5], four algorithms were explored. First,
HMM log likelihood algorithm provides scores for non-native
speech at phone level through log-likelihood scores for each
phone segment, acquired from time alignment and Viterbi Al-
gorithm using HMMs obtained from native speakers. Second,
segment classification algorithm provides pronunciation score
based on recognition accuracy of a phone, where the phone
classifier is trained using native speakers. Third, a segment
duration algorithm utilizes a measure of the rate of speech
together with the duration of a segment to provide a score for
non-native speech. Finally, syllabic timing scores are used to
compute the normalized time between the center of vowels
within segments of non-native speech to produce a syllabic
timing score. Out of these four algorithms, the segment duration
shows the best accent performance in term of sentence and
speaker level correlations. In [6], GOP was used to provide a
score at phone level for non-native speech by computing the
duration normalized log of posterior probability of the uttered
phone given the corresponding acoustic segment. The relia-
bility of the GOP scoring depends heavily on the quality of the
native trained-acoustic models used. Furthermore, [7] investi-
gates the linear and non-linear (neural-network) combinations
of the confidence scores: log-posterior probability and segment
duration scores. The results show improvement at the sentence
level with a high degree of correlation when log-posterior and
segment duration scores are combined in a non-linear manner

1558-7916 © 2013 IEEE



WILLIAM et al.: AUTOMATIC ACCENT ASSESSMENT USING PHONETIC MISMATCH AND HUMAN PERCEPTION 1819

using a neural network. The work in [8] presents automatic
accent analysis based on Phonological Features (PFs). Markov
models of PFs extracted from native and non-native speech are
formulated and employed to develop a statistical measure of
accentedness which rates pronunciation of a word on a scale of
native like to non-native like . From the algorithms
implemented in the past, it is observed that generally accent
scores are computed by building a pronunciation template
against which non-native speech can be compared and scored.
Generated accent scores described in previous paragraph

show high correlation when compared to human evaluated
accent scores. Particularly, in this study, we are interested in
the phone level assessment. While a system which generates
scores at phone level with high correlation when compared
to human evaluated accent scores has been achieved [11], it
has been suggested that phone level accent scores alone are
not sufficient to give feedback to L2 learners. In fact, they
need to be supplemented with information of the pronunciation
mismatches [12]. Here, traditional assessment algorithms such
as GOP [6] focus on measuring the impact of phone level
substitutions, and ignore phone level deletions and insertions.
Therefore, it is desirable to build automatic accent assessment
systems that are able to score pronunciation mismatches at
phone level (i.e., phone level substitutions, deletions, and
insertions). In this study, we capture and detect pronunciation
mismatches in L2 speech by alignment. Alignment of canonical
phone sequence (corresponding to the canonical pronunciation)
with L2 speakers spoken phone sequence reveals the exact
nature of mismatch in terms of phonetic substitutions, inser-
tions, and deletions. The reliability of accent scores assigned
to pronunciation mismatches is crucial towards providing
feedback to L2 learners. Here, it is reasonable to suggest that
the perceptual impact of different pronunciation mismatches
is not equal. In other words, a different number and type of
pronunciation mismatches would lead to varying perception of
the degree of foreign accentedness (i.e., mild to heavy foreign
accent). Hence, automatic accent scoring systems that can
incorporate human perception into the scoring paradigm would
enhance the value of the feedback provided to L2 learners.
Traditional accent scoring algorithms such as the GOP tend
to rely on acoustic models for score generation and do not
account for perception. In this study, we propose a novel accent
scoring technique that can automatically model the perceptual
impact of different pronunciation mismatches by extracting
patterns of scoring from listener evaluations. In summary,
the proposed accent assessment technique in this study first
determines pronunciation mismatches in spoken utterances and
subsequently uses a perceptual model to score the mismatches
to generate an accent score. The algorithm operates in 2 steps:
alignment and scoring. In the alignment step, Weighted Finite
State Transducers (WFSTs) are employed to capture phone
level substitutions, deletions, and insertions by aligning the
decoded (spoken) and canonical phone sequences. WFSTs are
very versatile and have been utilized in various speech and
language processing applications such as speech-to-speech
translation, pronunciation modeling, compilation of morpho-
logical and phonological rules, and very large-scale dictionary

