
Combining Degree of Interest Functions and Progressive Visualization
Marius Hogräfer , Dominik Moritz , Adam Perer , Hans-Jörg Schulz

ABSTRACT

When visualizing large datasets, an important goal is to emphasize
data that is relevant to the task at hand. A common way of achieving
this is to compute the relevance of the data using degree of interest
(DOI) functions, which apply a scenario-specific metric to quantify
the data items according to their relevance to the users and their
tasks. These DOI values can then be used to adjust the visual
encoding through mechanisms like focus+context or information
hiding. For datasets too large to be visualized at once, an alternative
approach is to visualize it progressively in chunks, allowing analysts
to reason about partial results and concluding their analysis much
earlier than had they waited for all data. Combining the advantages
of both approaches to tailor the visualization seems synergistic, yet,
in practice turns out to be challenging, as DOI functions require
the context of all data to produce useful values, requiring lengthy
computations that break analysts’ flow in progressive visualization.
In this paper, we propose an approach for uniting DOI functions
with progressive visualization. We first introduce a new model for
quantifying the user interest in analysis scenarios where the data is
only partially available, by computing the interest for available data
and predicting it for the rest. We then propose regression trees for
implementing this approach in practice and evaluate it in benchmarks.
With DOI values now available for progressive visualization as well,
our approach opens the door for tailoring the visualization of large
datasets to the analysis task at interactive update rates.

Keywords: Progressive visualization, Degree-of-interest functions.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual Analytics;

1 INTRODUCTION

Degree of Interest (DOI) functions [7] are an important method
underpinning many approaches for interactive visual analysis. Based
on scenario-specific metrics, DOI functions quantify the user interest
for parts of the data, which then allows for tailoring the visualization
to the analyst’s interest. The general idea is to use the interest values
to present interesting parts of data prominently, rather than having
analysts waste time digging through data uninteresting to them. Well-
known techniques enabled by DOI functions include focus+context
views [10], interest-based labeling [1], and information hiding [4].

DOI functions share their goal of tailoring visualizations of large
datasets with progressive visualization methods. In progressive vi-
sualization, the dataset is divided into subsets (so-called chunks),
which are then visualized incrementally over time, rather than visu-
alizing the entire dataset at once [23]. Progressive visualization can
be tailored to analysts’ interests by prioritizing data that are most
relevant, i.e., visualizing them as early as possible, while showing
less relevant data later or never. Benefits of the progressive approach
are the ability of terminating otherwise long-running computations
early, once all interesting data has been visualized [27], dynami-
cally steering the computation to prioritize data from regions of

• Marius Hogräfer and Hans-Jörg Schulz are with Aarhus University.
E-mail: {mhograefer,hjchulz}@cs.au.dk.

• Dominik Moritz and Adam Perer are with Carnegie Mellon University.
E-mail: {domoritz,adamperer}@cmu.edu.

Stored data

add interesting
update
outdated

Visualized data

Stored data

add random

Current approach Ours

Visualized data

Interest model

DOI ()

DOI ()

Figure 1: We reach interactive update rates for DOI computations on
large datasets by progressively updating a user interest model when
data relevance changes, rather than computing it on all data.

interest [26], and ensuring the display of the most interesting data
regardless of the available display space [21].

Thus, DOI functions and progressive visualization both aim to
make the visual analysis of large datasets more manageable by
taking the user interest into account: DOI functions allow tailoring
the visualization to visually emphasize data items based on user
interest, while progressive visualization leverages user interest to
show interesting data as early as possible – realizing a “temporal
emphasis” of sorts. This similarity has also been noted in prior work,
for example, by Stolper et al., who mention a benefit of progressive
visualization being that analysts can move “patterns of interest” to
the front of the processing queue [23], or by Hellerstein et al. who
propose a mechanism for dynamically reordering the data whenever
analysts “change their definition of interesting” [12].

