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ABSTRACT

The diversity of genome-mapped data and analysis tasks makes it
challenging for a single visualization tool to fulfill all visualization
needs. To design a visualization tool that supports various genomics
workflows of users, it is critical to first gain insights into the diverse
workflows and the limitations of existing genomics tools for support-
ing them. In this paper, we conducted semi-structured interviews
(N=9) to understand the role of visualization in genomics data anal-
ysis workflows. Our main goals were to identify various genomics
workflows, from data analysis to visual exploration and presentation,
and to observe challenges that genomics analysts encounter in these
workflows when using existing tools. Through the interviews, we
found several unique characteristics of genomics workflows, such
as the use of multiple visualization tools and many repetitive tasks,
which can significantly affect the overall performance. Based on our
findings, we discuss implications for designing effective visualiza-
tion authoring tools that tightly support genomics workflows, such
as supporting automation and reproducibility.

Index Terms: H.5.2 [Information Systems]: Information Interfaces
and Presentation (e.g., HCI)—User Interfaces;

1 INTRODUCTION

Given the size and complexity of genome-mapped data [17], vi-
sualization has been playing a vital role in genomics workflows
as evidenced by a noticeable number of visualization tools in the
wild [16, 21]. However, the diversity of genomics data types (e.g.,
BED, BAM, VCF, and BigWig) and different analysis tasks makes it
challenging for a single visualization tool to fulfill all visualization
needs [17,21]. This results in frequent switching between special-
ized visualization tools in analysis workflows, rendering the analysis
process less efficient and effective due to frequent context switching.

There are several genomics visualization tools that are intended
to be used for a broad range of use cases and data types. These
include genome browsers [4, 13, 23]—template-based [19] visualiza-
tion authoring tools based on graphical user interfaces (GUIs)—
and genomics visualization libraries [8, 14, 17, 18, 33], such as
Gosling [17] and ggBio [33] based on a visualization grammar [32].
However, they still lack several important features needed in diverse
genomics workflows of different users, such as flexible customiza-
tion in genome browsers and ease of using visualization libraries
without programming experience by domain experts. To design
and develop a genomics visualization tool that is tailored to various
genomics data analysis workflows, we need a comprehensive under-
standing of existing workflows and the diverse needs of users. While
several design studies identified important analysis tasks from biolo-
gists [20], we still lack formative studies that inform visualization
designers and researchers to create effective visualization authoring
tools for genomics data.

In this paper, we conducted semi-structured user interviews (N=9)
to gain a clear and bigger picture of genomics data analysis work-
flows and the role of visualization in the workflows. Our main goals
were to identify the entire workflow around genomics data analysis
and also observe challenges in different stages, such as integration
support, efficiency, and expressiveness. We found several unique
characteristics of genomics workflows, such as the use of multiple
visualization tools and many repetitive tasks, which can significantly
affect the performance of user tasks. Based on our findings, we
discuss implications for designing effective visualization tools that
tightly support genomics workflows, such as supporting automation
and reproducibility.

2 RELATED WORK

Through literature reviews and interviews with domain experts, re-
search has been conducted to analyze common visualization work-
flows, including studies focusing on general visualization prac-
tices [3, 25, 28], as well as the employment of visualization tech-
niques within specific domains [5, 24, 30]. For example, researchers
conducted user interviews to identify visualization workflows and
inform the creation of visualization authoring tools. Liu et al. [15]
conducted user interviews to identify the workflow of creating visu-
alizations, such as three main frequent tasks (i.e., sketch, arrange,
and bind), and discovered that people first think about overall graph-
ics and then visual encoding. Similarly, Satyanarayan and Heer [26]
identified a three-phase design process, i.e., exploration, drafting,
and production, as well as challenges of the current tools (e.g., no
support for non-linear narratives).

Several other studies focused on conducting larger-scale user in-
terviews to understand in-depth visualization workflows. Crisan and
Fiore-Gartland [5] conducted semi-structured interviews (N=29) to
understand how automatic machine learning systems can help in
data science work. Bako et al. [2] performed interviews with 15
university students and 15 professional designers to understand how
visualization designers find and use data visualization examples.
Kandel et al. [11] also conducted interviews with 35 data analysts
from 25 organizations to characterize the process of data analysis
in industry settings. Focusing on visualization novices, Grammel et
al. [6] identified common visualization processes, as well as chal-
lenges of novices in the processes. While these studies analyzed
visualization workflows in various contexts, there is a limited un-
derstanding of genomics visualization workflows that informs the
design of genomics visualization authoring tools.