representation [13]–[16]. In the scoring step, the proposed
system incorporates the new idea of incorporating L1 percep-
tual information through the use of Maximum Entropy Model
(MEM) which automatically learns the penalty associated
with different type of pronunciation mismatches from human
evaluation of native and non-native speech. MEM has been
successfully applied in the field of Natural Language Pro-
cessing (NLP) for applications such as part-of-speech (POS)
tagging [17], machine translation (MT) [18], [19] and acoustic
modeling [20]. To the best of our knowledge, the proposed
system in this study is the first automatic pronunciation assess-
ment system which incorporates perceptual information of L1
speaker to assign scores to pronunciation mismatches. While a
holistic accent evaluation system should include assessment of
tone/pitch, stress, rhythm etc. [21], we only focus on phonetic
mismatches in this study. The proposed system is evaluated
on isolated words of AE spoken by Native Mandarin Chinese
(N-MC) and Native AE (N-AE) from CU-Accent corpus
[22]. By conducting exhaustive listener evaluation study, the
accent ground truth for the speech samples in the CU-Accent
corpus is established. Finally, speech by N-MC and N-AE is
scored for accentedness by the proposed system and correlated
with the human generated scores. The experimental results
demonstrate the feasibility of the proposed approach to provide
consistent results when compared with human evaluation. The
rest of the paper is organized as follows: In Section II, we
discuss the proposed automatic accent assessment systems in
detail, namely: WFST and Perceptual-WFST (P-WFST). In
Section III, we describe the CU-Accent corpus, listener evalu-
ation, and models training for the proposed accent assessment
systems. In Section IV, we present the results and discuss the
experiments conducted in this study.

II. PROPOSED ACCENT ASSESSMENT SYSTEM

The proposed perceptual WFST (P-WFST) accent assess-
ment technique is shown in Fig. 1. In the system front-end,
the acoustic signal is pre-emphasized with a factor of 0.97
and followed by frame analysis using a 25 ms window with
a 15 ms shift. Next, 13 dimensional Mel Frequency Cepstral
Coefficients (MFCC) features are extracted using a set of 40
triangular filters to simulate the Mel-Scale, along with the
delta and delta-delta MFCCs which contribute to a total of
39 dimensions. After MFCC extraction, the acoustic signal is
decoded using monophone HMMs. Here, the decoding graph
is generated dynamically from the canonical phone sequence
with the intention of capturing variability in pronunciation.
As shown in Fig. 1, this is accomplished by constructing the
decoding graph in a manner that represents the most likely
phone-level substitutions, deletions, and insertions as alternate
hypotheses to the decoder. Certain substitutions are highly
unlikely and therefore not allowed by the decoding graphs (e.g.
( to ), ( to )). Table I shows the complete
list of phone substitutions used in the proposed system. The
phone substitutions are largely inspired by shared place and
manner of articulation. Additionally, some substitutions are
hand-crafted based on knowledge of non-native (Mandarin
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Fig. 1. Proposed automatic accent assessment method uses (Weighted Finite State Transducer) WFST based technique (A) to automatically detect pronunciation
mismatches, WFST Scoring System to provide accent scores (B), and (Maximum Entropy) ME based perceptual (C) scoring technique to assign penalties to the
pronunciation mismatches, as well as provide perception based accent scores.

TABLE I
PHONEME MAPPING STRATEGY

Chinese Speakers in this study) articulation, and typical speech
recognition errors.
In the proposed technique, the Viterbi algorithm is employed

for decoding and choosing the most likely pronunciation path.
As shown in Fig. 1, the decoded and canonical phones se-
quences are then aligned using a WFST. The alignment reveals
the potential phone-level mismatches in the pronunciation in
terms of phone substitutions, deletions and insertions. The
phonetic mismatches in the pronunciation are then processed
by a ME-based perceptual scorer that assigns penalty to each
mismatch. The ME-based scorer is trained to assign higher
penalty to phonetic mismatches that lead to a higher perception
of accent. For example, Fig. 1 shows the areas of pronunciation
with the higher penalties assigned by ME scorer. In this study,

the output of the WFST scoring system as well as the ME
scoring system are used to generate accent scores, and these are
termed as the WFST and P-WFST (perceptual WFST) accent
scores, respectively.

