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Game Theory based Optimal Defensive Resources 

Allocation with Incomplete Information in  

Cyber-physical Power Systems against False Data 

Injection Attacks 

Bingjing Yan, Zhenze Jiang, Pengchao Yao, Qiang Yang, Wei Li, and Albert Y. Zomaya 

Abstract—Modern power grid is fast emerging as a 

complex cyber-physical power system (CPPS) integrating 

physical current-carrying components and processes with 

cyber-embedded computing, which faces increasing cy-

berspace security threats and risks. In this paper, the state 

(i.e., voltage) offsets resulting from false data injection 

(FDI) attacks and the bus safety characterization are 

applied to quantify the attack consequences. The state 

offsets are obtained by the state estimation method, and 

the bus safety characterization considers the power net-

work topology as well as the vulnerability and connection 

relationship of buses. Considering the indeterminacy of 

attacker’s resource consumption and reward, a zero-sum 

game-theoretical model from the defender’s perspective 

with incomplete information is explored for the optimal 

allocation of limited defensive resources. The attacker 

aims to falsify measurements without triggering threshold 

alarms to break through the protection, leading to load 

shedding, over-voltage or under-voltage. The defender 

attempts to ensure the estimation results to be as close to 

the actual states as possible, and guarantee the system’s 

safety and efficient defensive resource utilization. The 

proposed solution is extensively evaluated through simu-

lations using the IEEE 33-bus test network and real-time 

digital simulator (RTDS) based testbed experiments of the 

IEEE 14-bus network. The results demonstrate the effec-

tiveness of the proposed game-theoretical approach for 

optimal defensive resource allocation in CPPS when lim-

ited resources are available when under FDI attacks. 

Index Terms—Optimal strategy, game theory, Nash 

equilibrium, CPPS, FDI attack. 
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Ⅰ.   INTRODUCTION 

he advance of information and communication 
technologies (ICT) has accelerated the traditional 

power system into a complex cyber-physical power 
system (CPPS) which promotes operational efficiency, 

reliability and flexibility [1]. However, it also creates 
additional security problems with the emerging threat 
not only by the physical environment but also by cy-

berspace components, despite many researches have 
already been carried out to support the comprehensive 
protection of the cyber system and timely management 

of the physical system [2]. The previous cyber attacks 
on different critical infrastructures, e.g., the Ukraine 

power grid hack [3] and Stuxnet [4], have demonstrated 
the vital importance of CPPS safety. 

As one of the most malicious cyber attacks, the false 

data injection (FDI) attack targets state estimators and 
systematically alters analog measurement data [5], 
which can lead to cascading failure [6], bus voltage 

instability [7], and disruption of electricity markets [8]. 
To alleviate the negative impact of FDI attacks, the 
current countermeasures can be generally classified into 

two categories: protection methods by identifying crit-
ical measurements (e.g., [9]) or keeping the exact re-

actance (e.g., [10]), and detection solutions through the 
analysis of raw measurements (e.g., [11]). 

In addition, there have been some efforts of 

game-theoretic research toward CPPS security against 
FDI attacks since the game theory can provide a quan-
tifiable and understandable foundation for implement-

ing active defensive strategies under different forms of 
system uncertainties [12], [13]. To improve the quality 

of monitoring and decision-making in smart grid, ref-
erence [14] specifies the effect of compromising each 
measurement on the price of electricity and defines the 

game model as a zero-sum game under complete infor-
mation. In [15], a zero-sum game theoretical at-
tack-defense model is suggested to describe interactions 

in cyber-physical systems, while the measurements are 
used as the attack and defense objects and load shedding 

T 
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is applied to quantify the attack consequences. Further-

more, reference [16] describes a model with multiple 
attackers and a single defender using a Stackelberg game 

model in which the defender acts as the leader with 
complete information. Similarly, a Stackelberg game 
model is investigated in [17] to analyze the optimal so-

lutions under different budget constraints with the as-
sumption of complete information. Reference [18] pro-
poses a defense technique based on a dynamic Bayesian 

game model to investigate FDI attacks in power systems. 
It is worth noting that the aforementioned solutions 

have not fully exploited the trade-off between the overall 

system’s safety and defensive resource utilization effi-

ciency, as well as the optimal resource allocation con-

sidering the limited availability based on CPPS vulner-

ability analysis. In addition, most studies have assumed a 
game model with complete information (e.g., the use of 

the Stackelberg game model requires the assumption of 

complete and perfect information), which is less realistic 

than a game model with incomplete information. In 

addition, only simulations have been used in previous 

studies to model the coupling behaviors between cyber 

and physical domains, which is insufficient to fully 

demonstrate the system characteristics. 