A relatively small number of studies focused on understanding ge-
nomics and, more broadly, biomedical data visualization workflows.
Stitz et al. [29] identified five different workflows of ChIP-seq data
analysis from a review study [22] and applied them in their prove-
nance graph visualizations. Meyer et al. [20], focusing on pairwise
genome comparison (i.e., synteny data), identified a series of key
analysis questions through user interviews and literature reviews.
However, we still lack the identification of unique characteristics
of visualization workflows that take a wide range of genomics file
formats and visualization tasks into account.

In this paper, we conducted interviews with genomics analysts in
diverse positions and backgrounds to understand unique aspects ofWork licensed under Creative Commons Attribution 4.0 License.
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Table 1: The background of nine interview participants. The order
of visualization tools reflects the frequency of use, where the first tool
is the primary tool for the corresponding participant.

ID Position Area Visualization Tools

P1 PhD Student Genetic Variation IGV [23], Keynote

P2 PhD Student scATAC Analysis IGV [23], PPT, AI

P3 Postdoc Genetic Variation Matplotlib [10], IGV [23]

P4 Postdoc Structural Variation IGV [23], ggPlot [31]

P5 Senior Scientist Structural Variation IGV [23], Circos [14]

P6 Software Engineer Methylation GViz [8], IGV [23]

P7 PhD Student Genetic Variation IGV [23]

P8 PhD Student Structural Variation Circos [14], IGV [23]

P9 Postdoc Structural Variation IGV [23], Circos [14]

genomics workflows and identify limitations of existing tools, which
can inform the design of visualization authoring tools for genomics
data.

3 THE INTERVIEW

The main goals of our semi-structured user interviews were to (1)
identify various workflows for analyzing and visualizing genomics
data (from data processing to visual exploration and communication)
and (2) understand the challenges of existing genomics tools for
supporting these workflows.

3.1 Participants
We recruited a total of nine interview participants (Table 1) from uni-
versities and research institutes through recruitment emails and Slack
messages. The participants were in various positions, including four
PhD students, three postdocs, one senior scientist, and one software
engineer. All participants reported that they frequently analyze and
visualize genomics data, at least once a week. The participants
commonly said that Integrative Genomics Viewer (IGV) [23] (stan-
dalone genome browser) is the most frequently used tool while many
participants also reported using other tools, such as genomics tools
(e.g., Circos [14] and GViz [8]) and general-purpose tools (e.g.,
Matplotlib [10] and ggplot2 [31]). Most participants reported hav-
ing experience using programming languages (e.g., R and Python)
except one participant (P8).

3.2 Procedure
The semi-structured remote interviews using Zoom were structured
with three main sessions: (i) participants’ backgrounds (approx. 10
min), (ii) workflows (30 min), and (iii) challenges (20 min) using ex-
isting tools. We asked participants to fill out a questionnaire before
the interview to collect background information of participants, such
as current roles, areas of study, and computational skills. During
the second session, we tried to understand how participants analyze
their data using existing genomics tools. Example questions for this
session include “How do you analyze your data using an existing
tool?”, “How do you process data?”, and “How do you construct
your visualization?” In this session, an interviewer (the first author),
together with participants, drew flow charts that accurately illustrate
participants’ workflows using Zoom’s collaborative Whiteboard1.
After the identification of workflows, we asked participants to fill
out questionnaires to document their experience using visualization
tools in their workflows. The questionnaires contained 7-point Lik-
ert scale questions that assess visualization tools in eight different
aspects adopted from Amini et al.’s work [1], such as expressiveness,
integration, and flexibility. Using the responses, as well as the flow
charts, in the third session, we asked follow-up questions to iden-
tify challenges participants usually encountered at each stage of the
workflows when using existing visualization tools. For example, if

1https://explore.zoom.us/en/products/online-whiteboard/

Figure 1: The summary of workflows of all interview participants.
These flow charts are drawn collaboratively with participants during
the interviews, reflecting their everyday workflows. Only the cyclic
events that happen frequently are drawn as backward arrows between
stages. The names of the tools used in individual stages are labeled
right below circular nodes, where R refers to the programming lan-
guage. The same background color between nearby nodes represents
that corresponding stages are performed in the same environment by
the participant. The participants are ordered in a way that participants
with the same positions are closer to each other (e.g., P1, P2, P7,
and P8 who are postdocs).

we found the participants strongly disagreed that certain aspects are
supported in a visualization tool, we asked what made them think
in that way (e.g., “What made you think that IGV does not support
flexible customization?”). All participants were compensated with
$25 Amazon Gift Cards. The entire interview per participant took
about an hour. The semi-structured questions and questionnaire
questions used for the interviews are available in the supplemental
materials.