A. WFST Alignment System

A WFST is a directed graph with weighted arcs, and an
input and output label designated on each arch. Each vertex is
called a state and two states are assigned as the initial and final
states. Transduction in the WFST model represents all possible
alignments between decoded and canonical phones sequences.
In this study, two separate WFST alignment models are con-
structed for native and non-native speakers. The input and
output to the WFST alignment model are the decoded phone
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and the canonical phone sequences, respectively. The
WFST weights ( ) can be interpreted as the conditional
probability of the canonical phone given the decoded phone,

. These weights are manipulated through the use of
real semiring

B. EM Weight Training for WFST

The Forward-Backward Expected Maximization (FB-EM)
algorithm [23] is used to train the WFST weights. An initial
WFST framework is constructed in such a way so that it
covers all possible phones mappings. Let be the WFST
alignment model which is trained using the FB-EM algorithm
whose initial and final states are the same, and ( ) is the
pair of decoded and canonical phone sequences respectively.
For a given sequence pair ( ), multiple paths through the

are possible. The weights for weights are initialized
such that all phones that follow phone mappings in Table I have
a value of 1, otherwise the weights are floored to a significantly
small value close to 0.
The FB-EM algorithm consists of two stages: Expectation

step and Maximization step. In the expectation step, the weight
for each phone mapping is computed for across all sequence
pairs ( ) in the training corpus as follows:
1) Compute all possible alignments of ( ) by performing
compositions [16],

(1)

2) Normalize the weights of all paths/alignments so that they
sum up to 1, where the probability of a path is defined as,

(2)

where and are the th canonical and decoded phone
in , respectively, . The new updated
can be calculated as,

(3)

3) For each ( ), count instances of all phone mappings
as observed in all alignments of all pairs of sequences
( ). Each contributes its weight to conditional
probability of ( ) as

(4)

where , and is the number of occurrences of a
particular ( ) in across all pairs of sequences
( ). Finally, the probability is subse-
quently normalized.

In the Maximization step, the alignment scores are re-com-
puted for all pairs of sequences ( ) from the product of
the updated weights corresponding to each align-
ment and normalized such that the total probability of all paths
sum to 1. The training iteratively uses (2), (3), and (4) until the
weights converge. At termination, the WFST weights capture
the frequency of pronunciation mismatches at phone level.

C. Alignment of Decoded-Canonical Phone Sequences

Consider a cascade of FSTs , where
and are the FST of the decoded phones sequence and canon-
ical phones sequence respectively, whose edges have the same
input-output labels, then represents all possible alignments
between the decoded and canonical phone sequence. The most
likely alignment can be estimated as,

(5)

and by combining (2) and (5), we obtain,

(6)

The alignment between decoded and canonical phones se-
quences consists of the sequence of input-output labels of the
WFST resulting from (6). This alignment captures the pronun-
ciation mismatches at the phone level by exposing substitution
( ), deletion , and insertion
events, where represents empty phoneme. For example, the
optimal alignment of word “target” is shown in Fig. 1 as the
output from composition, . The output is then
processed by theWFST accent scoring which is described in the
next section.

D. WFST Accent Score

The WFST accent score utilizes the Normalized Delta Log-
Likelihood [8] to assign varying degree of “accentedness” score
in the range , where represents extreme foreign
accent (N-MC) and represents native like pronunciation,
N-AE. The accent score for a particular word can be computed
as:

(7)

where . and denote
the probabilities of optimal alignment between canonical and
the decoded phone sequences when composed with the WFST
alignment model (trained on native AE data) and (trained on
non-native MC data). While the WFST accent score detects and
captures pronunciation mismatches, it does not account for the
impact of different pronunciation mismatches on human percep-
tion. To overcome this limitation, we develop theME-based per-
ceptual accent scoring in the next section.

E. ME-Based Perceptual Scoring System

In this study, N-AE perceptual information is incorporated in
the proposed pronunciation assessment system through the use
of a Maximum Entropy Model (MEM). In the proposed system,
MEM learns the manner in which N-AE listeners judge spoken
utterances by native and non-native speakers. The learning is
achieved by training MEM on data from listener evaluations,
where N-AE listeners assign accent scores to utterances spoken
by native and non-native speakers. These accent scores are in the
continuous range from 0–100. The details of the listener evalu-
ation study are presented in Section 3.2. The goal of MEM is to
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Fig. 2. Proposed Maximum Entropy (ME) scoring system. Pronunciation mismatch features are obtained from WFST alignment. Feature pruning strategy is
employed to group non-error pronunciation features, e.g., (r:r), (g:g), (ih:ih), are mapped to (X:X). Feature values are 1 whenever the pronunciation features are
observed in the input evidences from WFST alignment system, and 0 when not observed.