This paper proposes a game-theoretical model for 

optimal defensive resource allocation strategy in a 

CPPS under FDI attacks with limited defensive re-

sources availability. A zero-sum game model with in-

complete information is established to calculate the 

expected utilities of rational players from two perspec-

tives: the state offsets of the impacted buses and the bus 

safety characterization.  

FDI attacks target the installed measurement devices, 

e.g., the phasor measurement units (PMU), and mislead 
the decision-making process of the defender (e.g., con-

trol center) by tampering with the estimation results to 
affect the normal operation of power systems. Accord-
ingly, the weighted least squares (WLS) method, as a 

basic approach for state estimation, is applied to ap-
proximate the impacted buses’ state offsets which reflect 
the adverse effect of the FDI attack in this paper. The 

design of bus safety characterization fully considers the 
topology of the power system (e.g., centrality degree, 

betweenness degree), the vulnerability of devices de-
scribed in the common vulnerability scoring system 
(CVSS) [19], and the connection relationship on buses 

reflected with logic gates (‘AND’, ‘OR’). From the de-
fender’s perspective, the game model is built consider-
ing that the attacker aims to falsify measurements 

without triggering threshold alarms to break through the 
protection, resulting in load-shedding, over-voltage or 
under-voltage. Additionally, the defender attempts to 

secure the estimation results close to the actual variables 
and guarantee the system’s safety and efficient defensive 

resource utilization. The effectiveness of the proposed 
solution is validated through both simulations using the 

IEEE 33-bus test network and the real-time digital sim-

ulator (RTDS) based testbed experiments using the 
IEEE 14-bus network. Compared with the simulation 

results, the RTDS testbed experiments retain the neces-
sary interactions of the cyber-physical domain. The main 
technical contributions made in this work are as follows: 

1) An optimal game-theoretical model with incom-
plete information is presented considering that the 
strategy choices and behaviors of the attackers are not 

deterministic, which introduces the game model into the 
cyber-physical system, taking into account the charac-

teristics of critical infrastructure. 
2) The proposed solution identifies the optimal re-

source allocation by making the trade-off between the 

overall CPPS safety and defensive resource utilization 
efficiency based on the software vulnerability and the 
topology structure analysis. 

The remainder of the paper is organized as follows. 
Section Ⅱ overviews the system design and problem 

formulation. A detailed description of the 
game-theoretical model is presented in Section Ⅲ. The 
simulation and testbed experiments are carried out and 

the numerical results are presented in Section Ⅳ. Fi-
nally, conclusions are given in Section Ⅴ. 

Ⅱ.   SYSTEM MODEL AND PROBLEM FORMULATION 

This section describes the FDI threat model and in-
troduces the WLS minimization-based state estimation. 
The overall architecture of the proposed system model 

in CPPS under the FDI attack is illustrated in Fig. 1.  

 
Fig. 1.  Overall architecture of the proposed system model under 

the FDI attacks in the context of CPPSs. 

As shown, the attacker with some prior knowledge 
acquired through techniques such as sniffing or social 

engineering launches an attack on the physical layer by 
appropriate attack strategies, causing anomalies in the 
monitored device status by the defender. This leads to 

erroneous actions by the defender and subsequently 
affects the normal operation of the entire system. 
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A. FDI Threat Model 

Because of the coupling of the cyber-physical rela-
tionship, cyber attacks can significantly affect the op-

eration of the grid system. An FDI attack, as one of the 
most prevalent cyber attacks, is established as the threat 
model. The FDI attackers with prior knowledge inter-

fere with the estimation results (e.g., voltage, current 
and power measurements) by controlling meters, the 
communication networks and the master station. Spe-

cific attack strategies such as missing data encryption, 
operating system (OS) command injection and struc-

tured query language (SQL) injection, etc. use auto-
mated attacks or manually construct fake data targeting 
acquisition devices or monitoring systems [20]. Then 

the control center is induced to take emergency 
measures to trip critical buses and lines, resulting in 
load shedding, over-voltage or under-voltage tripping. 

For example, as one of the most publicly known mal-
ware, Stuxnet injected processes and registered services 

to modify data sent to or re-turned from the program-
mable logic controller (PLC) without the knowledge of 
the administrator in supervisory control and data ac-

quisition (SCADA) systems, leading to the scrapping of 
one-fifth of the centrifuges in Iran’s uranium enrich-
ment plant, greatly delayed Iran’s nuclear process [4]. 

For the attackers, there are generally two targets for 

the FDI into the state estimation, i.e., certain system 

state variables (e.g., bus phase angle, bus voltage mag-

nitude) and certain measurements determined by system 

structure and at least two system variables [21]. The 

attacker needs to inject more false data into meters if 

one intends to change the multiple states simultaneously, 

which can be formulated by the following equations, as 

suggested in [22]. 

