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Abstract—If a failure in the components of a photovol-

taic (PV) system, such as PV module, controller, inverter, 

load, cable, etc. goes undetected and uncorrected, it can 

seriously affect the efficiency, safety, and reliability of the 

entire PV power plant. In addition, fires can occur if spe-

cific faults, such as arc, ground, and line-to-line faults 

remain unresolved. Therefore, PV system (PVS) fault 

diagnoses are crucial for PV power plant reliability, effi-

ciency, and safety. Many fault diagnosis methods and 

techniques for PVS components have been developed. In 

addition, with the development of PV devices, more ad-

vanced and intelligent diagnostic technologies are con-

tinuously being researched and developed. However, a 

systematic and thorough analysis, summary, and conclu-

sion are still urgently required. Thus, this paper intro-

duces the types, causes, and impacts of PVS faults, and 

reviews and discusses the methods proposed in the liter-

ature for PVS fault diagnosis, and in particular, failures 

in PV arrays. Special attention is paid to the optimization 

direction of various fault diagnosis methods under dif-

ferent priorities, and their limitations, feasibility, com-

plexity, and cost-effectiveness. Finally, challenges and 

suggestions are put forward for future research. 

Index Terms—PVS, monitoring system, PV fault types, 

PV diagnosis, review. 
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NOMENCLATURE 

Abbreviations 

ABC-SS

ELM 

artificial bee colony and semi-supervised 

extreme learning machine 

AF arc fault 

AIT artificial intelligence technology 

ART adaptive resonance theory 

AWPSO adaptive weighted particle swarm optimi-

zation 
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BAM bidirectional associative memory 

BP back propagation 

CSM circuit structure method 

CTCT complex-total-cross-tied 

ECM earth capacitance measurement 

EMI electromagnetic induction 

EVA ethylene-vinyl acetate 

FCAM Fuzzy control algorithm method 

FCM fuzzy c-means 

FD fault diagnosis 

FM fuzzy membership 

GF ground faults 

GKFCM Gaussian kernel FCM 

HS hot spot 

HSF HS faults 

IIAM infrared image analysis method 

IVCA I-V characteristic analysis 

LID light-induced degradation 

LLF line-line fault 

LSTM long short-term memory 

MMM mathematical model method 

MOSFET metal-oxide-semiconductor field-effect 

transistor 

NNM neural network methods 

PID potential induced degradation 

PN pseudo-noise 

PNN probabilistic neural network 

PSO particle swarm optimization 

PV photovoltaic 

PVA PV array 

PVS PV system 

RBF radial basis function 

SOA seagull optimization algorithm 

SP series-parallel 

SRF stacking random forest 

SSPA statistical and signal processing approaches 

SSTDR spread-spectrum time domain reflection 

SVM support vector machine 

TDR time domain reflectometry 

Ⅰ.   INTRODUCTION 

n the modern era, the continued consumption of 

global fossil resources [1], [2] and the environmental 

threats posed by their usage [3], [4] have become sig-
I 
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nificant challenges to human survival. Consequently, 

renewable energy [5], [6] has emerged as promising for 

managing the energy crisis [7], [8]. Among the types of 

renewables, one of the most crucial new energy sources 

is photovoltaic (PV) power generation. China’s total 

grid-connected PV capacity is expected to reach 392 

GW by 2022, comprising 234.4 GW of centralized PV 

power stations and 157.6 GW of distributed PV power 

stations. Figure 1 displays the latest global annual PV 

installed capacity from 20162022. Renewable energy 

resources such as solar energy are relatively inexpensive 

and non-depletable, so the real challenge lies in over-

coming the technology obstacles and the cost associated 

with developing and utilizing these resources [9]. To 

enhance the efficiency and economy of PV power gen-

eration, researchers have developed various approaches, 

including optimizing the composition materials of PV 

modules to improve their conversion rate. From the first 

generation of silicon-based PV modules to the second 

generation of multi-component film modules and to the 

third generation of new material PV modules [10], re-

search has made significant progress in improving their 

efficieny. Also, by promptly identifying the faults of 

PVS and performing fault diagnosis and remediation, 

energy and economic losses can be minimized. 

 

Fig. 1.  Global new PV installed capacity from 2016 to 2022. 

While several different types of faults can occur in 

PV arrays (PVA), such as line-line fault (LLF), ground 

fault (GF), and arc faults (AF) [11], hot spot faults (HSF) 

are also of significant concern. If not detected in time, 

an HSF can permanently damage PV cells [12]. In ad-

dition, if other faults, such as LLF, AF, HSF, and GF, 

are not discovered quickly, they can result in hazardous 

fires. Work has been done to address this hazard [13], 

and fire prevention measures have been developed [14]. 

For instance, one study has used an end cloud archi-

tecture and imaging to create an early fire warning 

system for PV power stations 

It is important to differentiate between PV fault di-

agnosis and PV fault detection. The former involves 

determining the type and location of the fault, while the 

latter verifies the fault’s occurrence based on the dif-

ference between measured and calculated data [15]. The 

study in [16] analyzes the mechanism and fault char-

acteristics of DC fault arcs, and summarizes the detec-

tion and location methods of DC fault arcs in PV power 

generation systems. Reference [12] provides more 

comprehensive analysis and outlines the causes and 

effects of the four main faults (LLF, GF, AF, HSF) and 

their corresponding traditional and advanced fault di-

agnosis technologies. PVA fault diagnosis is described 

from the two aspects of a conventional diagnosis 

method and intelligent algorithm. The latter is clarified 

not in accordance to the fault type but rather based on 

the fault diagnosis method [17]. 

This paper provides an overview of the various elec-

trical methods for diagnosing faults in PVS and briefly 

introduces non-electrical diagnostic methods. Eight 

fault diagnosis methods are categorized into four groups, 

and the practical applications, diagnosis accuracy, di-

agnostic diversity, complexity, advantages, and disad-

vantages of all methods are thoroughly compared and 

evaluated. The paper primarily focuses on the compo-

sition of PVS and the causes and effects of the seven 

significant faults, i.e., PV module, inverter, junction box, 

and by-pass diode faults, GF, LLF, and AF. It also 

provides suggestions for the future development of PV 

fault diagnosis technology. 

The paper is structured as follows. Section Ⅱ provides 

a comprehensive overview of PVS fault diagnosis 

methods, and Section Ⅲ discusses the possible types of 

faults that may occur on the DC and AC sides of PVS. In 

Section Ⅳ, the FD method proposed for PVS is reviewed 

and discussed. Section Ⅴ summarizes and discusses 

various PV fault diagnosis technologies. Finally, Section 

Ⅵ outlines the challenges, recommendations, and future 

trends of PV fault diagnosis technology. 

Ⅱ.   REVIEW SCREENING METHODS 

This paper embarks on a rigorous research approach 

to present a comprehensive overview of PVS fault di-

agnosis methods, including their diagnostic technology, 

performance advantages, and diagnosis direction. Four 

keywords (PVS, monitoring system, PV fault types, PV 

diagnosis) were chosen as the basis for conducting an 

exhaustive literature review using three representative 

search engines. The title, summary, and keywords were 

reviewed to curate the most pertinent references, re-

sulting junction box, and by-pass diode faults, GF, LLF, 

and AF. It also provides suggestions for the future de-

velopment of PV fault diagnosis technology. And 103 

pieces of literature were selected based on citations and 

journal impact factors. 
To better understand the implementation process of 

the reference review and selection method, a detailed 
diagram is given in Fig. 2(a) to provide a comprehen-
sive view of the review process. Additionally, statistical 
data on research in this field over the past seven years 
(2016February 2023) were collected from platforms 
such as Science Direct, Web of Science, and Google 
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scholar, and are presented in Fig. 2(b), which offers 
insights into the latest developments in the field. 

 

 

Fig. 2.  Review screening methods of related references. (a) 

Execution procedure. (b) Research statistics. 

Ⅲ.   TYPE OF FAULTS 

PVS can be configured in three types: independent, 

grid-connected, and distributed PV power generation 

systems. They are comprised of a variety of components, 

including PV modules, controllers, inverters, loads, and 

cables. The PV modules generate electricity, which is 

then sent to the controller to be distributed to the load or 

battery, depending on the system configuration. The 

transmission process is varied, e.g., DC is directly sent 

to DC load, while DC is converted into AC through the 

inverter to supply to AC load. If the local demand is low, 

some power can be stored in a battery, serving as 

back-up energy when the PV power generation is low. 