model the accent scores (S) for pronunciation assessment condi-
tioned on various evidence observed in the input (pronunciation
mismatches), (i.e., substitution ( ), deletion ,
and insertion ). Upon training, MEM is able to learn
weight parameters which capture the impact of pronunciation
mismatches on human perception of accent. In our MEM frame-
work, these evidences are implemented as ME features. Since
the MEM framework employed in our study makes use of dis-
crete classification instead of estimation on a continuous scale,
the N-AE scores are quantized.
As shown in Fig. 2, the set of evidences used in our MEM

system are pronunciation mismatches. In this example, the word
considered is “target.” The input to the ME scoring system are
pronunciation mismatches estimated from the WFST alignment
system (i.e., (d:t), (aw:aa), and (*e*:t)). The pronunciation mis-
matches serve as the input evidences E which are used to com-
pute the conditional probability of accent score S given E:

(8)

where is the total number of all possible pronunciation mis-
matches at the phone level and is a normalization factor to
ensure the probability of is bounded by 1. EachME fea-
ture is a binary operator on the evidence, (e.g., if the feature is
observed, it produces a value of 1, otherwise it is 0),

.

For example, in Fig. 2, only evidences
, and , receive feature

value of unity (indicated by coral color box), while the other
features are zero (indicated by white color boxes). In Fig. 3,

is the number of discrete score categories used, (e.g.,
), and the corresponding posterior category

probabilities can be computed
using (8). The most likely accent score given a set of input
evidences is selected at the end of the process, and this
represents the word level accent score.
Furthermore, it is hypothesized that matched phone pronun-

ciations have limited impact on accent perception. Therefore,
ME features such as , etc. are
reduced by replacing them with a generic feature . This
feature reduction strategy allows the MEM to focus on learning
the impact of pronunciation mismatch, and also improves the
training quality by reducing the number of model parameters.
Additionally, the accent scores acquired from listener evaluation
in this study are continuous, and needs to be quantized to dis-
crete scores categories in order to train the MEM. Fig. 3 shows
the implementation of continuous-to-discrete score conversion
with 4 discrete score categories.

III. EXPERIMENTS

A. Speech Corpus: CU-Accent

The CU-Accent corpus consists of 179 speakers (72 male
and 107 female subjects). The CU-Accent corpus consists
of speech utterances spoken by native speakers of American
English (AE), Mandarin Chinese (MC), Turkish, Spanish, Thai,
Japanese, German, Hindi, and French [22]. Participants in the
corpus spoke in English as well as their native language during
corpus collection, each speaker was asked to speak (i) 23
isolated words, (ii) 4 sentences in English as well as their native
language, and (iii) 1 minute of spontaneous monologue on a
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TABLE II
COMPOSITION OF THE CU-ACCENT CORPUS IN TERMS OF ISOLATED WORDS, PHRASES, AND SPONTANEOUS SENTENCES

Fig. 3. Illustration of Quantizing Continuous Native American English (N-AE)
Score to Discrete Accent Score with 4 categories. Red star on the figure rep-
resents the continuous N-AE score which falls within certain range

, and being quantized to one of the discrete score categories
(62.5).

Fig. 4. Continuous Scale from 0-to-100 used by N-AE listeners to rate accents
during the Listener Evaluation.

subject of their choosing. This collection protocol was repeated
to include session variability in the corpus. The isolated words
and phrases used in data collection are shown in Table II. The
data for CU-Accent data was acquired using a telephone based
dialog system and the speech samples were digitized at 16 bits
per sample PCM (Pulse Coded Modulation) with a sample rate
of 8 kHz. The words and phrases in the CU-Accent corpus are
known to be accent sensitive for non-native speakers of AE in
term of phonetic structure and transitions [24]. This corpus, as
well as the words/sentence structure, has been used for analysis
of automatic and accent classification in the past [8]–[10]. In
this study, we focus on isolated words spoken by N-AE and
N-MC speakers.