With so much overlap between DOI and progressive visualiza-
tion, this paper investigates the idea of joining these two approaches.
However, their combination leads to challenges caused by the dispar-
ity between what data is needed to compute a DOI function and what
data is available in the progressive visualization. In non-progressive
visualization, where the entire dataset is available, computing a DOI
function is conceptually straightforward, but how does one do it
when only having access to the data one chunk at a time? A naïve
approach to compute a DOI function is to compute it only on every
incoming chunk of data, but that clearly disregards all other data
visualized so far. An alternative is computing a DOI function over
all visualized data with every chunk, but that also quickly takes too
long, as more and more data is visualized. Thus, while DOI func-
tions could help increase the efficiency of progressive visualizations,
these challenges need to be resolved first.

In this paper, we address these challenges by first proposing a
new model for the user interest on progressive visualization, and
we then show how to use it in practice. Specifically, we propose to
move from exhaustive DOI computations to partial DOI predictions:
Since we cannot efficiently compute the DOI function over all stored
data, we instead compute it over a small subset of the data and train
a predictor on its output. We then use this predictor to maintain valid
interest values for the visualized data and to include new relevant
data from the database in the visualization (see Figure 1). We show
how the hierarchical structure of regression tree models are ideal
for making these selections on tabular data, and demonstrate the
feasibility of our approach in benchmarks.

Work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/

251

2023 IEEE Visualization and Visual Analytics (VIS)

DOI 10.1109/VIS54172.2023.00059

20
23

 IE
EE

 V
is

ua
liz

at
io

n
an

d
V

is
ua

l A
na

ly
tic

s (
V

IS
) |

 9
79

-8
-3

50
3-

25
57

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
V

IS
54

17
2.

20
23

.0
00

59

a > 0.5

b > 0.3 b > 0.15

0.1
prediction

decision
rules

0.6 0.2 0.9

b > 0.2

a > 0.1 a > 0.99

0.1 0.8 0.3 0.9

visualized data

interest

stored data visualized data

3) Prioritize stored

0.1 0.8 0.9 0.2 0.8 0.5

0.2 0.8 0.1 0.4 0.8 0.2

0.20.8 0.10.4 0.80.2

0.10.1 0.2

0.3 0.2

0.4 0.1

0.8 0.7

0.9 0.9

0.8 0.8

0.8 0.9 0.9 0.8 0.5

0.7 0.8 0.1 0.4 0.8 0.2

0.20.8 0.50.4 0.80.2

1) Compute DOI 2) Train regression tree

0.2

0.9
0.1

0.6

6) Retrain interest model

visualized data

7) Update outdated4) Select context 5) Compute DOI

0.9

0.2

0.6

0.1

Figure 2: Demonstrative example of our approach: (1) Computing the DOI function over visualized data assigns an interest value to each data item.
(2) Then, a regression tree is trained on that data, using the interest as labels. The trained model consists of a set of decision rules that divide
the data by predicted interest value. (3) These decision rules can now be used to query the stored data, by appending them to the query that
retrieves the next chunk. Appending rules leading to a high predicted interest steers the progression towards interesting data. (4) To supplement
the steered sample, we enrich it with visualized data selected along “uninteresting” paths of the regression tree. (5) The DOI values are then
computed for the selection from the two previous steps, and (6) a new regression tree is trained. (7) By comparing the predicted interest with the
earlier regression tree, we can detect changes per path in the interest model and update the interest values efficiently.

2 BACKGROUND

A central goal for useful visualization is to show the most relevant
data to analysts at all times. To know what data is relevant, degree of
interest (DOI) functions can be used that compute the current user
interest for a data item relative to all other items in the dataset. User
interests are complex and highly scenario-specific, and so are DOI
functions computing them. The output of a DOI function is usually
normalized to the range of [0,1], with 0 indicating an item is of
lowest interest and 1 for highest. DOI functions can be complex, and
are often a linear combination of different terms capturing specific
facets of the user interest that make an item relevant to the analyst.
For example, terms may measure a priori interests (e.g., a large item
value) [7], but it can also depend on interest values of its surrounding
items in the current visualization [1] or on the interaction state, such
as the distance to the current focus node [11], the similarity to the
active search terms [25], or the number of times analysts have already
interacted with a data item in the past [9]. Thus, only some DOI
terms can be pre-computed a priori; others can only be computed
during the analysis. Additionally, while some DOI terms can be
reused across scenarios, this is often complicated since they are
highly scenario-specific, for example to aid the visual exploration in
specific ontology tools [2].