The structure diagram of this process is shown in Fig. 3. 
PVS is prone to failure, and this can significantly im-

pact the power generation efficiency and power quality, 
and even lead to fires. Two types of faults can happen in 
the PV module: permanent and temporary faults. Per-
manent faults include ethylene-vinyl acetate (EVA) 
discoloration, layering, hot spots, potential-induced 
degradation (PID), light-induced degradation (LID), etc. 
On the other hand, temporary faults usually only require 
the removal of obstacles, such as shading and soiling [18]. 
In addition, the faults of PVS are diverse and can be 
intricated to diagnose. Table Ⅰ provides an overview of 
the primary faults of PVS. The failure pictures of PVS 
are shown in Fig. 4. 

Fig. 3.  PVS composition diagram. 
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TABLE Ⅰ 

SUMMARY OF DIFFERENT TYPES OF FAULTS WITH RELATED INFORMATION 

Type of faults Causes Effects Recoverability Severity 

PV module 

failures 
modes 

EVA dis-
coloration 

 High temperature and high humidity 

environment. 

 The additive formula is unstable. 

 Shorten the life of PV modules. 

 Reduce the efficiency of PV 

modules. 
 Leads to stratification. 

 Accelerate the attenuation of 

PV modules. 

Damage caused by dis-

coloration is irreversible. 

*** 

Delamination 

 Foreign objects are on the surface of 

raw materials, such as EVA, glass, and 

backplanes. 
 The flux is too small, and the main 

gate line delamination occurs when it 

encounters high temperatures outside for 
a long time. 

 The variable composition of EVA 

raw materials (ethylene, vinyl acetate, 
etc.) leads to insolubilty at room tem-

perature, resulting in delamination. 

 The degree of cross-linking is un-
qualified (such as the low temperature of 

the film applicator, short film applica-

tion time, etc.). 

 The small layered area affects 

the battery module's high-power 

failures. 
 When the layered area is large, 

it will cause the battery module to 

fail and it then needs to be 
scrapped. 

Permanent losses and 

irreversible. 

*** 

HS 

 Mixing of individual bad batteries. 
 Electrode solder lug virtual welding. 

 The storm evolves from cracks to breaks. 
 Individual battery. Characteristics 

deteriorate. 

 Shadows partially obscure the battery. 

 Reduce the output power. 
 Shorten the life of PV mod-

ules. 
 Burn the components. 

 Cause fire. 

Many occlusions cause 
hot spots to be reversible. 

**** 

PID 

 Humid environment. 
 The component’s surface is contam-

inated with conductive, acidic, alkaline, 

and ionic objects. 
 The attenuation phenomenon occurs, 

resulting in the generation of leakage 

current. 

 Attenuate the power of PV 
modules. 

 Shorten the life of PV mod-

ules. 

It can be repaired in 
parallel with the inverter 

DC input by adding a 

PID repair device. ** 

LID 

 Impurities and defects in the battery. 

 High temperature. Environment. 

 Attenuate the power of PV 

modules. 

 Shorten the life of PV modules. 

Can be repaired within a 

certain period. ** 

Shading and 

soiling 

 Such as gas, dust, and another occlusion.  Affect the efficiency of PV 
modules. 

 It may cause hot spots. 

As long as the obstruc-
tion is removed, the fault 

can be eliminated. 

** 

Inverter failure modes 

 Over-voltage, over-current, over-temperature. 
 Over-voltage, harmonic current, high 

temperature, rapid charge, and discharge. 

 The fan’s power supply is damaged, 
or foreign objects enter the fan. 

 Cause significant energy loss 
in PVS. 

Depending on where the 
failure occurred, it is divided 

into recoverable failures and 

non-recoverable failures. 

*** 

Bypass diode failures 

 The reverse voltage is too large, 

resulting in an electrical breakdown. 
 Exceeding the junction temperature 

range. 

 Cause abnormal appearances 

such as peeling of packaging 
materials and melting of back-

planes. 

 The junction box is de-
formed or even melted by heat. 

Cause fire. 

No current passage can be 

recovered in the thermal 
breakdown, and electrical 

breakdown is irreversible. **** 

Junction box failures 

 Component welding process quality 

problems. 
 Component sealing process quality 

problems. 

 Shadow occlusion, cracks, and other 
issues. 

 Lightning strike. 

 Reduce the efficiency and 

reliability of PVS. 
 Cause damage and fire. 

It needs to be disassem-

bled and repaired. 

**** 

Ground faults 

 Cable insulation damage caused by 
aging, corrosion, or animal bites. 

 Ground fault inside the PV module. 

 Unexpected short circuit between the 
conductor and the earth. 

 DC power supply short circuit. 

 The switch burns out. 
 Inverter failure. 

 Causes fire. 

Divided into recoverable 
and non-recoverable faults; 

recoverable faults are auto-

matically eliminated. 

****
* 

Line-line faults 

 Cable insulation damage caused by 

aging, corrosion, or animal bites. 

 Reduce the efficiency and 

reliability of PVS. 

 Cause damage and fire. 

It takes a certain amount 

of time to recover. **** 

Arc faults 
 Loose terminal block. 

 Aging, line insulation skin rupture. 

 Causes fire. It takes a certain amount 

of time to recover. 
**** 
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Fig. 4.  PVS fault type diagram. 

A. PV Module Failures Modes 

PV modules (or solar panels) are the core and most 

pivotal components of PV power generation systems. 

The quality of PV modules determines the quality of PV 

power stations, and is the determining factor in the 

effective and stable operation of the power stations for 

their lifetime of 25 years. 

1) EVA Discoloration 

Polymer encapsulants manufactured from EVA co-

polymers are extensively used in crystalline silicon 

(c-Si) PV modules for component packaging [19]. 

Chemically, EVA discoloration is affected by multiple 

factors, among which formulation additives and curing 

conditions have significant impact, as they create syn-

ergistic chromophores from additives and curing prod-

ucts that lead to increased discoloration rates [20]. An-

tioxidants, on the other hand, play a vital role in sup-

pressing chromophore production [21]. EVA discolor-

ation is a severe and permanent fault of PVS, resulting 

in a significant decrease in module power output [22]. 

2) Delamination 

Delamination can significantly affect the perfor-

mance and reliability of PV modules [23]. When the 

layered area is small, it will affect the high-power fail-

ure of the battery module, and when the layered area is 

large, it will directly lead to the failure and scrapping of 

the battery module. Step-heated active infrared ther-

mography can detect and characterize defects in PV 

modules [24]. Delamination is a permanent failure and 

cannot be recovered from. So once it occurs, the PV 

module needs to be replaced. 

3) Shading and Soiling 

In the field of PV technology, shadows can be caused 

by pollution, manifesting as either soft shadows, such as 

those caused by air pollution like smog, or hard shad-

ows, resulting from accumulated dust or solid objects 

like buildings obstructing the passage of sunlight. Both 

types can significantly impact the performance and 

reliability of PV modules [25]. Soft shadows, for ex-

ample, may affect the current supplied by the module 

while the voltage remains stable. Conversely, hard 

shadows may not affect the current but can cause a 

significant reduction in voltage. It is worth noting that 

both soft and hard shadows can lead to reduced per-

formance of the PV module. Therefore, it is necessary to 

develop effective strategies to mitigate the effects of 

shadowing on performance. 

4) Hot Spots 

The distribution of cell surface temperatures in solar 

cells operating in reverse bias mode is not uniform. This 

can lead to the emergence of local hot spots [26], posing 

significant reliability issues in PV panels, particularly 

when cells with different characteristics are joined to-

gether. This leads to mismatches that cause the cells to 

overheat and consequently reduces overall panel per-

formance. High temperatures induced by hot spots can 

cause permanent damage to PV panels, and this can 

induce harm to cell encapsulants or even result in sec-

ondary breakdown [27]. 

While bypass diodes are used for protection and can 

mitigate hot spots, they do not entirely prevent them nor 

the damage caused [28]. Thus, the presence of hot spots 

puts PV module lifetime and operational efficiency at 

risk. When evaluating whether a module is defective, 

two factors are considered: the temperature difference 

between the hot spot and the surrounding area and the 

voltage difference between the affected and unaffected 

PV modules. Both criteria are crucial for determining 

the extent of the defect and whether the module needs to 

be replaced [29]. 