1) Real and reactive power injection at bus i :  
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2) Real and reactive power flow from bus i  to bus j :  
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where iV  and i  are the respective voltage magnitude 

and phase angle at bus i ; ij  is the angle difference 

between i  and j ; jij ijG B  is line admittance be-

tween bus i  and j ; jsi sig b  is the admittance of the 

shunt branch at bus i ; and i  is the set of buses con-

nected to bus i . Also, the measurements that are af-

fected by the manipulated state variables need to be 
considered in order to pass the bad data detection. 

Recent studies have examined many specific attack 
methods [20], and confirm that attackers can implement 

FDI attacks at a low cost by falsifying the measurements 

without triggering the predefined threshold alarms [23]. 
Also, some topology identification methods based on 

measurements have been proposed [24], [25]. Therefore, 
this work mainly focuses on the impact of the attack 
without details of the specific implementation of the 

attacks. 

B. State Estimation under FDI Attack 

Real-time monitoring of power system is critical for 

maintaining system’s safety and reliability [26]. Oper-

ators monitor system components and report meters’ 

readings to the control center which estimates the state 

of the system and takes measures according to the de-

fense strategy. 
Considering a power system with s  state variables is 

monitored by m  meters ( m s＞ , i.e. the system is ob-

servable) [27], state estimation is to estimate state var-

iables x  based on meter measurements z  such as iP , 

iQ , iV , etc. which are described in (1) and (2) under 

independent random measurement noises .e  The 
mathematical relation between them is given as:  

( ) z h x e                               (3) 

where  
T

1( ) ( ), , ( ), , ( )i mh x h x h x h x  are the 

measurement functions of x , which depend on the 

specific measurement type and involve the network 
topology and parameters of the power system. The basic 

approach for state estimation is called the WLS method 
[28], which attempts to obtain the best fit such that the 
sum of squared errors is minimized.   

If the error data is likely to be well-designed because 

the attacker is familiar with the CPPS, the FDI attack 

can be successfully launched and the security of the 

system can be compromised. The attack vector a  is 

given as:  

( ) ( )  a h x c h x                      (4) 

where c  is the state vector error caused by the attack. In 

general, the largest normalized residual (LNR) is used 

to identify the anomalies [27], as:  
2

2 2

( ) ( )

( ( )) ( ( ) ( ))





    
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≤z a h x c

z h x a h x h x c
     (5) 

In this case, the false data can be successfully injected 

into the system without triggering the alarm, which can 

effectively avoid the traditional detection.  

C. CPPS Asset Analysis 

Unlike our previous work [29], the bus safety char-

acterization addressed in this work is more inclined 

towards the inherent characteristics of the power system 

architecture rather than device software vulnerabilities. 

The inherent characteristics of a complex CPPS can be 

better investigated by abstracting bus-to-edge connec-

tions from the degree of correlation between topologies. 
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In this work, the bus weight is designed considering 

four aspects, i.e., centrality degree, betweenness degree, 

network cohesion degree and value degree, described as 

follows. 

1) Centrality Degree 

iD  is the number of buses connected to the bus i , 

which is proportional to the importance. The compre-

hensive beneficial function is proposed to reflect the 

energy required for electric energy transmission by 

utilizing the electrical coupling distance in order to 

identify buses with the same number of connections, as:  

2
ij

ij i j ij

i

U
d Z Z Z

I
                         (6) 

where iZ  and 
jZ  denote the self-impedance of bus i  

and j , respectively; while 
ijZ  is the mutual impedance 

between buses i  and j .  

2) Betweenness Degree 

iB  represents the number of the shortest paths that 

pass through bus i . A bus with a higher betweenness 

degree would have more control over the network be-

cause more vital buses are connected. The betweenness 

degree of bus i  is given by:  

( )
( ) st

s i t st

i
g i



 

                            (7) 

where st  denotes the total number of shortest paths 

between buses s  and t ; and ( )st i  denotes the number 

of those paths that pass through i . A normalization can 

be performed without sacrificing accuracy, as: 

( ) min( )
normal( ( ))

max( ) min( )
i

g i g
B g i

g g


 


        (8) 

3) Network Cohesion Degree 

iK  indicates the location of bus i  in the power 

system topology. The more intersections, the higher 

the bus’s relevance, which can be derived using the 

contraction method [30] by clustering bus i  and buses 

near i .  

4) Value Degree 

iC  represents the asset value of bus i , including 

physical value (the device itself) and cyber value (the 

data contained in it), as measured by the criticality level 

(CL) [31]. The specific quantification method is de-

scribed in detail in [29].  