Once the user interest is computed, the visualization can be tai-
lored to these interest values to emphasize relevant parts and de-
emphasizing irrelevant parts. On multivariate datasets, for example,
interest values can drive focus+context visualizations across multiple
views, making the most interest data stand out in each [3].

But DOI functions have a problem: keeping up to date with what
data is relevant takes a long time on big datasets. This is because DOI
functions are relative, meaning that they compute the user interest
relative to all other data, requiring access of the entire dataset. While
pre-computing the user interest would be a simple solution, real
world interest values are constantly changing, caused by users select-
ing a different focus node [8], changing parameters/terms/weights
of the DOI function [1], entering new search terms [25], or mov-
ing on to a different task based on their acquired knowledge [9].
In some cases, these dynamics can be so complex themselves that
they become a subject of analysis in their own right [22]. What is
challenging here is that every time the data relevance changes, we
need to compute the DOI function over the entire dataset, and the
bigger our dataset, the longer that computation takes. In other words,
keeping up with relevance on large datasets by computing a DOI
function can simply take too long for “fluid” interaction [5].

The open research challenge then is how to still tailor progressive
visualizations of large datasets to the task relevance of the data. In
response, we propose to compute the DOI on a data subset, using
a model of the user interest to fill in for the rest of the dataset (see
Figure 1), rather than computing a DOI function over all data every
time the data relevance changes (which happens frequently). While
no model is perfect and inherently uncertain, predictions are still a
valid option, because DOI functions themselves are inherently only
approximations of the “actual” subjective relevance to the analyst.

Therefore, small deviations between predicted and computed user
interests may be negligible for the visualization. More importantly, a
model allows us to efficiently update the visualization incrementally,
rather than requiring full replacements. In our approach, whenever
the relevance of the data changes, a data item either becomes interest-
ing, it becomes uninteresting, or it stays interesting. By maintaining
a model of the user interest, we are able to identify these changes
and, thereby, limit the data used for the actual DOI computation to
keep update times low enough for fluid interaction.

As a result, the benefits of progressive visualization complement
those of DOI functions. Incremental updates allow us to tailor
visualizations of large datasets to the user interest without delay,
because we can focus the DOI function on a small subset of data
that needs it. That way, we enable the interest-based interactive
progressive visualization of massive datasets.

3 A PROGRESSIVE APPROACH TO DOI FUNCTIONS

Our approach divides the data into two parts: visualized items are
most relevant to the task and are, as the name implies, shown in
the visualization, and stored items, essentially all other items in the
dataset. To ensure that the visualized data is relevant, we maintain a
model of the user interest using regression trees. Regression trees
recursively split the dataset along its attributes into two similarly
relevant subsets. Each leaf node of a trained regression tree predicts
an interest value of data matching a set of decision rules.

While there are many other (and in some cases more accurate)
prediction methods, the hierarchical structure of regression trees
makes them ideal for our purposes, because it allows us to query the
data based on its predicted interest. That is, by traversing the tree
from a leaf node (i.e., a predicted interest) to the root, we obtain a
Boolean filter that describes items with a predicted interest. In other
words, from a relatively small training sample [18] a regression tree
enables us to efficiently divide the data – both visualized and stored
– into high or low interest partitions, without actually computing the
DOI function over all data. This extends upon our prior work [13],
where we used trees to efficiently steer progressions towards unpro-
cessed data subspaces similar to a selection in view space. Having a
prediction of the user interest over the entire dataset then allows us
to keep the visualization most relevant at all times. We detail this
process below, aided by the demonstrative example in Figure 2.