5) Potential Induced Degradation 

Generally, leakage current flows from the module 

frame to the solar cell because of the potential differ-

ence, resulting in PID [30]. PID has become one of the 

most crucial aspects impacting PV modules and system 

overall performance and efficacy in recent years. In 

practice, PID can significantly impact solar power 

plants, leading to a minimum of 50% reduction in power 

generation. Bound to occur in the boundary cells of PV 

modules, PID is heavily influenced by factors such as 

voltage, temperature, humidity, and grounding mode. 

These are significant drivers of this phenomenon [31], 

[32]. Therefore, experts have advocated for various 

preventative measures, including optimizing the pro-

duction process, carefully selecting the appropriate 

materials, and implementing specialized systems for PV 

modules [33]. 

However, in addition to preventative measures, ap-

propriate PID recovery measures can be taken, often 

through standard methods such as negative electrode 

grounding for the centralized inverter, single point 

grounding for parallel connection of series inverters, 

and PID night compensation methods. With such 

measures in place, it is possible to prevent PID and 

recover from its harmful effects [32]. 

6) Light-induced Degradation 
LID is a natural phenomenon resulting from the 

physical reactions of the p-n junction of PV cells [34]. 

LID causes reduction in the short circuit current and  
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open circuit voltage of solar cells. The existing recogni-

tion of LID effects is mainly divided into two phenom-

ena: Bo-LID and Cu-LID. These two phenomena differ 

in their distinct characteristics and the defects they form. 

Bo-LID, for instance, presents itself with a rapid decay 

initially, followed by a slower decay rate. Bo-LID is 

entirely reversible if the solar cell is heated to 200 °C. 

Bo-LID and Cu-LID, as mentioned earlier, involve dis-

tinct degradation reactions that produce separate re-

combinant activity defects [35]. 

B. Inverter Failure Modes 

The PV inverter is a device that converts the variable 

DC generated by PV panels to AC that can be fed back to 

a utility transmission system or off-grid. This process is 

crucial for the operation of PVS. Inverters can experience 

hardware failures and significant energy losses at PV 

sites [36]. Various types of inverter faults can lead to 

such issues. For example, manufacturing, design, and 

control problems, and electrical component failures are 

the major defects that can occur in inverters. These faults 

can cause a range of problems, from minor issues that can 

be easily fixed to major issues that can result in signifi-

cant damage and downtime for the system [34]. 

To better understand the different types of inverter 

failures, Table Ⅱ summarizes the various failure modes 

that can occur. Knowing these potential failures and 

addressing them promptly, PVS owners and operators 

can avoid unnecessary energy losses and ensure the 

proper functioning of their systems. 

TABLE Ⅱ 

FAILURE MODES IN PV INVERTER COMPONENT 

Element Function Cause of failure 

IGBT Convert DC to AC 
Over-voltage, over-current, over-temperature, electrostatic discharge, latch-up and triggering of 

parasitics, charge effects of ionic contamination or hot carrier injection, external radiation [37]. 

Electrolytic capacitor Stored energy Over-voltage, harmonic current, high temperature, rapid charging, and discharging. 

Fan Inverter heat dissipation The fan power supply is damaged, or foreign matters enter the fan. 

MOSFET 
Controlling current through 

field effects 
Electrical stress, device structure or packaging issues [38]. 

.

C. Junction Box Faults 

The solar junction box, a critical component in PVS, 

is a multifunctional device responsible for safeguarding 

solar modules, linking solar cells and external wiring, 

and directing generated solar cell power to external 

circuits. Various issues can afflict junction boxes, in-

cluding poor fixation, wire corrosion, loose oxidation, 

and moisture penetration [34]. Such failures often pre-

cipitate physical harm and even fire incidents while 

degrading PVS’s dependability and efficacy [18]. 

Over time, the junction box has entered the era of in-

telligence with the introduction of anti-shadow shielding 

intelligent junction boxes [39] designed to minimize the 

risk of failure. These innovations have ushered in a new 

era in PV technology, leveraging intelligence and inge-

nuity to surpass the constraints of traditional junction 

boxes. Compared to the traditional bypass diode junction 

box, the anti-shadow masking intelligent junction box 

achieves maximum power point tracking of a single PV 

panel through an improved particle swarm optimization 

(PSO) algorithm. This can effectively improve the out-

put power of each PV module under shadow masking 

conditions during the PV module series connection 

process. It not only adapts to the complexity and varia-

bility of the PV module working environment, but also 

adjusts the PV module working voltage according to the 

load situation. 

D. Bypass Diode Faults 

Within a PV solar module, the bypass diode is a cru-

cial component that helps prevent silicon cell burnout 

caused by the hot spot effect. This diode is connected in 

reverse parallel at both ends of the solar silicon cell pack 

in the battery module. One possible failure mode is a 

short circuit, which is relatively easier to detect than an 

open circuit. Unlike the latter, the former increases 

power loss in the module and does not immediately 

power down. The possible failure mechanisms can in-

clude electrostatic discharge, thermal fatigue, thermal 

runaway, etc. [40]. 

Thermal runaway occurs when the operating diode 

junction temperature exceeds the critical temperature 

during the transition from forward to reverse bias. De-

tecting bypass diode failure early is crucial for pre-

venting potential hazards, such as decreased efficiency 

or even fires. So, it is necessary to thoroughly under-

stand the bypass diodes and their failure modes to en-

sure the optimal performance of the modules [41]. 

E. Ground Faults 

For PVS, GF can pose serious safety hazards and 

equipment damage. GF occurs when a current-carrying 

conductor unintentionally connects to a non-current-carrying 

conductor or ground, creating an abnormal flow of 

current that can cause fires, electric shocks, or equip-

ment failure. While the potential causes of GF are di-

verse, some common culprits include cable insulation 

damage due to environmental factors such as aging, 

corrosion, or animal bites, internal GF inside PV mod-

ules, and short circuits caused by accidental contact 

between conductors and ground [11]. 
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To diagnose GF in PVS, voltage-based methods have 

been widely used [42]. However, impedance-based 

approaches offer a more effective way of identifying GF. 

A healthy PVA has a specific impedance between pairs 

of nodes, while any GF will alter the impedance value, 

allowing for detection using spread-spectrum time do-

main reflection (SSTDR)-based methods [43]. PVS can 

be monitored through these techniques, and GF can be 

detected early, minimizing safety risks and preventing 

costly equipment failures. 

F. Line-line Faults 

Unexpected short circuit connection between two 

different potential points in a PVA may lead to LLF, 

such as short-circuit defects and double-ground faults 

[44]. Various methods are available for detecting LLF, 

each with advantages and limitations. For instance, the 

ensemble learning model based on I-V characteristics 

can effectively detect LLF by analyzing the voltage and 

current behaviors of the PV cells [45]. Similarly, the 

detection method based on current string behavior and 

current sensing can also provide valuable insights into 

the occurrence of LLF [46]. 

It is crucial to protect a PVA from LLF, and several 

protection standards are available to guide the process. 

However, these standards have different compatibility 

and shortcomings, and it is crucial to carefully assess 

and select the most appropriate measure for a given 

application. For example, the national electrical code 

(NEC), international electrotechnical commission (IEC), 

and underwriters laboratories (UL) protection standards 

can offer guidelines for LLF protection, but they also 

have their respective limitations [47]. 

G. Arc Faults 

AF are a severe concern for grid safety and can result 

in fires. There are two main types of AF: series and 

parallel. Both types are hazardous and can cause severe 

damage to the grid. However, series AF poses a higher 

risk for fires than parallel because of its difficulty in 

detection [48]. This is because the current level de-

creases during series AF, so the over-current protection 

fuse will not activate. 

In PVS, AF can also be classified as DC or AC. Un-

like AC AF, DC AF in a PVS do not exhibit a zero 

crossing phenomenon, making it challenging to elimi-

nate them. Also, the existing AC detection technologies 

are not directly applicable to DC detection [49]. 