Based on subjective correction weight methods (e.g., 

hierarchical analysis method [32]) and objective cor-

rection weight methods (e.g., critic method [33]), dif-

ferent coefficients are set to combine multiple weight 

coefficients to obtain the integrated weight vector, 

which has been described in detail in [34]. Synthetically, 

the weight degree of bus i  is defined as:  

4

1

i ji ji

j

W A 


                           (9) 

where 
jiA  denotes the jth weight indicator of bus i ; and 

ji  denotes the composite weight vector of that indicator. 

Ⅲ.   GAME MODEL 

A. Bayesian Game Model 

The Bayesian game model is implemented, which 

widely utilized in incomplete information. Players in the 
Bayesian game model evaluate the decisions and in-
formation of other players based on prior knowledge 

and historical data, and subsequently formulate their 
own decisions. In CPPS scenarios, the prior knowledge 
includes the system’s topological structure and availa-

ble devices connected with network buses. However, 
the players lack insight into each other’s decisions. The 
defenders formulate decisions (i.e., defense strategies 

and whether to carry out defense actions) continuously 
based on current information which does not include 

whether the attacker is launching an attack. Likewise, 
the attacker is in the same situation. 

As CPPS is a critical infrastructure, the attacker can 

hardly carry out multiple trial attacks to gather suffi-
cient information and modify the attack strategy. Hence 
the attacker generally has only one chance of attack in 

practice. When the attack fails, the defender (i.e., con-
trol center) will redeploy protection measures. As a 

result, the attack-defense interaction can be defined as a 
one-stage static simultaneous moves game. Harsanyi 
transformation is accomplished to convert a static game 

with incomplete information to an equivalent imperfect 
information game by introducing the concept of nature, 

providing a solution for subsequent calculations [35].  
The static game model with incomplete information 

involves four elements: players, strategy pairs, actions 
and expected utilities, as explained in Table I. More 

details for the definition of game elements can be found 
in [36]. 

TABLE I 

ELEMENTS IN STATIC GAME MODEL WITH INCOMPLETE 

INFORMATION 

Element Notation 

Players  = ,A DP P P . 
AP  is the attacker. 

DP  is the de-

fender. 
 

Actions 
 1 2, , , IA A A A . 

  1 2, , , JD D D D . 

 

Strategy pairs 
 

1 2
, , ,

IA A A A     . 

  
1 2
, , ,

JD D D D     . 

 

Expected utili-

ties 

 
1 1

( , ), , ( , )
I JA A A D A A DEU EU EU     . 

  
1 1

( , ), , ( , )
I JD D A D D A DEU EU EU     . 
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B. Actions and Probability of Successful Attack 

The attacker has several actions in action set A : Idle 
denoting no-operation action while Attack denoting all 

the possible attacks. In the case of attack, the level (the 
range of injected data), the target (the measured value or 
state value, which has been introduced in Section II.A), 

and the location (single-point attack or multi-point coor-
dinated attack) can be selected. Obviously, the attacker’s 

resource consumption 
iAC  is related to the action iA . 

On the other hand, the defender’s action set D : Idle 

representing no-operation action and Defend describing 
the possible defense actions, including increasing the 

defense intensity (e.g., increasing monitor scanning 
frequency), modifying defensive measures (e.g., detec-
tion threshold level), and expanding the defensive lo-

cation. Similarly, the defender’s resource consumption 

jDC  is allocated to accomplish the action 
jD . 

The probability of a successful attack Pr( , )i jA D  is 

mainly determined by the actions of the attacker and 

defender. Also, it is affected by the vulnerability 
Pr

nV  of 

the device at bus n . Several typical vulnerabilities in 

FDI attacks are selected as examples in Table Ⅱ. 

TABLE Ⅱ 

TYPICAL VULNERABILITIES IN FDI ATTACK 

Vulnerability Equipment Description 

CVE-2020-5304 Dashboard 

The dashboard allows log 

injection via a substring in the 

independent parameter (IDP) 

to the uniform resource identifier 

(URI). 

CVE-2022-35942 PC 

Improper input validation may 

allow for arbitrary SQL injection 

which may affect the confidenti-

ality and integrity of data stored 

on the connected database. 

CVE-2010-2729 PC, PLC 

The Print Spooler service does 

not properly validate spooler 

access permissions, which al-

lows remote attackers to create 

files in a system directory. 

CVE-2010-2568 PC, PLC 

Windows Shell allows local 

users or remote attackers to exe-

cute arbitrary code via a crafted 

(1). LNK or (2). PIF shortcut file, 

which is not properly handled 

during icon display in Windows 

Explorer. 