3.3 Analysis

After the interviews, we collected flow charts that we drew with
participants, as well as transcript notes to analyze interview results.
We identified diverse workflows as visually summarized in Fig. 1.
Individual circular nodes in this figure represent one of the four main
steps: (D) data preparation and processing, (V) visual exploration,
(A) visual annotation (e.g., adding arrows and labels to existing
visualizations for the purpose of presentation), and (P) presentation
and communication. The tools that the participants used for each
step, such as R programming languages and IGV [23], are labeled
right under the node. Arrows represent frequent transitions between
stages, where the self cycles in visualization stages refer to user
interactions in interactive visualization tools.

Various challenges participants encountered at each stage of work-
flows are shown in Fig. 2, where black circle nodes represent types
of challenges adopted from a previous study [1], where similar cat-
egories are grouped together for simplicity and clarity: (C) refers
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Figure 2: Various challenges that participants encounter in their
workflows. The thicker arrows represent that the corresponding
transitions between stages are frequently observed in our interviews.
The black circle labels represent the challenges we identified.

to creativity support, expressiveness, and flexibility, (L) refers to
learnability, intuitiveness, and guidance, (I) refers to integration
(e.g., supporting a series of tasks and the transition between tools)
and (E) refers to efficiency.

4 FINDINGS

In this section, we describe our main findings, including unique
characteristics of genomics data analysis workflows and limitations
of existing genomics tools to support their workflows.

4.1 Use of Multiple (Visualization) Tools
All participants relied on multiple tools and environments in their
workflows, as can be seen by the various stages labeled with different
tools in Fig. 1. Interestingly, almost 90% of participants used
multiple visualization tools; 8 out of 9 participants used two or
three visualization (or graphic design) tools in their workflows. This
observation underscores the absence of a single visualization tool
that can fully satisfy the diverse user needs throughout the genomics
analysis workflow.

We found distinct purposes that were satisfied by different visual-
ization tools. A genome browser [23] was mainly used to confirm
and validate their analysis which involves the least customization.
Static visualization tools [10, 14, 31], on the other hand, were used
to (i) complement the genome browser in visual exploration by pro-
viding different perspectives (e.g., overview [14] or summary [10])
and/or (ii) help to generate visualizations for presentation and publi-
cation. For example, three participants (P5, P8, P9) used multiple
tools in combination to analyze the same data at different scales.
P5 used static visualizations generated using Circos [14] to see an
overview of large events (e.g., rearrangement of sequences across
chromosomes) and used interactive tool [23] to see corresponding
regions in a more detailed manner. However, using two tools to-
gether was “clunky” accordingly to P5 (Fig. 2-2). Circos showed
the whole genome, and since it is a static visualization, P5 was not
able to accurately infer the exact positions of important patterns,
resulting in using the interactive tool to find the positions by trial and
error (i.e., using manual navigation and comparing visualizations
between Circos and IGV). Several other participants (5 out of 9)
used additional tools for making presentation-purpose visualizations,
such as matplotlib [10], ggplot2 [31], and Gviz [8].

Tendencies to use multiple visualization tools seem to be mainly
due to the limited expressiveness (see Sect. 4.3) of the genome
browser and its lack of support for data analysis environments, such
as the R programming language. P4 said, although ggplot2 [31]
does not natively support genome-mapped data, they use ggplot2
since it is “tailored for workflows.”

Context switching also happened frequently between the visu-
alization and data processing stages (Fig. 2-1). For example, P7
used the R programming language to perform data analysis (e.g.,

variant calling) and used an interactive visualization tool IGV [23]
to explore the results and capture a screenshot for their publication.
However, due to the large size and number of files to analyze (1,000
files of 300MB each), P7 usually stores and analyzes all files on a
cloud computing service that does not support IGV and then trans-
fers files to a local computer whenever they want to visualize their
analysis results. P7 expressed that the transition between the two
stages requires a “mental hurdle.” Combined with the limited space
of a local computer, P7 said they usually end up visualizing only a
small number of all 1,000 files, which is not ideal.