AF detection methods are typically based on either 

current or voltage. For instance, the pseudo-Wigner-Ville 

distributed algorithm can be used for AF detection in 

PVS [50]. Unique detection methods can also be used, 

such as the series DC AF detection algorithm based on 

PV operating characteristics and detailed extraction of 

pink noise behavior [51]. 

Ⅳ.   FAULT DIAGNOSIS METHODS 

There are many PV system fault diagnosis methods, 

based on different principles and methods. This section 

will mainly review and discuss the electrical methods 

for fault diagnosis of PVS. Conventional electrical 

methods can be divided into four categories: 

1) Statistical and signal processing approaches (SSPA); 

2) I-V characteristic analysis (IVCA); 

3) Artificial intelligence technology (AIT). 

4) Circuit structure method (CSM). 

A. Statistical Signal and Processing Approaches 

Analyzing waveform signals is the mainstay of SSPA. 

Time domain reflectometry (TDR), earth capacitance 

measurement (ECM), and SSTDR are three typical 

methods, and the three SSPA models are shown in Fig. 5. 

ECM is typically used to detect the disconnection posi-

tion on transmission lines, which are considered as 

distributed parameter circuits. When a power transmis-

sion line experiences a disconnection fault, the ratio of 

the grounding capacitance value to the fault point (CX) 

and the capacitance value of the entire line (CD) is used 

to calculate the distance (X) from the starting point to 

the fault point, as shown in Fig. 5(a) [52]. The principle 

of the TDR diagnostic method is that when a signal is 

transmitted along a certain transmission path, any im-

pedance change in the transmission path will be re-

flected by some of the signal while the other part of the 

signal will continue to transmit along the transmission 

path. TDR calculates the impedance change by meas-

uring the voltage amplitude of the reflected wave. If the 

time from the reflection point to the signal output point 

is measured, the position of the impedance change point 

in the transmission path can be calculated. The SSTDR 

diagnostic method operates on the principle of gener-

ating a pseudo-random sequence using a signal gener-

ator. This sequence is then modulated by a local cosine 

to achieve spread spectrum characteristics. The modu-

lated signal is subsequently transmitted as a test signal 

to the cable undergoing testing. When encountering a 

fault point, resulting in an impedance mismatch point in 

the cable, the test signal is reflected at that point and 

back to the sending end. The received signal is then 

correlated with the local reference signal for calculation. 

The delay of the two signals is determined through peak 

detection, and then the distance between the fault point 

and the signal sending end can be calculated [53]. 

The TDR and ECM fault diagnosis methods have been 

extensively discussed in literature [52]. Also, two meth-

ods for locating PV module string faults have been stud-

ied in outdoor experiments. It should be noted that ECM 

is particularly well-suited for detecting the disconnection 
position between modules in the series, irrespective of 

irradiance changes. TDR can be used in periodic inspec-

tions to detect system degradation. Reference [54] illus-

trates TDR’s ability to detect, identify, and locate the most 
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common fault conditions, such as circuit interruptions, 

insulation defects, wiring abnormalities, etc. 

Testing PVS with reflectometry is complex. With the 

recent addition of communication signals for fast 

shutdown, which can interfere with or be interfered by 

the TDR signal, an alternative to standard TDR is 

SSTDR. SSTDR has been proposed for ground fault 

diagnosis in PVS without relying on the amplitude of 

the fault current. Unlike TDR, which compares the 

signal from the input transmission line with the re-

flected signal caused by impedance mismatch in the bar, 

SSTDR is based on the impedance change in PVS 

caused by ground faults rather than the fault current 

value. It is highly immune to noise signals, making it a 

reliable option even without solar radiation [43]. Re-

search in [55] shows that future arc faults can be pre-

dicted by measuring the impedance change without 

considering the inverter’s working state. 

 

Fig. 5.  Three SSPA models. (a) ECM model diagram. (b) Time 

domain reflectometry model. (c) SSTDR model diagram. 

In [56], SSTDR can detect the natural aging or deg-

radation state of the MOSFETs in a PV live inverter, 

allowing for the detection of any degradation related to 

the power semiconductor devices inside the circuit 

without interfering with the circuit’s regular operation. 

Reference [57] proposes a fault location diagnosis 

method using SSTDR, where correlating the incident and 

reflected PN signals determines the distance to the fault. 

The study conducted in [58] delves into the employment 

of SSTDR to locate and detect disconnections in vast PV 

strings. The significance of SSTDR resolution, frequency, 

and attenuation in identifying disconnections within the 

system is analyzed. If these parameters are appropriate, 

disconnections within PVS can be judged, and the fault is 

detected and located by the peak of the signal. In [59], the 

ability of SSTDR to detect and locate damaged PV cells 

and modules in the string is evaluated. It is determined 

that bus damage can only be seen when an opening is 

created by cutting all inter-cell busbars. 

Despite its succes, the study in [60] highlights the 

limitations of SSTDR in the fault diagnosis of several 

PVS. One such shortcoming is its susceptibility to en-

vironmental factors such as temperature and humidity. 

The precision of SSTDR-based fault diagnosis is greatly 

affected by the number of baselines. Consequently, a 

method for determining the number of baselines re-

quired for SSTDR-based fault detection under any cli-

matic conditions is proposed. 

B. I-V Characteristic Analysis 

The IVCA method, based on the characteristic output 

curve law of PV modules, allows for the analysis and 

detection of faults based on voltage, current, and 

maximum power point indicators, which vary depend-

ing on the spot and environmental conditions. The I-V 

curve in a fault condition is shown in Fig. 6. While the 

traditional method of I-V curve acquisition is done 

through the use of handheld tools, advances in tech-

nology have given rise to alternative methods, such as 

the portable, lightweight method using capacitive load 

tracking PV string I-V curve [61] and the application of 

deep learning for automatic tracking. 

 
Fig. 6.  I-V curve in a fault condition. (a) PID fault I-V curve 

characteristics. (b) Hotspot  fault I-V curve characteristics. (c) 

Masking fault I-V curve characteristics. (d) Pollution fault I-V 

curve characteristics. (e) Aging fault I-V curve characteristics. (f) 

Bypass diode short circuit fault I-V curve characteristics. 

Reference [62] investigates the relationship between 

I-V characteristics and various fault factors and the 

effect of irradiance and shadow coverage on I-V char-

acteristics. Reference [63] introduces an efficient pre-

diction model capable of predicting the I-V curve of PV 

modules at any irradiance and temperature value. This 

provides a means of addressing the uncertainty caused 

by environmental factors, as explored in [64]. This 
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proposes the use of a long short-term memory (LSTM) 

model for predicting the solar radiation and temperature 

of PV modules. 
Reference [65] proposes to explore an online meth-

odology for diagnosing cracks within PV modules using 
the I-V curve. The approach relies on the inconsistent 
reverse bias characteristics of pyrolysis PV modules, 
and the derivative method is employed to diagnose the 
crack fault of the PV module. [66] advocates a rapid 
diagnosis approach by comparing the I-V curve ob-
tained from the component optimizer with the analyzed 
I-V curve for identifying HSF in PV modules. Reference 
[67] formulates an online diagnosis technique for a 
data-driven PV string current mismatch fault grounded 
on the I-V curve. This innovative approach can expe-
diently and precisely detect the I-V curve's inflection 
point and step characteristics when the present mis-
match fault occurs. Given that PID faults can be similar 
to other fault characteristics, most existing methods for 
diagnosing PID faults are costly and time-consuming. 

In [68], the degree of the PID fault is assessed by de-
tecting the open circuit voltage at high and low irradiation 
intensities. In [69], multiple fault diagnosis methods are 
integrated to create a step diagnosis method. The open 
circuit voltages of the component at high and low irradi-

ances are obtained by I-V scanning, namely 
1V

oc
 and 

2V
oc

, 

respectively. For
1 2/ 1.1V V

oc oc
≥ , the component is deemed 

to have PID. Whenever there is no step, the aging thresh-
old FF determines whether an aging failure occurs. When 

there is a step, the
maxD value (the distance from the point 

on the I-V curve to the detection line) is employed to di-
agnose glass chipping and hot spot faults. A flowchart is 
illustrated in Fig. 7 to elucidate this process further. 