Assumptions We focus on tailoring visualizations of a numerical,
tabular dataset that is too large to fit into memory or on the screen
and is, therefore, visualized progressively. We also assume that an
appropriate DOI function exists for computing the user interest, and
that the visualization does not contain any data, yet.

To be characterized as progressive according to the definition by
Fekete and Primet [6], updates to the visualization need to happen
within the human latency limits. In other words, there exists a maxi-
mum number of items cmax that the DOI function can process with
each step, while ensuring that the visualization remains interactive.

Overview The general way in which our approach works is as
follows (see Figure 2). When the visualization is empty at first, we

252

draw a sample of size cmax from the visualized dataset, and compute
the DOI function over it, producing a numeric interest value for each
sampled item. We then train a regression tree on the sample, using
the computed interest as labels. With this regression tree, we can
now efficiently predict the interest of the remaining data.

We use this to progressively update the visualization. For example,
when selecting the next chunk of data, we use the tree to prioritize
interesting data. To do so, we generate the Boolean filter for the
leaf node with the greatest interest by combining the decision rules
that lead to it in a conjunction. We append this filter to our database
query that retrieves the next chunk, thus steering the progression.
In return, we get a set of data items that the model predicts to be
of high interest. Before computing its actual interest, however, it is
important that we supplement this sample to avoid biasing the DOI
computation. We can again use the tree to achieve this by selecting
visualized data along all other leaf nodes except for the one we used
in the previous step. We then compute the DOI function on the
combination of interesting and uninteresting data and train a new
regression tree on the output. Before updating the visualization,
we need to ensure that all interest values for data so far in the
visualization are still consistent with that new model. We do so by
comparing the predicted interests for items from all leaf nodes of the
new regression tree with their previous interest. Whenever the two
differ significantly for a leaf node, we predict the for all items of that
node. We repeat this process of retrieving new items and adding it
to the visualization until all data is visualized. Below, we elaborate
on the steps of our approach.

Training the first regression tree Since the visualization at first
does not contain any data to compute an interest on, we begin by
selecting a random set of cmax stored items in order to get a broad
first overview of the data. Then we compute the user interest on
that set using the DOI function, receiving our first interest values
(1© in Figure 2). So far, these represent the entire visualized dataset,
meaning that we can already tailor the visualization based on it. We
train a regression tree model of the current user interest on that data,
using the interest values as labels (2©). This model provides us with
a first approximation of the user interest on the full dataset, and we
can now use it to visualize other interesting data.

Prioritizing stored data When selecting the next chunk of stored
data, we want to ensure that this new data is relevant, i.e., our
DOI function assigns a high value to it. While we cannot compute
the DOI function over the entire stored dataset, we can use the
partitioning of the regression tree to focus our selection on those
items that it predicts to be relevant. To do so, we translate the
decision rules along the path from the root node to leaf nodes with
the highest interest score into a Boolean filter, similar to our prior
work steering-by-example [13]. For example, the query for the leaf
node leading to a predicted interest of 0.9 in step 3© of Figure 2 is
(a > 0.5 AND b > 0.15). Thus, based on the data currently in the
visualization, we predict that items that match this filter are more
relevant to the analyst than the rest of the data.

Selecting supplemental data Computing the user interest exclu-
sively over the data we just selected would mean that the result is
only valid relative to that new data, but not relative to data that ana-
lysts are already familiar with. In other words, items that are most
relevant in the context of one set of items are not necessarily as rele-
vant in another set, and could lead to irrelevant data being visualized.
To overcome this, we use the interest model to select visualized data
to supplement the DOI computation. Since the visualization at this
point contains at least cmax items, we cannot include all visualized
data in the computation of the next chunk, so we need to find a
smaller representation of it. To make that selection, we again use the
regression tree model to retrieve data based on its predicted interest.
In contrast to the previous step, though, we now select items from all
leaf nodes except for those high-interest nodes, and we also select
items from the visualized data this time (4©). This essentially results

in a balanced sample across leaves of the regression tree, ensuring
that our next interest computation is based on data from all degrees
of interest seen so far.