4.2 Manual Repetitions and Iterations
We found that all workflows are heavily iterative and involve
many repetitive tasks (i.e., cyclic arrows in Fig. 1), which can
significantly impact the efficiency of analysis workflows. This seems
to be an even more critical characteristic given that participants found
the interactive visualization tool [23] to be “lacking reproducibility
and automation” (P7).

We identified these patterns at multiple stages and different levels
in the workflows. Within a visualization stage, participants usu-
ally zoom into multiple regions of interest repeatedly (i.e., self-
cycle in Fig. 1 and Fig. 2-2) after visualizing their datasets in
IGV [23] to confirm their hypothesis within the data. These hap-
pen for 5–7 genes for P2, 5–10 genes for P3, and all annotated
regions for P5. Such tasks are usually heavily manual for most
of the participants in a genome browser since they had to search
for gene names (e.g., MYC) or exact chromosome regions (e.g.,
chr8:128,746,972-128,755,021) and/or click on zooming and
panning buttons. P2 reported such interactions to be tedious, say-
ing that these involve “a lot of clicks.” Other frequent repetitions
were replacing datasets from the visualizations and performing sim-
ilar tasks (i.e., manual navigation to the same regions) (Fig. 2-1).
Many participants reported having a large number of files for such
repetitive tasks (e.g., thousands of files for P4, P7, and P9).

Making this even more painful, several participants reported that
they needed to occasionally go all the way back to the initial stages
(data processing) after communicating their analysis results with
their teams (Fig. 2-4). Given the nature of interdisciplinary work, this
seems inevitable in genomics data analysis. For example, P5 usually
shares their findings with colleagues in different backgrounds, such
as students, clinicians, and scientists, and had to occasionally re-
perform the entire tasks: “We found that not all structural variants
are there, so we had to rerun the analysis with different callers.”

4.3 Limited Flexibility in Genome Browsers
Participants complained about limited flexibility in customizing
visualization in a genome browser [23] (Fig. 2-3). This issue is
tightly connected to the template-based approach used in tool [19],
which hard-code visualization types by genomics file types (e.g.,
bar charts for BigWig files [12]). P6 said “There is not much you
can do with the file. ... There is only a very small handful of ways
to visualize it.” Also, several participants did not appreciate the
aesthetic aspect of default visualization designs, stating that they are

“ugly” (P2, P3, P8). The main reason for P3 to use matplotlib [10]
over the genome browser was to create “appealing” visualizations.
The limited flexibility also applies to the flexibility in transforming
datasets: “Ideally, I wanted to visualize the methylation directly on
the individual reads. However, this was not possible in IGV. ... so, I
processed the files myself.” (P5).

4.4 Barriers to Using Visualization Tools
We noticed diverse barriers to using visualization tools (Fig. 2-3). A
matplotlib [10] user said “I cannot imagine using it without examples
and documentation” (P3). While many participants appreciated the
GUI, we also found several challenges in learning and using the
genome browser [23]. For example, P9 mentioned that zooming in
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and out—which is a common interaction in many genome browsers—
is “not that straightforward.” P2 also stated that there is “a lot of
remembering” involved. Another interesting aspect is that many
participants do not seem to be aware of the Regions feature that P6
mentioned (i.e., a specialized batch script for automatic navigation),
resulting in constant manual navigation. Another challenge stems
from the complexity of genomics visualizations, making it difficult
for junior researchers (P2, P7) to interpret visualization. Focusing
on a default read alignment visualization in IGV [23], P2 said there
is “too much color you need to understand.” Similarly, P7 said, “I
was not sure how to interpret the reads. ... I was not very clear
about colors.”

4.5 Additional Suggestions
Participants also suggested several additional features that could
make visualization tools more useful for their workflows, including
comparative visualizations. Given the nature of collaborative work,
P3 emphasized that enabling collaborative visualization authoring
would be useful. P2 said since they frequently share their insights
from the visualization with their team, it would be good to provide
features for better communication, such as easy video recording user
interactions and sharing them with others, such as seeing detailed
information with tooltips. P4 mentioned that one of the lacking
features is to compare multiple samples at once.

5 DESIGN IMPLICATIONS

Reflecting on findings from the interviews, we discuss several im-
portant aspects that are valuable to consider during the design of
visualization authoring tools for genomics data. We discuss these
not only considering the visualization tools used by interview partic-
ipants but also other recent genomics visualization tools since these
tools also lack the same aspects we found through interviews.