In [70], a novel technique for estimating PV module 
degradation is proposed that involves the extraction of 
the I-V curve under specific conditions, i.e., before the 
inverter is activated, thus avoiding the need for any 
additional circuitry or data and allowing for uninter-
rupted operation. [71] empirically demonstrates that the 
dI/dV-V curve. Reference can be used to diagnose the 
degradation of the PVS. The variance value of an ab-
normal PV subarray differs greatly from that of a normal 

one, regardless of the influence of weather factors. Ref-
erence [72] combines a hybrid artificial bee colony and a 
semi-supervised extreme learning machine (ABC-SSELM) 
while also considering the impact of dust. The 
ABC-SSELM diagnostic model requires only a small 
amount of labeled data and has high accuracy. 

 

Fig. 7.  IVCA step method flow chart. 

C. Artificial Intelligence Techniques 

Although electrical methods are widely used, artifi-

cial intelligence diagnostic methods are constantly be-

ing developed. They are divided into three categories: 

1) Neural network methods (NNM); 

2) Support vector machine (SVM) methods; 

3) Fuzzy control algorithm methods (FCAM). 

In order to better understand the advantages and dif-

ferences of different types of AIT diagnostic methods, 

Table III summarizes various AIT diagnostic methods. 

Table Ⅲ  

AIT DIAGNOSTIC METHOD STATISTICS 

Diagnostic methods Method subclass Optimize the direction 

NNM 

BP neural networks [79], [80] The learning process converges quickly and robustly. 
RBF neural networks [81] Reduce environmental impact. 

PNN neural networks [82] Reduce the sample size. 

LSTM neural networks [83] Add fault identification methods. 

ART neural networks [84] It enhanced signal extraction capabilities. 
BAM neural networks [85] Remove redundant failure data. 

SVM 

KNN-SVM [87] Increase classification rates. 

Genetic algorithm VCM [90] Core parameters are optimized. 

PSO-VCM [91] Core parameters are optimized. 
ABC-SVM [92] Core parameters are optimized. 

SOA-SVM [93] Core parameters are optimized. 

FCM 

FM-FCM [96] Calculates the degree of membership of the running data to the cluster center. 

SRF-FCM [97] Create a new classification model. 

3σ-FCM [98] Only fault string current is required. 

GKFCM [100] Eliminate the problem of noise and failure that is difficult to distinguish. 
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1) Neural Network Method 

Fault diagnosis is a challenge in PVS. Various NNM 

have been developed to tackle this issue, each with 

unique neural network structures. The core of artificial 

intelligence network fault diagnosis methods is to de-

termine the number of nodes and layers, and first re-

quires fault feature selection and processing of the 

original data. There are many methods for feature ex-

traction, such as using fault tree analysis to obtain the 

minimum cut set of the fault tree by replacing the bot-

tom event matrix with logic gates [73], and then using 

wavelet features to obtain representative 

high-frequency signals, along with string current and 

open circuit voltage, as inputs to the neural network [74]. 

Some methods use PVA output voltage, output current, 

output power, inverter output voltage, output current, 

and light intensity as inputs [75]. The most widely used 

feature quantities are the maximum power point voltage 

mmp( )U , maximum power point current mmp( )I , open 

circuit voltage 
oc( )U , and short circuit current 

sc( )I  

[76]. In addition, a method to reduce the number of 

nodes and layers by denoising the original data is used. 

Because of external influences, the data contains noise, 

so the denoised data leads to better training effect [77]. 

One of the most widely used NNM is the back 

propagation (BP) neural network, first introduced in 

1986 by Rumelhart and McClelland. This machine 

learning algorithm is particularly suited for dealing with 

nonlinear problems, which they often are in PVS fault 

diagnosis. The BP neural network consists of a 

three-layer network, namely the input, output and hid-

den layers. The input variables for the input layer of the 

BP neural network model proposed in [76] are mmpU , 

mmpI , ocU  , and scI  of the PVA. The corresponding 

output variables can reflect PVS faults in four different 

situations: short circuit, open circuit, abnormal aging, 

and local shadows. The BP neural network structure 

diagram is shown in Fig. 8. 

 

Fig. 8.  BP neural network structure diagram. 

The number of nodes in the hidden layer is a crucial 

issue, and can be determined by either of the following 

two formulas: 
1

2
1 ( )n n r a                                (1) 

where 
1n  is the number of hidden layer elements; n is 

the number of input units; r is the number of output units; 

and a is a constant between 1 and 10. 

1 2logn n＝                                        (2) 

Since the four-parameter units of the input layer are 

different, and their order of magnitude difference is large, 

it is necessary to normalize the input layer data by [78]: 

min

max min

n

n

I I
P

I I





                                 (3) 

where 
nI is the original input data; 

maxI  and 
minI  are the 

maximum and minimum values in the original input 

data; and 
nP  is the normalized input data. The ANN 

diagnostic flowchart is shown in Fig. 9. 

 
Fig. 9.  ANN diagnostic flowchart. 

In recent years, other neural network algorithms have 

also been proposed with unique advantages. For in-

stance, reference [79] offers a PVA fault diagnosis 

method using a BP neural network optimized by a ge-

netic algorithm, which optimizes the weight and 

threshold of the BP neural network by using the genetic 

algorithm’s global search performance to improve 

convergence speed and accuracy. Similarly, reference 

[80] proposes a PVA fault diagnosis method based on 

adaptive weighted particle swarm optimization 

(AWPSO) for a BP neural network. This can solve the 

problems of slow convergence, poor robustness, and 

quickly falling into a local minimum. It does this by 

exploiting AWPSO’s good global search capability. 

Additionally, reference [81] proposes a fault-diagnosis 

method for PV modules with an improved radial basis 

function (RBF) neural network based on a k-means 

clustering algorithm. This achieves a fault diagnosis 

accuracy rate of 96.67%. 

Reference [82] investigates a PVA fault diagnosis 

method based on a probabilistic neural network (PNN). 
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The PNN is a relatively simple feed-forward neural 

network proposed in 1989 that can replace nonlinear 

learning algorithms with linear learning. PNN consists 

of the input, pattern (hidden layer), summation layer, 

and decision layers (output layer). The input variables 

are also typically 
mmp ,U  

mmp ,I  
ocU  and sc .I  A PVA 

fault diagnosis model based on an LSTM neural net-

work is proposed in [83], which studies the influence of 

different fault states on the output characteristics of 

PVS through simulation and then obtains fault charac-

teristic parameters. Reference [84] develops a PV fault 

diagnosis method based on an improved adaptive res-

onance theory (ART) neural network, which charac-

terizes different fault characteristics using a matrix, 

allowing for the accurate diagnosis of PVS faults. In 

addition, reference [85] investigates a fault diagnosis 

method that integrates the theory of the fault tree (FT) 

and bidirectional associative memory (BAM) neural 

network. 

2) Support Vector Machine Method 
In machine learning, SVM is a classic binary classifi-

cation algorithm with low sample demand, short training 

time, good classification recognition effect, and strong 

generalizability. The core concept of SVM is to construct 

an optimal hyperplane that classifies distinct data points 

and maximizes the classification interval. The principle is 

illustrated in Fig. 10, where H denotes the hyperplane, 

while 
1H  and 

2H  are the parallel classified surfaces that 

are equidistant from H. The optimal hyperplane H can be 

obtained by maximizing the spacing between 
1H  and 2H .  

For a linearly separable training sample data set ( , )i ix y , 

1,2, ,i n , dix R ,  1, 1iy   , the categorical hy-

perplane equation is expressed as 0wx b  . The opti-

mal hyperplane can be determined by transforming it into 

a constraint-based formulation and solving the subsequent 

equation of: 
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where w is the weight vector of the hyperplane; b is the 

bias;   is the relaxation variable; C is the penalty factor 

that determines the magnitude of  ; and s.t. represents 

the constraint condition. 

To solve the optimization problem, the Lagrange dual 

function is constructed as: 

1 1
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           (5) 

where  is the Lagrange multiplier. When mapping 

low-dimensional data to high dimensions, the kernel 

function needs to be determined, max represents the 

maximum value. 

The optimal classification function is given by: 

0

ˆ( ) sgn[ ( , ) ]
n

i i i j

i

f x y K x x b


                 (6) 

where ,( )i jK x x  is the kernel function; sgn is a step 

function; and b  is the estimated value of b. The selec-

tion of different kernel functions impacts SVM’s clas-

sification ability and application scope. Commonly used 

kernel functions include the polynomial, linear, Gauss-

ian, and sigmoid kernel functions. The SVM diagnostic 

flowchart is shown in Fig. 11. 