Retraining the interest model Now that we have a selection of
cmax input items, we simply use the DOI function to compute their
user interest (5©). This has two effects: we have computed the
user interest for new, previously stored items, and we re-computed
the user interest for the visualized data that have been chosen as
supplement (6©). New interest values can be used to tailor the
visualization of the new data. The re-computed interest allows us to
detect changes to our previous interest model by comparing the old
and new interest values for the visualized data in the computation.
If the two do not significantly differ, this means that the visualized
interest values are still valid. If they do differ, we need to update
them. To reduce the cost of this update, we again use the regression
tree. That is, we simply measure the change in computed interest
per leaf node of the old model rather than overall, and then only
update the interest for data selected by each leaf node exhibiting
significant changes (7©). To avoid the overhead of again computing
appropriate supplement for computing the DOI function, we instead
predict the interest of outdated leaf nodes using the new interest
model. We can either perform this update synchronously with the
next interest computation (by reducing cmax), if the number of items
to be updated is relatively small, or asynchronously for more “costly”
cases so as not to not impact the human latency constraints of the
DOI function.

Updating outdated interest values Aside from changes in the
visualized data, there are also other reasons why our user interest
model for progressive visualization may become outdated. We can
broadly group these reasons based on whether analysts directly
adjusted the DOI function or not. In the former case, analysts
may invalidate the interest model by, for example, adjusting the
terms used in the DOI functions, the weights between them, or their
parameters. In the latter case, analysts interactions with the data
invalidate the model, for example, by selecting a new focus dataset
of interest (see the DIST term used by Gladisch et al. [7]), or by
simply covering different parts of the data during exploration (see
the KNOW term used by Gladisch et al. [9]).

The workflow outlined above implicitly captures these changes
in the DOI function and will update the computed DOI values in the
next step of the progression. This is because a new model will be
trained on the adjusted DOI function, which computes a different
interest than the model trained on the old DOI function. As the
update step of the workflow compares the predictions of the new
interest model with the previous model, all items for which the
interest changed significantly are “flagged” for update. As a result,
our workflow accounts for dynamic adjustments to the DOI function.

4 EVALUATION

Setup Following Munzner’s nested model [17], we benchmark our
approach on the 2018 NYC taxi dataset containing about 112M rows
with 17 numeric and categorical columns describing cab rides in
New York City from 20181. We limited our benchmarks to 1M rows
per test case to be able to fit all data into memory for computing
the ground truth and to keep runtimes between tests manageable. A
simple task on this dataset is to find outlier taxi rides, which, for
example, earned the driver more than usual or because they took un-
usually long. The following DOI function captures this interest for an
item x: f (x) = norm(xtotal_amount + xtip_amount + xtrip_duration+=
xtrip_distance), with norm normalizing the result to [0,1]. We com-
pute this DOI function using our approach and using a baseline test
case that naïvely computes the DOI function progressively, i.e., it
computes the interest for every item only once, at the time when
it is added to the visualization. As parameters, we used a chunk

1https://data.cityofnewyork.us/Transportation/
2018-Yellow-Taxi-Trip-Data/t29m-gskq

253

size of 1,000 new items per iteration (prioritizing the top 2 most
interesting leaf nodes) and a supplement size of 2,000 items per
iteration for our approach. We implemented everything in Python
3.8 with pandas and numpy, using the sklearn implementation of
regression trees with a maximum depth of 3, computed on standard
laptop hardware (i7-8550U with up to 4 GHz, 16 GB RAM). We
make the implementation of our approach as well as notebooks for
reproducing our benchmarks available on Github2.

Metrics We evaluated the two test cases to assess (a) how they
perform in selecting relevant data for the visualization and (b) how
well they avoid large deviations in the predicted interest. To assess
(a), we identified the top 1,000 most interesting items in the ground
truth, and for each test case count how many of these items are in
the progressive visualization at each iteration. For (b), we measured
descriptive statistics (min, mean, max, std) of the error compared
to the ground truth interest at the end of the progression. We also
measured the per-iteration runtime for each test case.