Support Automation and Reproducibility. The biggest pain points
we found in genomics workflows are that they are highly repetitive
and iterative, and we witness that many tasks in the workflows can be
(and need to be) automated and streamlined to increase the efficiency
and reproducibility of overall workflows. For example, given that the
same visualization encodings are used multiple times for different
datasets, the visualization options that are lastly used can be recorded
and automatically applied to the new datasets. The provenance
of interactions (such as exact locations that users viewed) can be
recorded as in [7] so that similar analysis can be easily performed
even when the data is updated in the future.

Support Visual Annotation. Communicating and presenting visu-
alizations were one of the most frequent tasks for all participants in
their collaborative research. However, existing genomics visualiza-
tion tools do not support even simple annotations, such as adding
arrows, rectangles, and textual notes. Support of visual annotations
can reduce context switching between tools, can help communicate
visualization insights with colleagues, and can be helpful to increase
the reproducibility of analysis when combined with the support of
interaction provenance (e.g., adding a note to an outlier on a track).

Support Seamless Tool Transitions. Given that many transitions
between tools and environments happen, visualization tools need to
support seamless transitions between them. For example, support
exporting SVG images in a visualization tool can help the use of
existing graphic design tools. Also, supporting standard genomics
files as much as possible can be helpful. For example, P6 created
standard genomics files (BED) to specify the regions of interest
which helped them to use the file in multiple genomics visualization
tools (e.g., displaying regions of interest in both IGV [23] and
Gviz [8] using the same file).

Consider Multi-Modal Interactions. Participants provided incon-
sistent opinions about the ease of use for GUI-based approaches.
For example, several participants with programming skills found

that direct manipulation is more cumbersome than using visualiza-
tion libraries. This indicates that supporting interactions of multiple
modalities can be beneficial to fulfill a wide range of users at once.

Support Computational Notebooks. Ideally, data processing and
visualization can be performed in a single environment. However,
participants did not find useful genome browsers in R environments,
making them use a standalone tool for visualizing processed data.
Support of companion libraries for R and Python environments,
such as JBrowseR [9] and Gos [18], can simplify users’ analysis and
visualization workflows, making the process more reproducible and
efficient.

Support Diverse Data Sources. The location that stores and pro-
cesses data files varied largely in our interviews, from a local com-
puter to public/private cloud services. Since there are often many
large-size files that people have to analyze, it would not be ideal
to transfer these files to different locations for visualization tools.
Therefore, visualization tools should support flexibility in loading
datasets from local and remote locations, such as the support of
Google Cloud Storage in IGV [23] that several participants appreci-
ated.

Lower Data Transformation Burden. Dealing with data (e.g.,
processing, analyzing, and transferring) was commonly a laborious
task for participants. The lack of flexibility in transforming data,
such as merging and filtering, for the purpose of using visualization
tools increases the barrier to using visualization tools even more. In
addition to supporting diverse standard genomics file formats, it will
be valuable for users to support frequently used data transformation
functions, as in Vega-Lite [27] and Tableau.

6 LIMITATION

Our interview results do not fully reflect the diversity of users and
visualization tools in the real world due to the limited sample size.
Most participants in our interviews had computational skills, but
there are many biologists and clinicians who analyze similar data
without any experience with programming languages. Moreover,
while we recruited participants from multiple institutions using pub-
lic channels, many of the participants in our interviews were working
on a similar analysis, i.e., structural variation. While the findings of
this study can be applied immediately to visualization design, study-
ing a broader set of workflows might lead to additional findings or
would allow us to refine the proposed design implications.

7 CONCLUSION

The understanding of genomics data analysis and visualization work-
flows and the identification of challenges in performing workflows
can inform the creation of effective and efficient visualization au-
thoring tools. Toward this goal, we conducted semi-structured in-
terviews with nine genomics data analysts, including four graduate
students, three postdocs, one senior scientist, and one software engi-
neer. Through the interviews, we were able to identify nine different
workflows for analyzing genomics data with visualizations. We
discussed several unique characteristics of workflows, such as heav-
ily repetitive and iterative tasks, as well as limitations of existing
genomics tools for supporting various workflows, such as the lack of
automation. Our interviews provide potentially useful features that
can be considered when designing future genomics data visualization
tools.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health
(R01HG011773). We thank all interview participants who provided
in-depth insights about their workflows and genomics tools.