 

Fig. 10.  Schematic diagram of SVM. 

 

Fig. 11.  SVM diagnostic flowchart. 

In the realm of DC PVS, researchers have proposed 

various AF detection and diagnosis methods. An ap-

proach based on wavelet transform and SVM is intro-

duced in [86], where features are extracted from the 

voltage/current signals using wavelet transform. SVM 

is used for AF identification, e.g., reference [87] pre-

sents an intelligent algorithm for PV generator short 

circuit detection and diagnosis using a hybrid classifier 

produced by a mixture of SVM technology optimized 

by the K-NN tool. The proposed hybrid classifier ex-

hibits high classification and low error rates. 

Reference [88] proposes an AF detection method 

based on Hilbert spectral analysis, singular value de-
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composition, and SVM, effectively overcoming the 

influence of different loads and noise on feature ex-

traction. Reference [89] reports an accuracy rate of 

99.4% for fault detection and 98% for fault diagnosis, 

while the technology employed does not require any AC 

variable of PVS. In [90], genetic algorithms are pro-

posed to optimize the PVA fault diagnosis of SVM. The 

parameters are optimized using a genetic algorithm, 

resulting in a significant improvement in classification 

accuracy. In [91], the particle swarm optimization (PSO) 

algorithm is used to optimize the parameters, and the 

PSO-SVM PVA fault diagnosis model is established. 

The fault detection accuracy of the model reaches 

99.89%, and the classification accuracy is 98.68%. 

Reference [92] uses an artificial bee colony algorithm to 

optimize the fault diagnosis mode of SVM, achieving 

higher diagnostic accuracy than the PSO-SVM model, 

whereas reference [93] demonstrates that the fault di-

agnosis accuracy of the SVM model after seagull op-

timization algorithm (SOA) optimization is signifi-

cantly improved. 

3) Fuzzy Control Algorithm Methods 

FCAM are generally based on the fuzzy C-means 

(FCM) clustering algorithm for fault diagnosis. The 

FCM clustering algorithm uses the membership func-

tion to establish the degree to which each data point 

belongs to a particular cluster. The algorithm automat-

ically classifies the sample data by obtaining the 

membership degree of each sample point to all class 

centers by optimizing the objective function. The FCM 

algorithm flowchart is shown in Fig. 12. 

 

Fig. 12.  FCM algorithm flowchart. 

To achieve this, FCM clustering divides the poly 

scale ( 1,2, , )jx j n  corresponding to n PV power 

generation units into c subgroups, and finds the center 

point 
iv  ( 1,2, , )i c  of the clustering index in each 

group so that the objective function value reaches the 
minimum. The objective function is a marvel of com-
plexity, shown as: 

2
1 1

c n
m

m ij i i

i j

J v x
 

                       (7) 

where 
2i iv x  is the Euro-style distance between the 

ith cluster center point and the jth PV power generation 

unit clustering index;  1,m   is the fuzzy coefficient, 

generally taken as 2; and ij  is the membership degree 

value of the group corresponding to the ith cluster center 
point of the jth PV power generation unit. It meets the 
normalization requirements: 
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To find the necessary conditions for the minimum 

value of (8), a function is constructed: 

1 1

( 1)
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                      (9) 

where 
i  is the Lagrange multiplier of the n constraints 

of (9). Finally, to derive all input parameters, the nec-

essary conditions for (8) to reach the minimum value are 

expressed by the following equation: 
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The FCM algorithm output comprises two fundamen-

tal parts. The first part features c clustering center points, 

each representing the average characteristics of the cor-

responding group’s PV power generation unit clustering 

index. The second part has a fuzzy division matrix of 

(c×n), indicating the membership degree of each PV 

power generation unit belonging to each group. The 

group to which each unit belongs is determined accord-

ing to the fuzzy set maximum membership principle [94]. 
Reference [95] uses an algorithm combining FCM 

and normal distribution membership functions. This 
method sorts the membership sizes to get the type of 
failure of the diagnosed sample. In [96], the fuzzy 
membership (FM) algorithm is leveraged to calculate 
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the membership degree of operating data and clustering 
centers, thus determining typical fault types of the PVA. 
However, when the PVA to be diagnosed is too large, 
diagnosing subtle faults can become challenging. To 
address the issue, reference [97] proposes a PV fault 
diagnosis method that combines the algorithm based on 
the stacking random forest (SRF) method with FCM. 
This method uses the FCM-SRF classification model 
composed of the clustering center and SRF classifica-
tion model obtained by FCM to judge the status of PV 
modules. In [98], the three times standard deviation (3σ) 
criterion and FCM algorithm is combined, and the dif-
ference between PV strings, combined with the 3σ bar, 
is used to obtain the string fault factor. This helps to 
locate the DC side fault of the PV power station with the 
use of current string data only. 

Reference [99] explores the diagnosis of the health 
state of the PVS. This is divided into four categories: 
health, sub-health, partial shadow, and fault state. The 
cluster center is obtained through FCM, while the paper 
also summarizes three indicators that affect the health 
status of PV modules, namely, light transmittance, se-
ries and parallel resistances. Reference [100] proposes a 
fault diagnosis method for PVA based on Gaussian 
FCM (GKFCM), which eliminates the difficulty of 
distinguishing between multiple faults and a single fault, 
and the problem of data noise by normalizing the three 

characteristic quantities of voltage 
normV , normalized 

current 
normI , and fill factor FF. 

D. Circuit Structure Method. 

The PVS is a complex network of multiple PV mod-

ules in various configurations, including series and 

parallel connections. To diagnose faults in such systems, 

CSM involves adding sensors to the circuit to detect the 

current or voltage of each module. The data collected in 

the fault state are then compared with the standard data 

to determine whether there is a fault. However, this 

method has its limitations, particularly when applied to 

large-scale PV power plants requiring many sensors. 

Adding such sensors can be prohibitive, and the amount 

of analysis data needed can be overwhelming [101]. 

To address these issues, researchers have been ex-

ploring ways to improve the circuit structure of the PVS. 

One such approach is the series-parallel (SP) array, 

introduced in [102]. This array comprises N strings and 

M components. Its fault diagnosis involves identifying 

the faulty string through the current sensor, determining 

the wrong branch, and then diagnosing the fault PV 

module using the voltage sensor. The schematic dia-

gram of the SP structure is shown in Fig. 13(a). 

 
Fig. 13.  Three types of circuit structure diagrams. (a) SP structure schematic. (b) TCT structure schematic. (c) CTCT structure 

schematic. 
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Reference [103] proposes a circuit structure method 

for the total-cross-tied (TCT). When the circuit structure 

of a PV array adopts a TCT structure, N PV modules are 

first connected in parallel and then connected in series. 

A PVA using this structure mainly uses current sensors 

to diagnose PV module faults. Compared with the fault 

diagnosis method for PV modules based on SP structure, 

the fault diagnosis method for PV modules based on 

TCT structure significantly reduces the number of cur-

rent sensors and detection costs. It measures the total 

output current and total voltage of the PV array during 

normal operation. The faulty row position is determined 

based on the values of each voltage sensor, and then the 

faulty column position is determined based on the val-

ues of the current sensors connected to each row of the 

parallel PV cells. If the current value measured by a 

current sensor is less than the average of the total cur-

rent, the fault is located in the column of the current 

sensor with the lower measured current value. The TCT 

structure schematic is shown in Fig. 13(b). 

Another circuit structure proposed in [104] is based 

on the complex-total-cross-tied (CTCT) array method. 

The fault diagnosis of CTCT structured PVA is to 

equate the PV cells of a TCT structured PVA to a con-

nection method of first parallel and then series connec-

tion. Each layer is composed of N PV cells in parallel, 

and two adjacent layers are connected to the current 

sensors of layer m. The current values of the current 

sensors in layer m are compared with the set value to 

determine the location of the fault, and then the current 

values of the current sensors in layer m-1 are sequen-

tially detected until the first layer. The CTCT structure 

schematic is shown in Fig. 13(c). 

In summary, while the conventional CSM method for 

fault diagnosis in a PVS has its limitations, new and in-

novative ways are being developed to improve the circuit 

structure of the systems to reduce the number of sensors 

required while maintaining accurate fault diagnosis. 