Results Results are summarized in Figure 3. For (a), our ap-
proach clearly outperformed the baseline, already retrieving all top-k
items within 433 chunks, indicating the benefits of the prioritization
step. For (b), our approach performed similar to the baseline in terms
of the mean error (baseline: 0.038, ours: 0.017), while reducing the
standard deviation (baseline: 0.038, ours: 0.01) and maximum error
(baseline: 0.44, ours: 0.39). It also clearly decreased the occur-
rence of errors larger than 0.1 (baseline: 59,845, ours: 624), i.e.,
errors more noticeable in a visualization. This indicates that our
model was able to detect and correct larger DOI errors through
the update step, while the baseline — lacking an update mecha-
nism — did not. Another interesting finding for (b) is that both test
cases almost exclusively overestimated the interest, meaning that
interest computed progressively is greater than interest computed
non-progressively (apparent in the histograms). We explain this as
an effect of the DOI function we used, which is affected by rare (i.e.,
unlikely to be sampled), high-valued outliers that reduce the interest
of all other data. In terms of the runtime our approach increased
median computation times from 2.04s for the baseline to around
2.06s (mean training times 0.0038s for 1k items, mean query times
0.0019s for 2k items). Both test cases significantly outperformed
the non-progressive computation at 97.43s regarding the time until
the first results were available.

While these results overall are promising regarding the use of
DOI function in progressive visualization, they only cover a static
scenario using a preset DOI function with fixed parameters. More
work is clearly necessary regarding their impact on interactive anal-
ysis scenarios, in which a user actively works with the dataset and
dynamically adjusts the DOI function.

5 IMPLICATIONS AND APPLICATIONS

Modeling user interest with regression trees There are several
additional benefits in modeling the user interest on progressive visu-
alization with regression trees. One is that regression trees have been
shown to perform well on small training datasets [18], particularly
useful in progressive visualization where chunk sizes are small com-
pared to the overall dataset size. Furthermore, their simple structure
means that training and predicting the user interest is generally fast,
and that the model is interpretable by analysts, even lending itself
to interactive adjustments as shown, for example, in the work by
v.d.Elzen et al. [24]. Lastly, user interest is often modeled hierar-
chically, for example, in feature definition language by Doleisch et
al. [3], meaning that regression trees are also a good fit.

There are also drawbacks to regression trees. For example, they
generally only support numeric and categorical data, but not textual
or graph datasets. They may also not always yield useful splits of the
data dimensions, making them inefficient at prioritizing interesting

2https://github.com/vis-au/prointerest/tree/doi-tree

(a) Number of top 1000 most relevant items retrieved.

(b) DOI error (lower is better)

Figure 3: Our benchmarks show our model outperforming the base-
line in terms of (a) the number of the most interesting items in the
visualization per iteration and (b) the DOI error.

data. They can also be over-sensitive to changes in the training
dataset, irrelevant attributes, and noise [20]. While the literature
proposes some solutions to addressing these shortcomings [15], re-
gression trees are not “perfect” models and should not be understood
as such. Despite of these theoretical limitations, their inherent ability
to generate Boolean queries for each leaf node makes regression
trees the most practical technique for our approach.

Interest-based tailoring of progressive visualization With the
user interest now computed, another consideration is how to tailor the
visualization. DOI-enabled concepts widely used in non-progressive
visualization like focus+context and information hiding can now also
be applied in progressive visualization. Beyond enabling established
approaches, we envision dedicated DOI-enabled techniques for the
specific challenges of progressive visualization, such as the unique
cognitive biases that only arise when visualizing data progressively
(see the recent study by Procopio et al. [19]). For example, to
alleviate illusion bias (“read something into incomplete results that is
not there” [19]) DOI functions can help draw the attention to changes
in interesting parts of the visualization whenever new data arrives,
automating progressive guards [14]. DOI function can also dampen
the visual “buzz” of progressive visualization (like so-called dancing
bars [16]), by limiting visual updates to parts of the visualization that
are relevant to the analysis task, dampening their effect elsewhere.
Thus, we see clear potential for future work in tailoring progressive
visualization to the user interest.