The vulnerability of the device is defined by the 
CVSS metric [19]:  

Pr 2 AV AC AUV S S S                      (10) 

where AVS  is the access vector; ACS  is the access 

complexity; and AUS  is the authentication, which is also 

adopted as a measuring element in [37, 38]. The vul-

nerability of bus n  originates from devices and their 

connection logic [39]. The logic ‘OR’ assumes that any 
of the vulnerabilities exploited will cause system ab-

normality (an intelligent attacker will target the most 

susceptible vulnerability), as:  

 Pr, Pr, P ,P Pr,r r 1max( ), , ,n n n n

p

n

p PV V V VV           (11) 

where P  is the total number of vulnerabilities of the 

devices at bus n . The logic ‘AND’ requires that all the 

vulnerabilities be corrupted, as:  

 Pr, Pr, Pr,1 Pr,

1

Pr , , ,
P

n n n n

p p P

p

n VV V V V


           (12) 

C. Strategy Pairs 

For bus n , the strategy of the attacker and the de-

fender can be expressed as follows: 

 
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1 2
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           (13) 

where n

A  and n

D  are the sets of action probabilities 

that can be selected by the attacker and the defender at 

bus n , respectively. When , 1
i

n

Ai I    , the attacker 

strategy is a pure strategy, whereas in others, it is a 
mixed strategy. Similarly, for the defender, the pure 

strategy is satisfied only if , 1
j

n

Dj J    . 

D. Expected Utilities and Rewards 

Given the attacker and defender strategy pair 

( , )n n

A D   for bus n , the expected utilities are defined as: 

1 1

1 1

( , ) ( , )

( , ) ( , )

i j

j i

I J
n n n n n n n n

A A D A D A i j

i j

J I
n n n n n n n n

D A D D A D i j

j i

EU U A D

EU U A D

 

 


    



     



 
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      (14) 

where ( , )n n n

A i jU A D  and ( , )n n n

D i jU A D  calculate the ex-

pected utilities with action ( , )n n

i jA D , as listed in Table Ⅲ. 

TABLE Ⅲ 
SIMPLIFIED EXPECTED UTILITIES MATRIX FOR THE GAME MODEL  

( , )n n n

A i jU A D  

( , )n n n

D i jU A D  

 

1

nA  

 

 

 
n

IA  

1

nD  Eq. (9)  Eq. (10) 

    
n

JD  Eq. (13)  Eq. (14) 

1 1

1 1

( , )

( , )

n n n

A A

n n n

D D

U A D R

U A D R

 







                     (15) 

There is no depletion of resources when both attacker 
and defender select Idle, and the utility comes solely 
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from the reward. When the defender accomplishes to 
guarantee the system’s normal operation which includes 

no attack and attack failure, the reward DR  belongs to 

the defender. On the other hand, the attacker is rewarded 

with AR  when the system operates anomalously, i.e., an 

attack is launched successfully. DR  is obtained by the 

mapping of zW , which was defined in Section II.C. It is 

difficult to quantify AR  as it is affected not only by zW  

but also by other factors, e.g., personal retaliation [41], 
national political behavior [3]. Therefore, this paper 

assumes A DR R  from the defender’s perspective. 

1 1

1 1

( , ) ( , )

( , ) ( , )

I

n n n n n n n

A I A I A

n n n n n n

D I I D

U A D R Y A D C

U A D Y A D R

   


  

        (16) 

where 
I

n

AC  denotes the resource consumption required 

by the attacker to adopt the attack action n

IA . The 

probability of attack failure can be ignored when there is 
no defense. 

1

( , ) ( , )
Z

n n n n n n

i j z i j z

z

Y A D V A D W


         (17) 

where ( , )n n n

i jY A D  is the total impacted buses’ state 

offsets ( , )n n n

z i jV A D  multiplied by the bus safety 

characterization zW , i.e. the absolute payoff without 

considering resource consumption; ( , )n n n

A i jY A D    

( , )n n n

D i jY A D , i.e., the attacker’s payoff is equal to the 

defender’s negative payoff; Z  is the total number of 
buses affected when bus n  is attacked. 

( , ) ( , )n n n n n n

z i j z i j zV A D V A D V           (18) 

where ( , )n n n

z i jV A D  denotes the state offset of bus z  

when bus n  is attacked, i.e., the difference between the 

voltage state ( , )n n n

z i jV A D  after attack and the voltage 

state 
zV  during normal operation, which is obtained by 

WLS. The details can be found in Section II.B. 

1

1

( , )

( , )
J

n n n

A J A

n n n n

D J D D

U A D R

U A D R C

 

 





             (19) 

When the attacker does not attack and the defender 
defends, the attacker loses the reward, and the defender 

gains the reward but lose the resource consumption 
J

n

DC  

for the action n

JD . 