E. Other Fault Diagnosis Techniques 

Currently, most PV fault diagnosis methods are 

electrical diagnosis methods, whereas some nonelec-

trical diagnosis methods have also been proposed. This 

paper provides an overview of nonelectrical diagnosis 

methods which are divided into two categories: 

1) Infrared image analysis (IIAM); 

2) Mathematical model (MMM). 

1) Infrared Image Analysis Method 

IIAM is a diagnostic approach based on the funda-

mental principle of dividing infrared rays into near-, 

mid- and far-infrared rays based on their different 

wavelengths. Objects usually have different tempera-

tures, and higher temperature objects emit more radia-

tion than low temperature objects. The general infrared 

image analysis method collects the radiation intensity of 

the object through the thermal imager, and then it pro-

cesses and analyzes the image to carry out fault diag-

nosis. IIAM has been categorized into three stages: data 

collection, feature extraction, and classification. 

Reference [105] proposes a method to diagnose 

whether the PV module has a hot spot fault according to 

the Matlab algorithm and locate where the hot spot fault 

occurs. The method is shown in Fig. 14, and it has the 

advantage of high accuracy and can diagnose the loca-

tion and number of defects. A non-contact electro-

magnetic induction excitation infrared thermal imaging 

technology is proposed in [106]. The general infrared 

thermal imaging technology is passive and can only 

carry out large-scale fault diagnosis and rough detection. 

 

Fig. 14.  Infrared flow chart. 
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However, with the emergence of various PV cells, the 

internal structure of PV cells is more complex, and the 

forms of damage are passive, so thermal imaging can 

only detect faults in the power generation state. The 

method proposed is an active electromagnetic, infrared 

imaging technology, also known as eddy current ther-

mal imaging. This method uses electromagnetic induc-

tion (EMI) parameters to provide a heating effect with 

EMI, generating eddy currents and temperature fields. 

Defects such as cracks and damages affect eddy currents 

and thermal diffusion, resulting in abnormal surface 

temperature of PV cells and modules. Thus, it is more 

effective to distinguish defects in PV cells and modules 

when the temperature of PV modules rises rapidly. 

2) Mathematical Model Method 

The essence of MMM is to create an equivalent 

model which is then simulated through various software 

such as Matlab, Pspice, Psim, etc. while keeping a tab 

on different environmental factors and other influencing 

factors. A predictive mathematical model is established 

by collecting corresponding data, which are then com-

pared with the mathematical model obtained from the 

field data to diagnose the PV failures. The flow chart of 

the mathematical model method is shown in Fig. 15. 

 

Fig. 15.  Flow chart of mathematical model method. 

The PV equivalent circuit diagram in Fig. 16 is usually 

followed to construct the mathematical model. Then a 

series of formulas are derived through Kirchhoff's cur-

rent and voltage laws to establish the corresponding  

mathematical model. In Fig. 16, phI  represents the 

photogenerated current of the PV module; 
LR represents 

an equivalent external load of the PV module; while 
SR  

and 
shR  represent the equivalent series and parallel 

resistances of the PV module, respectively; the voltage 
at the output of PV module is represented by V; and the 
current at the output of PV module is represented by I 
[107]. The relationship between the parameters in Fig. 
16 can be expressed as: 

S S

ph 0

sh

q( )
[exp( 1)]

V IR V IR
I I I

d T R

 
   


        (11) 

where 
0I  is the reverse saturation current of the diode; d 

is the ideal factor of the diode; σ is the Boltzmann con-

stant (1.38×1023 J/K); q is the electron charge and the 

value is 1.602×1019 C. 

 

Fig. 16.  Equivalent circuit diagram of a PV module. 

Reference [108] proposes an equal division method 

that uses an iterative data method to obtain the PV I-V 

characteristics of the mathematical model. The I-V 

feature is used to obtain the minimum value of shR , 

while 
shR  can be derived from (11). If its minimum 

value is too small, the current value will also decrease 

accordingly, causing excessive deviation of the I-V 

curve. Reference [109] proposes a unidirectional di-

ode-based model, which uses an iterative method to 

determine all diode key parameters, whereas [110] of-

fers a way to determine the five parameters of PV 

modules without the iterative process. Reference [111] 

suggests a concept of the influence of weather factors on 

the performance of PV devices, and applies the structure 

identification method of interval difference equation to 

form an interval discrete model. To more clearly 

demonstrate the performance and applicability of vari-

ous FD methods, Table IV summarizes the various fault 

technologies of PVS. 

TABLE Ⅳ 

FAULTS DIAGNOSIS METHODS IN PVS 

Methods Reference Year Subjects 
Temporally 

or permanent 

Online 
or 

offline 

Complex-
ity / 

integration 

Eco-

nomic 

Accu-

racy 

SSPA 
TDR and 

ECM 
[54] 1994 

Detect, identify, and locate the most common fault 

conditions, such as circuit interruption, insulation 

defect, wiring abnormality, etc. 

Permanent 

and tempo-

rally 

Online *** *** *** 
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Continued 

Methods Reference Year Subjects 
Temporally 

or permanent 

Online 

or 

offline 

Complex-

ity / 

integration 

Eco-

nomic 

Accu-

racy 

 

 [52] 2007 

Locate the PV module string fault, detect the discon-

nection position between modules in the string, and 

detect the degraded position (see the increase of series 

resistance between modules). 

Permanent Online ** *** ** 

SSTDR 

[43] 2013 Grounding fault diagnosis of PVS. Permanent Online *** ***** **** 

[55] 2014 Arc fault diagnosis of PVS. Permanent Online **** ***** **** 

[56] 2014 

Determine the internal impedance of the PV inverter, 

and detect the natural aging or degradation state of 

MOSFETs in the PV live inverter. 

Permanent Online *** *** *** 

[57] 2018 Diagnose the fault location of PVS. Permanent Offline ***** **** *** 

[59] 2020 
Detection of bus damage and physical impact damage 

to glass and silicon of full-size PV modules. 
Permanent Offline **** *** ** 

[58] 2021 Detect and locate disconnection in large-scale PV strings. Permanent Online *** *** ** 

[60] 2021 PVS fault diagnosis. Permanent Offline *** *** ** 

IVCA 

[71] 2002 Diagnosis of PVS degradation. Permanent Online *** *** *** 

[62] 2003 

Diagnose the failure of PVS and judge the loss factors 

(such as shadow degradation, disconnection, and other 

factors). 

Both Online *** *** ** 

[66] 2019 Rapid diagnosis of PV module hot spot failure. Permanent Online *** *** *** 

[69] 2019 Diagnosis of PVS PID, aging, glass crack, hot spot. Both Online **** *** *** 

[65] 2020 
Effectively diagnose PV module cracks and local 

shadow faults. 
Permanent Online *** *** **** 

[68] 2021 Diagnose PVS PID fault. Permanent Online *** ***** **** 

[70] 2021 Estimate the degradation of PV modules. Permanent Online *** *** *** 

[67] 2022 On-line diagnosis of PV string current mismatch fault. Permanent Online **** ***** *** 

[72] 2023 

It can effectively identify faults under short circuits, 

two types of partial shading, abnormal aging, dan-

gerous pollution, and pollution conditions. 

Both Online **** *** *** 

AIT 

NNM 

[85] 2013 

It can diagnose PVA failure, battery failure, trans-

former failure, relay failure, AC power failure, 

primary circuit failure, etc. 

Permanent Offline *** ***** ** 

[79] 2021 

Diagnose open circuit faults, short circuit faults, 

aging faults, and shadows to improve its diagnostic 

accuracy. 

Both Online *** *** **** 

[80] 2021 
Diagnose open circuit faults, short circuit faults, aging 

faults, and local shadow faults to improve timeliness. 
Both Online *** *** **** 

[81] 2021 

To uneven light, detailed simulation analysis of 

electric breakdown and thermal breakdown, open 

circuit fault, and short circuit fault caused by lighting. 

Permanent Online ** ***** *** 

[82] 2021 
Diagnose open circuit faults, short circuit faults, aging 

faults, and local shadows. 
Both Online *** *** ** 

[83] 2021 

Accurately identify and locate faults such as open 

circuit, partial occlusion, shadow occlusion, and ash 

accumulation of PVA, and pre-judge PV hot spot 

faults in advance. 