6 CONCLUSION

DOI functions underpin many techniques for tailoring visualizations
to analysts’ interests, focusing their work on relevant data. As the
data relevance changes throughout the analysis, we would need to
re-compute the user interest to stay “up to date”, which takes longer
and longer the bigger the dataset gets. By instead shifting from a
computed towards a predicted user interest, our approach allows us to
maintain useful interest values even on large datasets by computing
the DOI function only on a subset of the data. We see value for
this approach beyond the (still relatively young) research field of
progressive visualization, as runtime is also a constraint when the
entire dataset is visualized at once. Using progressive updates for
non-progressive visualization means that analysts can maintain their
flow here as well, while a full interest computation would break it.
Moreover, having the user interest available progressively opens the
door to new techniques for tailoring progressive visualizations.

254

ACKNOWLEDGMENTS

We thank Helwig Hauser and Marc Streit for the fruitful discus-
sions on the topic, as well as the anonymous reviewers for their
insightful comments. This work has been funded in part by the
Innovation Fund Denmark through the Grand Solution project Hos-
pital@Night.

REFERENCES

[1] J. Abello, S. Hadlak, H. Schumann, and H.-J. Schulz. A Modular

Degree-of-Interest Specification for the Visual Analysis of Large Dy-

namic Networks. IEEE Transactions on Visualization and Computer
Graphics, 20(3):337–350, 2014. doi: 10.1109/TVCG.2013.109 1, 2

[2] T. d’Entremont and M.-A. Storey. Using a degree of interest model

to facilitate ontology navigation. In 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 127–131,

2009. doi: 10.1109/VLHCC.2009.5295284 2

[3] H. Doleisch, M. Gasser, and H. Hauser. Interactive Feature Specifi-

cation for Focus+Context Visualization of Complex Simulation Data.

In Proc. of VGTC Symposium on Visualization, pp. 239–248. Euro-

graphics / IEEE, 2003. doi: 10.2312/VisSym/VisSym03/239-248 2,

4

[4] N. Elmqvist and J.-D. Fekete. Hierarchical Aggregation for Information

Visualization: Overview, Techniques, and Design Guidelines. IEEE
Transactions on Visualization and Computer Graphics, 16(3):439–454,

2010. doi: 10.1109/TVCG.2009.84 1

[5] N. Elmqvist, A. V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer,

and T. J. Jankun-Kelly. Fluid interaction for information visualiza-

tion. Information Visualization, 10(4):327–340, 2011. doi: 10.1177/

1473871611413180 2

[6] J. Fekete and R. Primet. Progressive Analytics: A Computation

Paradigm for Exploratory Data Analysis. CoRR arXiv:1607.05162,

2016. 2

[7] G. W. Furnas. The FISHEYE view: a new look at structured files. In

S. K. Card, J. D. Mackinlay, and B. Shneiderman, eds., Readings in
Information Visualization: Using Vision to Think, pp. 312–330. Morgan

Kaufmann Publishers, 1981. 1, 2, 3

[8] G. W. Furnas. Generalized Fisheye Views. In Proc. of CHI, pp. 16–23.

ACM, 1986. doi: 10.1145/22627.22342 2

[9] S. Gladisch, H. Schumann, and C. Tominski. Navigation Recommenda-

tions for Exploring Hierarchical Graphs. In Proc. of ISVC, pp. 36–47.

Springer, 2013. doi: 10.1007/978-3-642-41939-3_4 2, 3

[10] H. Hauser. Generalizing Focus+Context Visualization. In G. P. Bon-

neau, T. Ertl, and G. M. Nielson, eds., Scientific Visualization: The
Visual Extraction of Knowledge from Data, pp. 305–327. Springer,

2006. doi: 10.1007/3-540-30790-7_18 1

[11] J. Heer and S. K. Card. DOITrees Revisited: Scalable, Space-

Constrained Visualization of Hierarchical Data. In Proc. of AVI, pp.