( , ) Pr( , ) ( , )

( , ) 1 Pr( , ) ( , )

I

J

n n n n n n n n n

A I J I J A I J A

n n n n n n n n n

D I J I J D I J D

U A D A D R Y A D C

U A D A D R Y A D C

      


          

 (20) 
When both the attacker and the defender take action, 

their expected utilities are the product of the probability 
of the successful attack and payoff of the successful 
attack minus the attack resource consumption, and the 

product of the probability of normal operation and 
payoff minus the defense resource consumption, re-
spectively. Because there may not be a Nash equilib-

rium in a non-zero-sum game matrix and the defender 
cannot obtain the attacker’s action under incomplete 

information, the zero-sum game matrix is constructed as 
shown in Table Ⅳ.  

The utility of the attacker is proportional to the neg-

ative of the defender’s utility, i.e.: 

( , ) ( , )n n n n n n

A i j D i jU A D U A D            (21) 

TABLE Ⅳ 

SIMPLIFIED EXPECTED UTILITIES MATRIX FOR THE GAME MODEL FROM THE PERSPECTIVE OF THE DEFENDER 

 
1

nA   n

IA  

1

nU  1 1( , )n n n

D DU A D R   
1 1 1 1( , ) ( , )

I

n n n n n n n

D D AU A D Y A D R C     

    
n

IU  1( , )
I

n n n n

D J D DU A D R C    
( , ) 1 Pr( , ) ( , )

I I

n n n n n n n n n n

D I J I J D I J D AU A D A D R Y A D C C            

In game problems, both attacker and defender aim to 

maximize their total utilities. The Nash equilibrium is 

reached when they find the optimal strategy pairs which 

will not be deviated [42]. If there exists an attacker 

strategy 
n

A  that maximizes the attacker utility 

 ( , )n n n

A A DEU    for any defender strategy n

D , and at the 

same time, there exists a defender strategy 
n

D  that 

maximizes the defender utility ( , )n n n

A DDEU    for any 

attacker strategy n

A , then a mixed strategy pair 

( , )n n

A D   is a Nash equilibrium solution:  

, ( , ) ( , ),

, ( , ) ( , ),

n n n n n n n n

A A A D A A D D

n n n n n n n n

D D A D D A D A

EU EU

EU EU

      

      





＞

＞
     (22) 

where  ),(n n n

A A DEU    and  ),(n n n

D A DEU    calculate the 

expected utilities with the optimal strategy sets of the 
attacker and defender, respectively. 

For a zero-sum game, the mixed strategy is classified 
as an equilibrium outcome of the bimatrix game which 

is adopted when a pure strategy Nash equilibrium does 
not exist, i.e., a probability is assigned to each pure 
strategy, as suggested in [43]. It is proven in [44] that 

every bimatrix game has at least one Nash equilibrium 
solution in mixed strategies. 
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E. Game Solution 

There are three parts to the solution procedure, as 
shown in Fig. 2. 

 

Fig. 2.  Procedure of the game solution. 

The first part is to determine the system offset, i.e. 

absolute payoff ( , )n n n

i jY A D , caused by the attack in bus 

n, which has been presented in detail in Section II.B. 
In the second part, the optimal strategy set pair 

( , )n n

A D   is selected based on  ),(n n n

A A DEU    and 

 ( , )n n n

D A DEU   . Here, the attacker’s resource consump-

tion 
iAC  and the defender’s resource consumption 

jDC  

vary. Their impact on the probability of successful at-

tack Pr( , )i jA D  is assumed as a known function that is 

associated with the bus vulnerability. This paper 

chooses the common experiment function relation as an 
example, and it should be noted that the function can be 

modified if there is enough prior knowledge or expert 
knowledge of the system so better results can be ob-
tained. The Lemke-Howson Algorithm is used to solve 

this static single-stage game [44].  
The third part involves resource allocation to each 

bus based on limited resources, with the knowledge of 

the optimal resource consumptions of the attacker 
iAC  

and the defender 
jDC . The resource allocation problem 

is an optimization issue, which can be solved by itera-
tion [45], [46], deep learning [47], genetic algorithm [48] 
etc. The iteration method is utilized here, and the 
ORIGAMI algorithm is consulted to improve efficiency, 
as detailed in [45]. 

Ⅳ.   EXPERIMENTAL VALIDATION AND NUMERICAL 

RESULTS 

A. Simulation Experiment Validation 

In this work, the IEEE 33-bus system [49] is adopted 
for the performance evaluation of the proposed solution. 

The configurations of the IEEE 33-bus system and the 
power flow calculation are based on MATPOWER 
(version 7.1). The Gaussian noises, the standard devia-

tion of device measurement and measurement data are 
obtained from [50]. The solution is implemented using 

MATLAB (version R2021a) and executed on a com-
puter equipped with a 3.20 GHz i7-97000 CPU and 
16.00 G RAM. 