Both Online ** *** *** 

[84] 2022 
Accurately identify short circuits, open circuits, 

shadow shielding, aging, and other faults. 
Both Online *** ***** *** 

SVM 

[87] 2014 PV generator short circuit detection and diagnosis. Permanent Online *** *** *** 

[86] 2016 Arc fault diagnosis of DC PVS. Permanent Online **** *** ** 

[91] 2017 
Diagnosis and classification of open circuits, short 

circuits, and shadow faults of PV modules. 
Both Online *** *** ** 

[89] 2019 

Distinguish between free fault, permanent fault (line, 

open circuit), and temporary fault (partial shadow) in 

the PVA. 

Both Online *** *** ** 

[90] 2019 
Diagnose the short circuit, open circuit, aging, and 

blocking fault of one or more components. 
Permanent Online **** *** *** 

[88] 2021 Arc fault diagnosis of PVS. Permanent Online *** *** *** 
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Continued 

Methods Reference Year Subjects 
Temporally 

or permanent 

Online 

or 

offline 

Complex-

ity / 

integration 

Eco-

nomic 

Accu-

racy 

  [92] 2021 
Diagnosis and classification of open circuits, short 

circuits, and shadow faults of PV modules. 
Both Online *** ***** **** 

  [93] 2022 
Diagnosis and classification of open circuits, short 

circuits, and shadow faults of PV modules. 
Both Online *** ***** ***** 

 FCAM 

[95] 2016 

Diagnosis and classification of open circuits, short 

circuits, shadow faults, and multiple mixed faults of 

PV module. 

Both Online *** *** *** 

[96] 2018 
Determine the short circuit, open circuit, partial 

shielding, and other faults of PV modules. 
Both Online **** ***** *** 

[98] 2018 DC side fault location. Permanent Online **** *** **** 

[100] 2018 
Diagnose short circuits and open circuit faults of PV 

modules. 
Permanent Online *** *** *** 

[97] 2019 

Diagnose the internal short circuit, global shadow, 

local shadow, abnormal aging, and other faults of PV 

modules. 

Both Online **** ***** *** 

CSM 

CTCT [104] 2010 PVS hot spot fault diagnosis. Permanent Offline ** ***** ***** 

SP [102] 2017 Diagnosis of open circuit faults in PVS. Permanent Offline ** ***** *** 

TCT [103] 2019 Diagnosis of open circuit faults in PVS. Permanent Offline ** ***** *** 

IIAM 

Other 

fault 

diagnosis 

techniques 

[106] 2018 

Diagnose defects such as hot spot microcracks, 

broken grids, surface impurities, etc., of PV cells 

and modules. 

Permanent Online **** *** ** 

[105] 2022 
Diagnose and locate the hot spot fault inside the PV 

module. 
Permanent Online *** *** *** 

 

Ⅴ.   CONCLUSIONS 

This paper delves into the perplexing and intricate 

topic of PVS fault diagnosis. We classify and summa-

rize the diverse diagnostic methods of PVS. They can be 

broadly categorized into SSPA, IVCA, AIT, CSM and 

other methods. Comparison and evaluation of the five 

types of FD methods are shown in Fig. 17, and the di-

agnostic methods applicable to various fault types are 

also summarized in Table Ⅴ. To provide a comprehen-

sive and insightful understanding of these methods, this 

paper systematically introduces and analyzes the dif-

ferent technologies in detail. The main conclusions are 

summarized as follows: 

TABLE Ⅴ  

SUMMARY TABLE OF DIAGNOSTIC METHODS FOR VARIOUS FAULT TYPES. 

Type of faults 

Failure diagnosie method 

SSAPA 

IVCA 

AIT 

CSM 

Other fault diagn 

osis techniques 

ECM TDR SSTDR NNM SVM FCAM IIAM MMM 

PV module 

failures 

modes 

EVA discoloration   √ √      

Delamination    √     √  

HS    √   √ √ √ √ 

PID    √       

LID    √       

Shading and soiling    √ √ √ √ √  √ 

Inverter failure modes   √  √      

Bypass diode failures    √       

Junction box failures       √    

Ground faults √ √ √  √      

Line-line faults  √  √  √     

Arc faults   √   √ √    
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Fig. 17.  Comparison and evaluation of four types of FD methods. 

1) The SSPA diagnostic methods in PVS fault diag-

nosis can be divided into TDR, ECM, and SSTDR. 

SSTDR is more extensively applied than TDR since it is 

not susceptible to signal interference. TDR is primarily 

used to diagnose component degradation, whereas ECM 

and SSTDR mainly diagnose PV module disconnection 

faults. 

2) The IVCA method is predominantly used to diag-

nose PID, HSF, and aging faults. This approach's primary 

advantage is its low cost, as it only requires obtaining I-V 
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curves for diagnosis without additional expensive ma-

chines. However, the accuracy of this method is de-

pendent on the analysis algorithm employed. 

3) The AIT methods comprise NNM, SVM, and 

FCAM. NNM relies on the neural network model to 

improve diagnostic accuracy, while using various algo-

rithms to optimize the network model. SVM is opti-

mized through multiple algorithms to ensure the ob-

tained PVS model data is more accurate, and FCAM 

also optimizes the model through algorithms. The 

common advantage of these three methods is their high 

accuracy. 

4) CSM mainly uses SP, TCT, and CTCT circuit 

connection methods. The implementation process of 

CSM is simple, but it cannot determine the fault cate-

gory and is usually used to diagnose short circuit faults. 

CSM is suitable for fault diagnosis in small power 

plants, while the cost in large power plants is high. 

5) Other non-electrical fault diagnosis methods, such 

as IIAM, are mainly used to diagnose HS and cracks. 

MMM is economical and applicable with a simple al-

gorithm. 

In conclusion, This paper provides a state-of-the-art 

guide for researchers and engineers in the field of PVS 

fault diagnosis. Through a detailed and comprehensive 

analysis of the various diagnostic methods, this paper 

offers insights and conclusions that can be employed in 

this field. 

Ⅵ.   PERSPECTIVES 

The following six suggestions for future research can 

help overcome the limitations of existing diagnostic 

methods and provide more accurate and efficient fault 

diagnosis in PVS, especially in large PV power stations. 

1) Improvement of the fault model for PVS. The ex-

isting diagnosis methods have their limitations in di-

agnosing faults in large PV power stations, which have 

numerous pieces of equipment and complex data to be 

detected. Therefore, the current PV fault model cannot 

accurately diagnose all faults, and the data analysis 

system cannot undertake such high work intensity. 

Work is needed to develop new failure models that can 

accurately diagnose complex and diverse faults in large 

PV power stations. 

2) Addition of more measurement variables to im-

prove diagnostic accuracy. Although most diagnosis 

methods are based on current and voltage waveform 

signals, temperature, and other measurement variables, 

they still have certain limitations and errors. Therefore, 

more measurement variables must be added to diagnose 

faults accurately. 

3) Development of diagnostic methods that can di-

agnose more fault types. Current diagnostic procedures 

can only diagnose up to four to six faults, mostly related 

to aging, shielding, pollution, and delamination. How-

ever, the diagnosis methods for more serious flaws, 

such as LLF, GF, AF, and HSF, can only diagnose one. 

To address this issue, new diagnostic methods need to 

be developed to diagnose more fault types and reduce 

the need for multiple diagnosis systems. 

4) Development of online fault diagnosis methods. 

Some diagnostic procedures can only be carried out 

when the PV power station is offline, which may affect 

some critical power supplies. Therefore, online diag-

nostic methods with an approximate range and real-time 

characteristics need to be developed. 

5) Improvement of the original components of the PV 

system. Currently, measuring data for PV fault diagno-

sis generally requires specific equipment, which is ex-

pensive and requires regular maintenance. To reduce 

economic costs and make the planning of PV power 

stations more straightforward and more transparent, the 

original components need to be improved for data 

measurement. 

6) Development of equipment for diagnosing PV 

faults. Currently, most PV components on the market 

are used to protect PVS from fault damage, such as 

series DC fault arc circuit breakers. However, it needs to 

be simplified and low cost for fault diagnosis. To solve 

this problem, new equipment specifically designed for 

diagnosing PV faults needs to be developed. 
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