421–424. ACM, 2004. doi: 10.1145/989863.989941 2

[12] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,

T. Roth, and P. J. Haas. Interactive data analysis: the Control project.

Computer, 32(8):51–59, 1999. doi: 10.1109/2.781635 1

[13] M. Hogräfer, M. Angelini, G. Santucci, and H.-J. Schulz. Steering-

by-Example for Progressive Visual Analytics. ACM Trans. Intell. Syst.
Technol., 13(6):96:1–96:26, 2022. doi: 10.1145/3531229 2, 3

[14] J. Jo, S. L’Yi, B. Lee, and J. Seo. ProReveal: Progressive Visual

Analytics With Safeguards. IEEE Transactions on Visualization and
Computer Graphics, 27(7):3109–3122, 2021. doi: 10.1109/TVCG.

2019.2962404 4

[15] S. B. Kotsiantis. Decision trees: a recent overview. Artificial Intelli-
gence Review, 39:261–283, 2013. doi: 10.1007/s10462-011-9272-4

4

[16] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but Verify: Opti-

mistic Visualizations of Approximate Queries for Exploring Big Data.

In Proc. of CHI, pp. 2904–2915. ACM, 2017. doi: 10.1145/3025453.

3025456 4

[17] T. Munzner. A Nested Model for Visualization Design and Valida-

tion. IEEE Transactions on Visualization and Computer Graphics,
15(6):921–928, 2009. doi: 10.1109/TVCG.2009.111 3

[18] T. Oates and D. Jensen. The Effects of Training Set Size on Decision

Tree Complexity. In Proc. of ICML, pp. 254–262. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1997. doi: 10.5555/645526.

657136 2, 4

[19] M. Procopio, A. Mosca, C. Scheidegger, E. Wu, and R. Chang. Impact

of Cognitive Biases on Progressive Visualization. IEEE Transactions
on Visualization and Computer Graphics, 28(9):3093–3112, 2022. doi:

10.1109/TVCG.2021.3051013 4

[20] L. Rokach and O. Maimon. Decision Trees, pp. 165–192. Springer US,

2005. doi: 10.1007/0-387-25465-X_9 4

[21] R. Rosenbaum and H. Schumann. Progressive refinement: more than a

means to overcome limited bandwidth. In Proc. of VDA, vol. 7243, pp.

145–156. International Society for Optics and Photonics, SPIE, 2009.

doi: 10.1117/12.810501 1

[22] H. Stitz, S. Gratzl, W. Aigner, and M. Streit. ThermalPlot: Visualizing

Multi-Attribute Time-Series Data Using a Thermal Metaphor. IEEE
Transactions on Visualization and Computer Graphics, 22(12):2594–

2607, 2016. doi: 10.1109/TVCG.2015.2513389 2

[23] C. D. Stolper, A. Perer, and D. Gotz. Progressive Visual Analytics:

User-Driven Visual Exploration of In-Progress Analytics. IEEE Trans-
actions on Visualization and Computer Graphics, 20(12):1653–1662,

2014. doi: 10.1109/TVCG.2014.2346574 1

[24] S. van den Elzen and J. J. van Wijk. BaobabView: Interactive con-

struction and analysis of decision trees. In Proc. of VAST, pp. 151–160,

2011. doi: 10.1109/VAST.2011.6102453 4

[25] F. van Ham and A. Perer. “Search, Show Context, Expand on Demand”:

Supporting Large Graph Exploration with Degree-of-Interest. IEEE
Transactions on Visualization and Computer Graphics, 15(6):953–960,

2009. doi: 10.1109/TVCG.2009.108 2

[26] M. Williams and T. Munzner. Steerable, Progressive Multidimensional

Scaling. In Proc. of InfoVis, pp. 57–64. IEEE, 2004. doi: 10.1109/

INFVIS.2004.60 1

[27] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. How

Progressive Visualizations Affect Exploratory Analysis. IEEE Trans-
actions on Visualization and Computer Graphics, 23(8):1977–1987,

2017. doi: 10.1109/TVCG.2016.2607714 1

255