B. Listener Evaluation

In this study, 50 N-AE listeners were asked to rate isolated
words in English spoken by N-AE and N-MC speakers from
the CU-Accent Corpus. The listener evaluation was divided into
3 sessions. Table III presents the composition of listeners and
speakers involved in the sessions along with the materials used
in each session. Each speech token used in the evaluation was
built by concatenating a particular isolated word three times. For
example, 3 repetitions of the word thirty were combined with
pauses in-between to form a token (,i.e., thirty - pause- thirty

Fig. 5. Classification accuracy and speaker level correlation for (Perceptual
Weighted Finite State Transducer) P-WFST proposed system for 7 discrete score
categories (4-to-10), evaluated on Set A (combination of N-AE and N-MC).
P-WFST with 6 discrete score category obtained the most desirable parameters
(correlation: 0.89 significant at , accuracy: 33.66%).

-pause- thirty). This concatenation was performed in order to
increase the speech material presented to the human listeners.
The listeners gave one score for one token [8]. The N-AE lis-
teners were asked to rate the accent level in the speech token on
a continuous scale from 0-to-100, as shown in Fig. 4. Here, the
score 0 represents a heavy foreign accent (N-MC), and 100 rep-
resents no-perceived-accent (N-AE), respectively. The proce-
dure of the listener evaluation used in this study is similar to the
one in [8] and [25]. In our experiments, 5 N-AE listeners scores
from sessions 1 and 2 are used as ground truth against which the
performances of the automatic accent assessment algorithms are
validated and this set is referred to as the Testing Set. The rest of
the listener scores from the evaluation are used as the training
data for building Maximum Entropy (ME) models.

C. Evaluation Analysis

A total of 10 N-AE listeners scores from both Sessions 1 and
2 are used to measure the performance of automatic accent as-
sessment algorithms using correlation of machine and listener
scores. In this study, we also measure the inter-rater correla-
tion at word and speaker level to measure the consistency of
the listeners scores. The inter-rater correlation serves two pur-
poses: (i) it establishes the capability of native listeners to ef-
fectively assess accents of non-native speakers using isolated
utterances of a small set of words, and (ii) it also demonstrates
the extent of consensus among native listeners with respect to
assessing foreign accents. The inter-rater correlation at the word
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TABLE III
COMPOSITION OF LISTENER EVALUATION CONDUCTED IN THIS STUDY WITH TOTAL OF 50 LISTENERS FOR 3 SESSIONS.

THERE IS OVERLAP BETWEEN SPEAKERS IN ALL SESSION 1, 2 AND 3, BUT NO OVERLAP AMONG LISTENERS

TABLE IV
WORD AND SPEAKER LEVEL INTER-RATER CORRELATIONS
FOR 5 N-AE LISTENERS—SESSION 1. THE CORRELATIONS

ARE SIGNIFICANT AT LEVEL

TABLE V
WORD AND SPEAKER LEVEL INTER-RATER CORRELATIONS
FOR 5 N-AE LISTENERS—SESSION 2. THE CORRELATIONS

ARE SIGNIFICANT AT LEVEL

level is computed by evaluating the correlation coefficient be-
tween the scores given by a single N-AE listener against the
average scores of the rest of the N-AE listeners using all iso-
lated utterances of that word. Furthermore, the inter-rater cor-
relation at the speaker level is obtained by computing the cor-
relation between average words scores given by a single N-AE
listener and the average of scores of the rest of the N-AE lis-
teners using all utterances of the speaker. Tables IV and V show
the inter-rater correlation at word and speaker levels for Ses-
sions 1 and 2. The inter-rater correlation at word-level is ob-
served to vary between 0.86 (Listener 1) and 0.62 (Listener 9).
Additionally, the inter-rater correlation at speaker-level varies
from 0.99 (Listener 3) to 0.8 (Listener 10). The higher agree-
ment between native listeners at the speaker level versus word
level is expected as listeners are exposed to more utterances at
the speaker level and their judgment is averaged over more ob-
servations (both factors contributing towards lowering the error
in judgment). On the average, the inter-rater correlation is ob-
served to be 0.76 and 0.92 at the word and speaker levels. The
high correlations demonstrate the capability of native listeners
to assess accents with good accuracy and consistency with a rel-
atively small vocabulary set (i.e., 1–23 words). Additionally, the
inter-rater correlation at the speaker level (0.92) also suggests
a milestone in terms of performance for automatic assessment
techniques.