104



REFERENCES

[1] F. Amini, M. Brehmer, G. Bolduan, C. Elmer, and B. Wiederkehr.

Evaluating data-driven stories and storytelling tools. In Data-driven
storytelling, pp. 249–286. AK Peters/CRC Press, 2018.

[2] H. K. Bako, X. Liu, L. Battle, and Z. Liu. Understanding how design-

ers find and use data visualization examples. IEEE Transactions on
Visualization and Computer Graphics, 29(1):1048–1058, 2022.

[3] M. Card. Readings in information visualization: using vision to think.

Morgan Kaufmann, 1999.

[4] F. Chelaru, L. Smith, N. Goldstein, and H. C. Bravo. Epiviz: inter-

active visual analytics for functional genomics data. Nature methods,

11(9):938–940, 2014.

[5] A. Crisan and B. Fiore-Gartland. Fits and starts: Enterprise use of

automl and the role of humans in the loop. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, pp. 1–15,

2021.

[6] L. Grammel, M. Tory, and M.-A. Storey. How information visualization

novices construct visualizations. IEEE transactions on visualization
and computer graphics, 16(6):943–952, 2010.

[7] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From

visual exploration to storytelling and back again. In Computer Graphics
Forum, vol. 35, pp. 491–500. Wiley Online Library, 2016.

[8] F. Hahne and R. Ivanek. Visualizing genomic data using gviz and

bioconductor. Statistical genomics: methods and protocols, pp. 335–

351, 2016.

[9] E. A. Hershberg, G. Stevens, C. Diesh, P. Xie, T. De Jesus Martinez,

R. Buels, L. Stein, and I. Holmes. Jbrowser: an r interface to the

jbrowse 2 genome browser. Bioinformatics, 37(21):3914–3915, 2021.

[10] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.

55

[11] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data

analysis and visualization: An interview study. IEEE transactions on
visualization and computer graphics, 18(12):2917–2926, 2012.

[12] W. J. Kent, A. S. Zweig, G. Barber, A. S. Hinrichs, and D. Karolchik.

Bigwig and bigbed: enabling browsing of large distributed datasets.

Bioinformatics, 26(17):2204–2207, 2010.

[13] P. Kerpedjiev, N. Abdennur, F. Lekschas, C. McCallum, K. Dinkla,

H. Strobelt, J. M. Luber, S. B. Ouellette, A. Azhir, N. Kumar, et al. Hi-

glass: web-based visual exploration and analysis of genome interaction

maps. Genome biology, 19(1):1–12, 2018.

[14] M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Hors-

man, S. J. Jones, and M. A. Marra. Circos: an information aesthetic

for comparative genomics. Genome research, 19(9):1639–1645, 2009.

[15] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,

B. Kerr, and J. Stasko. Data illustrator: Augmenting vector design

tools with lazy data binding for expressive visualization authoring.

In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, pp. 1–13, 2018.

[16] S. L’Yi and N. Gehlenborg. Multi-view design patterns and responsive

visualization for genomics data. IEEE Transactions on Visualization
and Computer Graphics, 29(1):559–569, 2022.

[17] S. LYi, Q. Wang, F. Lekschas, and N. Gehlenborg. Gosling: A grammar-

based toolkit for scalable and interactive genomics data visualiza-

tion. IEEE Transactions on Visualization and Computer Graphics,

28(1):140–150, 2021.

[18] T. Manz, S. L’Yi, and N. Gehlenborg. Gos: a declarative library

for interactive genomics visualization in python. Bioinformatics,

39(1):btad050, 2023.

[19] G. G. Méndez, U. Hinrichs, and M. A. Nacenta. Bottom-up vs. top-

down: Trade-offs in efficiency, understanding, freedom and creativity

with infovis tools. In Proceedings of the 2017 CHI conference on
human factors in computing systems, pp. 841–852, 2017.

[20] M. Meyer, T. Munzner, and H. Pfister. Mizbee: a multiscale synteny

browser. IEEE transactions on visualization and computer graphics,

15(6):897–904, 2009.

[21] S. Nusrat, T. Harbig, and N. Gehlenborg. Tasks, techniques, and tools

for genomic data visualization. In Computer Graphics Forum, vol. 38,

pp. 781–805. Wiley Online Library, 2019.

[22] P. J. Park. Chip–seq: advantages and challenges of a maturing technol-

ogy. Nature reviews genetics, 10(10):669–680, 2009.
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