The attacker’s strategy means the level (the range of 
injected data), the target (the measured value or state 
value), and the location (single-point attack or mul-

ti-point coordinated attack). Figure 3 shows the network 
estimation (bus voltage amplitude and phase angle) in 

the attack-free condition and three network scenarios 

considering the attack action with the high level (30%) 
at different locations (buses 4, 8, and 12) on the specific 

measurement type (voltage amplitude), respectively.  

 
Fig. 3.  Network estimation under different scenarios. 

The estimated error caused by the attack can reach 

0.5%, while such fluctuations will trigger alarms for 
some sensitive electrical equipment. The defender’s 
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strategy means configuring more defense methods in-
cluding increasing the defense intensity (e.g., increasing 
monitor scanning frequency), modifying defensive 

measures (e.g., detection threshold level), and expand-
ing the defensive location. 

This section presents numerical results obtained from 
the simulations through a comparative study. 
1) Defender’s Resource Consumption 

The analysis is conducted considering the impact of 

the defender’s resource consumption 
jDC  on the solution 

of the Nash equilibrium, while the impact of the attack-

er’s resource consumption 
iAC is not considered. Figure 

4 illustrates the relationship between the expected utility 
and the defender’s resource consumption at bus 3. 

 

Fig. 4.  Impact of defender’s resource consumption. 

As seen from Fig. 4, when 1.74
JDC ≤ , the pure 

strategy Nash equilibrium is selected such that the at-

tacker and the defender both take action to occupy the 

reward because the attacker does not consider the re-

source consumption and the defender argues that the 

reward exceeds the resource consumption. Here, when 

the optimal defender’s resource consumption 

1.74
jDC   is set, the expected utility 

( , ) 11.808n n n

D I JU A D   is the optimal solution for the 

defender. 

When 1.74 38.64
jDC＜ ≤ , the probability of a 

successful attack decreases with the increase of the 

defender’s resource consumption, which leads the at-

tacker to consider selecting Idle. Also, the defender 

hesitates to defend since the expected utility decreases 

as resource consumption increases. Obviously, the 

strategy matrix is a mixed strategy. Figure 5 is the game 

result when 15.93
jDC  , and the equilibrium point is 

(0.149, 0.588, 0.001), i.e., the saddle point of the game 

matrix. 

When 38.64
jDC ＞ , because it is expensive to take 

action for the defender, the attacker takes action in 

consideration that the rational defender will select Idle, 

even though the attack will definitely fail if the defender 

takes action. The defender concludes that the payoff 

cannot be sufficient to compensate for the resource 

consumption, so Idle is selected. 

 

Fig. 5.  Game result and the equilibrium point at 15.93
jDC  . 

2) Attacker’s Resource Consumption 
Assume that the defender sets the optimal resource 

consumption according to the previous experiment, the 

impact of the attacker’s resource consumption 
iAC  is 

conducted. Figure 6 shows the relationship between the 
expected utility and the attacker’s resource consumption 
at bus 3. 

 

Fig. 6.  Impact of attacker’s resource consumption. 

When 1.64
iAC ≤ , the rational attacker tends to se-

lect Idle in consideration of the low probability of a 
successful attack once the defender takes action, while 
the defender tends to take action because the payoff is 
greater than its resource consumption. 

When 1.64 13.55
iAC＜ ≤ , the probability of a suc-

cessful attack is positively correlated with the attacker’s 
resource consumption. Thus, the attacker concludes that 
the payoff outweighs the resource consumption and takes 
action. On the other hand, the defender selects defending 
to reduce the probability of a successful attack. 

When 13.55 32.87
iAC＜ ≤ , the attacker is more 

likely to give up attacking because of the high resource 
consumption, and the defender tends to select Idle in 
consideration of the poor payoff under the action. 

When 32.87
iAC ＞ , both the attacker and the de-

fender select Idle because the attacker’s resource con-
sumption is too costly and the defender considers that 
the rational attacker will not take action. Thus, the de-
fender may not allocate resource consumption when the 
difficulty of attacking the bus necessitates a considera-
ble quantity of the attacker’s resource consumption. 
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3) Summary 
The analysis is conducted on the impact of the dif-

ferent buses which cause the value of rewards and the 
system offsets on the solution of optimal resource 
consumption. The attack action is unified as a low level 
(5%) on a specific measurement type (voltage ampli-
tude). The optimal attacker’s and defender’s resource 
consumptions as well as the maximum and the minimum 
expected utilities of the defender (i.e., the minimum and 
the maximum expected utilities of the attacker) at buses 
1-33 are presented in Fig. 7. Here, the optimal strategy 
is a mixed strategy under Nash equilibrium. 

 
Fig. 7.  The optimal resource consumption and the expected 

utility of the defender. 