IV. MODELS TRAINING

A. HMM Based Mono Phone Models

We trained 128 mixtures context independent
monophone HMMs to build our constraint mono-
phone decoder which covers 39 AE phones: closures

, affricatives ,
fricatives nasals

, semivowels , and
vowels

, trained on 10,060 AE
utterances (5.5 hours of training data) from the CU-Accent
corpus, which includes both spontaneous sentences and
isolated words. The monophone HMMs were trained using
SPHINX. The monophone HMMs are then used to decode the
incoming speech into phone sequences.
Next, to ensure thatWFST alignmentmodels capture the vari-

ability in pronunciation for each group (N-AE and N-MC), suf-
ficient amount of data is needed for training. Therefore, we use
12,364 (55 from N-AE speakers) and 13,654 (24 from N-MC
speakers) isolated words from the CU-Accent corpus for AE and
MC models respectively. For each group, pairs of decoded and
canonical phone sequences are generated for all isolated words.
The decoded phone sequences are obtained by passing the iso-
lated words to the constraint monophone decoder obtained in
the previous paragraph, while the canonical phone sequences
are obtained from a dictionary. Using this training data and the
Carmel Toolkit [26], the FB-EM training is performed to gen-
erate WFST models for N-AE and N-MC. The Carmel Toolkit
is also used to performWFST composition for aligning decoded
and canonical phone sequences.
For the proposed MEM scoring system, the training data is

acquired from 40 N-AE listeners from Sessions 1, 2 and 3 of
listener evaluation. For all word tokens used in these 3 sessions,
the pronunciation mismatches are obtained from the WFST
aligner, and are used as MEM features. Feature reduction
strategy is then applied to reduce the number of ME features
used from 98 to 64. Next, the accent scores acquired from
listener evaluation are discretized. For example, the continuous
accent score is assigned to 4 discrete score categories 0–25,
25–50, 50–75, and 75–100 and reassigned average category
score, (i.e., 12.5, 37.5, 62.5, and 87.5).
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Using the procedure described, we implemented seven dif-
ferent MEMs by using 4 and up to 10 discrete categories. Using
a larger number of discrete categories allows more resolution in
the accent scores. However, more categories also increases clas-
sification error for adjacent categories in the MEM system. In
this study, our goal is to use the optimum number of categories
such that the correlation between automatic and human assigned
accent scores is maximized. Using this training data, theMaxent
Toolkit [27] is then utilized to train the proposed MEM system
to predict the correct discretized accent score from the pronun-
ciation mismatch features.

B. Baseline System GOP

The Goodness Of Pronunciation (GOP) algorithm can com-
pute accent scores at sentence, word, and phone levels [4], [7].
In this study, the implementation of GOP algorithm is similar to
the one in [6]. We briefly review the algorithm. GOP algorithm
calculates and estimates the posterior probability of a phone:

(9)

where is the target phone, is the ith phone, is the acoustic
observation, is the set of all possible phones, and repre-
sents the duration of specific target phone in number of frames.
In this study, the monophone HMMs (training described in
Section IV.A) are used for GOP score estimation.

V. RESULTS AND DISCUSSIONS

We have used the CU-Accent Corpus for evaluating the pro-
posed accent assessment algorithms, namely WFST (Weighted
Finite State Transducers) and P-WFST (Perceptual Weighted
Finite State Transducers) against the GOP (Goodness Of Pro-
nunciation). In this study, all experimental analysis is performed
on the Test Set described in Section III.B. In order to assess the
effectiveness of WFST, P-WFST, and GOP algorithms in mea-
suring accent, two data sets are created and their correlations for
the data sets computed separately. One set (Set A) consists of
N-AE and N-MC speakers while the other set (Set B) consists
of N-MC speakers only. Both sets A and B are derived from the
testing set (described in Section III.B). Set A is equivalent to
the testing set, and contains a total of 2070 tokens. Since set B
only contains N-MC speakers, it is a subset of set A and con-
tains 1495 tokens.
Table VI shows the speaker and word level correlations for

Set A and Set B, for all 7 discrete accent score categories of
the proposed P-WFST system. It is observed from the table that
the word level correlation show less fluctuation across various
P-WFSTs score categories for both Sets A and B

, However at the speaker level, the correlation coefficient
obtained from evaluating Set B has larger fluctuation (as large
as 0.18 difference between the largest and the smallest values).
It is also observed that, P-WFST with 6 discrete accent score
categories delivers the highest speaker level correlation scores
for native as well as non-native speakers.
It is important to note that the systems that deliver the highest

MEM classification accuracy is not the same as the system that
delivers the highest correlation between human and P-WFST
generated accent scores. This fact is examined below. In Fig. 5,

TABLE VI
WORD AND SPEAKER LEVEL CORRELATION COEFFICIENT FOR P-WFST

SYSTEM EVALUATED ON SET A AND SET B, FOR ALL DISCRETE ACCENT SCORE
CATEGORIES. THE CORRELATIONS ARE SIGNIFICANT AT LEVEL

TABLE VII
CORRELATION BETWEEN HUMAN AND MACHINE AS WELL AS HUMAN AND
HUMAN (INTER-RATER) ACCENT SCORES, SET A CONSISTS OF N-AE AND

N-MC DATA AND SET B CONSISTS OF N-MC DATA ONLY. THE CORRELATIONS
ARE SIGNIFICANT AT LEVEL

the accuracy of MEM classification and speaker level correla-
tion for all 7 categories are shown for Set A. It is observed that
as the number of categories increase, the classification accuracy
of the model decreases (shown in solid blue line). However, the
speaker level correlation initially increases and then decreases
(shown in dashed red line). Here, P-WFST with 6 categories
delivers the highest speaker level correlation (0.89). Therefore,
P-WFST with 6 discrete accent score categories is used as the
default P-WFST system for the remainder of this study.
The next analysis compares the proposed accent assessment

systems (WFST and P-WFST) against baseline GOP and human
inter-rater evaluation in terms of word and speaker level corre-
lations. Table VII shows the results of this comparison for Sets
A and B. It is observed that the WFST achieves a correlation
of 0.88 at the speaker level, and 0.31 at the word level, while
the P-WFST system reaches a higher speaker level correlation
of 0.89, while attaining a word level correlation of 0.34. On Set
A, P-WFST system matches GOP performance at speaker level
(0.89) and is lower than GOP performance at the word level
(0.47). On the other hand, for Set B (i.e., only N-MC speaking
AE), WFST correlations at the word and speaker levels are 0.15
and 0.63, respectively, and P-WFST system attains a higher cor-
relation of 0.31 (word level) and 0.86 (speaker level). Here,
P-WFST outperforms GOP performance at both the word and
speaker level correlation (i.e., 0.27 and 0.75, respectively).
The results obtained in Table VII show that speaker level

correlations are consistently higher than the word level correla-
tions. This result signifies that the average score based on sev-
eral words is a more reliable measure of accent than the scores
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Fig. 6. Speaker level correlation number of words WFST (Weighted Finite
State Transducer), P-WFST (Perceptual-WFST) and GOP (Goodness of Pro-
nunciation) for Set A and Set B. Set A consists of N-AE and N-MC data and
Set B consists of N-MC data only. The correlations are significant at
level.

based on a single word. This is more so for automatic assessment
algorithms than humans. Furthermore, both human and algo-
rithm correlation performances drop on Set B. Since accent clas-
sification (separating N-MC from N-AE speakers) is built into
the accent assessment in Set A, we believe the task is inherently
easier than accent assessment of Set B which contains only MC
non-native speakers speaking AE. In other words, it is easier
for humans and automatic algorithms to rate native speakers
(consistent high proficiency) as opposed to rating non-native
speakers (more likely to be distributed across a range of pro-
ficiency levels).
The improved performance of P-WFST on Set B is partic-

ularly notable since this set consists of non-native speakers
only. The increased agreement between P-WFST and human
listeners shows that P-WFST can identify different proficiency
groups within non-native speakers more effectively. Hence, the
P-WFST can be a more reliable and accurate measurement of
accent.
We also conducted an experiment to investigate the rela-

tionship between number of words used to compute accent
scores and the speaker level correlation performance of WFST,
P-WFST, and GOP. On Set A, we observe from Fig. 6 that by
averaging the accent scores of 4 words only, P-WFST reaches
a higher correlation of 0.89 compared to WFST and GOP
(0.77 and 0.87, respectively). Additionally, as the number of
words increases, the overall algorithm performance for WFST,
P-WFST and GOP also increase. On Set B, the P-WFST
system reaches a higher correlation of 0.75 compared to that of
WFST and GOPs (0.34 and 0.69, respectively) by using accent
scores from 4 words. As seen in Set A, P-WFSTs correlation
performance increases with an increase in the number of words
used. However, the WFST and GOP performances fluctuate
as the number of words increase. This observation suggests
that WFST and GOP need more samples to reliably estimate
accent, while P-WFST is able to estimate accent with fewer
samples. In fact, it is observed that the P-WFST achieves high
performance with little data (7–8 words are sufficient to provide