It can be observed that some buses are crucial but 
intensely competitive which require high resource 
consumption. Taking buses 1 and 2 as examples, if the 
attacker/defender can choose only one bus to take the 
attacking/defensive action, a rational attacker prefers to 
attack bus 2 as the expected utility is 5.58% higher than 
that of bus 1 at the price of 0.55% more resource con-
sumption. Similarly, the defender prefers bus 2 as the 
expected utility is 5.58% higher than that of bus 1 with 
1.88% less resource consumption. However, the coop-
erativity of multiple buses and uncertainty of the at-
tacker require the defender to combine the relationship 
between resource consumption and expected utilities as 
shown in Figs. 4 and 6, and cannot directly assume a 
single-point defense to allocate resources. Therefore, 
further experiments are conducted for optimal resource 
allocation under limited resources considering the bal-
ance between efficiency and safety. 
4) Limited Resources Allocation 

Consider the optimal resource allocation strategy for 
the defender with limited resources and set the factor   

as the availability of resources: lim allR R  . Both the 

attacker and the defender are considered absolutely 
rational players, and the defender’s action is quantified 
in five levels which denote the percentage of resource 
allocation in the optimal resource consumption, while 
the attacker is assumed to attack only one bus. Here, 
level 0 denotes 0%, i.e. Idle, level 1 denotes 25%, level 
2 denotes 50%, level 3 denotes 75%, and level 4 denotes 
100%. It should be noted that better results can be ob-
tained with a higher quantity of levels but the compu-
tational complexity increases. Figure 8 shows the de-
fender’s optimal resource allocation strategy under the 
condition of different limited resources at buses 1-33. 

 
Fig. 8.  Optimal allocation strategy with limited resources. 

Compared with the results of no resource consump-

tion and the results of resource consumption with vul-

nerability analysis based on [51], the proposed solution 

leads to 19.81% and 7.87% higher expected utilities, 

indicating that the proposed solution can provide ap-

propriate allocations of defensive resources under lim-

ited resources. 

B. RTDS Testbed Validation 

The proposed solution is further assessed using the 
RTDS-based testbed for the IEEE 14-bus system [52] 
shown in Fig. 9(a) to demonstrate the effectiveness of 

the proposed method. Figures 9 (b) and (c) show the 
system model construction and the NovaCor hardware 

platform of RTDS, respectively. Assuming that only 
one bus is under attack and the defender has limited 

resources with the factor 40%  , the maximum 

number of defensive resources (e.g., PMU) can be con-

figured as 5. The attacker’s resource consumption sig-
nificantly increases if its target is configured with PMU. 
Figure 10 compares the bus voltage amplitudes under 

the original state without attack and three conditions 
under FDI attacks: without PMU configuration, PMU 

configuration with vulnerability analysis based on [53], 
and PMU configuration with the proposed method. 

 
Fig. 9.  IEEE 14-bus system and RTDS model. (a) IEEE 14-bus 
system. (b) System model construction. (c) NovaCor hardware 

platform of RTDS. 
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Fig. 10.  Bus voltage amplitude under different conditions. 

The numerical results obtained from the RTDS-based 

testbed experiments are consistent with the results from 

the previous simulations. 

V.   CONCLUSION 

This paper investigates the game theory-based 

method for static defensive resource allocation strategy 

in the presence of FDI attacks in CPPS, and develops a 

zero-sum game model with incomplete information. In 

addition, an architecture is proposed including the threat 

model, state estimation method and bus safety charac-

terization, which are improved based on existing re-

searches to meet the requirements of the power system. 

Compared with the existing solutions, this work fully 

considers the trade-off between the overall system’s 

safety and defensive resources utilization efficiency to 

adapt for more comprehensive development of CPPS in 

the future. The numerical results from the simulation 

and the RTDS-based testbed experiments demonstrate 

that the proposed solution is efficient and effective in 

identifying the optimal allocation of defensive resources 

with limited available defensive resources. 

For future work, the situation of multiple game par-

ticipants needs to be studied as more than one attacker 

may participate in the attacking process while multiple 

defenders need to carry out the collaborative defensive 

decision-making simultaneously. Also, this work has 

focused on the magnitude of changes in state variables, 

but their recovery time can significantly affect the sys-

tem’s stability in practice. In addition, the actual im-

plementation and application of the game model require 

reliable data sets and expert knowledge, which require 

further investigation. 

It can be observed that the reliable operation of the 

system is greatly affected by the FDI attack when no 

defensive measure is configured. PMU configurations 

with the vulnerability analysis and with the method 

proposed in this paper can effectively mitigate the im-

pact on the grid system against the FDI attack by 

71.94% and 73.76%, respectively. In addition, the result 

of PMU configuration with the proposed method is 

6.93% better than that with the vulnerability analysis.  
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