Fig. 7. Word-dependent correlation evaluated on Set A (N-AE andN-MC)with
23 isolated words from CU-Accent corpus. The correlations are significant at

level.

accurate measurements). We believe that this stems from the
unique approach that P-WFST applies to accent measurement
(i.e., penalty assignment to pronunciation mismatches).
An interesting experiment to assess word-dependent corre-

lations for machines and human on Set A is conducted. From
Fig. 7, we observe that the words target, communication, and
boy exhibit high correlation score agreement for both machine
and human, and therefore are suitable for use in accent assess-
ment. On the other hand, the words: catch, feet, and hear possess
low correlation which reflects on both human and machines in-
ability to assess accent using these three words. High inter-rater
correlation and low human-machine correlation is observed for
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Fig. 8. Maximum Entropy (ME) features and their weights are listed from left to right in the ascending order of entropy values. These 25 features consist of 15
features which inherit lowest entropy and 10 features which inherit highest entropy values.

the words: bringing, change, and look. The algorithms are less
effective in assessing accent using these 3 words, while on av-
erage, human listeners can judge their accent structure fairly
easily. When compared to the algorithms used in this study,
humans have access to additional information (e.g., prosody)
to judge accent; and the addition of this knowledge would im-
prove automatic algorithm performance as well. Future work
will consider developing such a holistic approach where infor-
mation from multiple sources such as phones, prosody, etc. are
combined for an overall accent assessment.
Finally, we analyze the Maximum Entropy (ME) features

which have been trained on listener evaluation data described
in Section 3.2. Recall, these ME features are pronunciation
mismatches obtained from the WFST alignment model. We
are interested in finding the most powerful accent assessment
features. In the P-WFST, the most powerful features would also
be the most discriminative features for MEM classification.
Here, the discriminativeness is computed by calculating the
entropy value for each feature, (i.e., entropy of the conditional
probability distribution of discrete accent class given the input
pronunciation mismatch feature). The interpretation here is
that the lower entropy features would be more discriminative
and higher entropy features would be less discriminative. In
Fig. 8, the features are listed from the lowest to highest entropy
values. Let us consider the 6 lowest entropy features, namely:
(uh:uw), (d:dh), (v:w), (*e*:l), (*e* :b), and (*e*:ch). The
feature (uh:uw) inherits a very discriminative characteristic
because of the very low feature entropy that it possesses,
particularly, discriminative toward mid range scores (40 and
56). The other 5 features, (d:dh), (v:w), (*e*:l), (*e* :b), and

(*e*:ch), are more discriminative toward low range scores (8
and 24). Now, let us analyze the features which inherit the
highest values of entropy. This high value of entropy signifies
the non-discriminative characteristics of these features. It is
expected that the non-error pronunciation feature, (e.g., (X:X)),
inherits a very high entropy value and more discriminative
toward high range (72 and 90) which signifies less significance
of the feature impact on human perception of accent.

VI. CONCLUSIONS AND FUTURE WORK

In this study, a new approach (P-WFST) towards accent
assessment that relies on two important steps: (i) detecting
pronunciation mismatches (substitutions, deletions, and inser-
tions), and (ii) assigning perceptually motivated penalties to
the pronunciation mismatches has been proposed. In particular,
a Weighted Finite State Transducer (WFST) based technique is
used to detect pronunciation mismatches in speech. Addition-
ally, a Maximum Entropy (ME) based technique is employed to
automatically learn pronunciation mismatches penalties from
human judgment of accent. The proposed system is evaluated
on AE spoken by Native American English (N-AE) and Native
Mandarin Chinese (N-MC) speakers from the CU-Accent
Corpus. The experimental results showed that: (i) the P-WFST
based system achieved consistent correlation at speaker and
word levels (0.89 and 0.34 respectively) and outperformed
GOP by 14.8% when evaluated on non-native speakers only,
(ii) With only 4 words, P-WFST based system is able to achieve
higher correlation than GOP.
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