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Abstract—The real-time risk-averse dispatch problem 

of an integrated electricity and natural gas system (IEGS) 

is studied in this paper. It is formulated as a real-time 

conditional value-at-risk (CVaR)-based risk-averse dis-

patch model in the Markov decision process  framework. 

Because of its stochasticity, nonconvexity and nonlinearity, 

the model is difficult to analyze by traditional algorithms 

in an acceptable time. To address this non-deterministic 

polynomial-hard problem, a CVaR-based lookup-table 

approximate dynamic programming (CVaR-ADP) algo-

rithm is proposed, and the risk-averse dispatch problem is 

decoupled into a series of tractable subproblems. The line 

pack is used as the state variable to describe the impact of 

one period’s decision on the future. This facilitates the 

reduction of load shedding and wind power curtailment. 

Through the proposed method, real-time decisions can be 

made according to the current information, while the 

value functions can be used to overview the whole opti-

mization horizon to balance the current cost and future 

risk loss. Numerical simulations indicate that the pro-

posed method can effectively measure and control the risk 

costs in extreme scenarios. Moreover, the decisions can be 

made within 10 s, which meets the requirement of the 

real-time dispatch of an IEGS. 

 

Index Terms—Integrated electricity and natural gas 

system, approximate dynamic programming, real-time 

dispatch, risk-averse, conditional value-at-risk. 

Ⅰ.   INTRODUCTION 

he installed capacity of natural gas-fired units in 

electricity networks has grown rapidly in recent 
years because of their high efficiency and flexibility [1], 
[2]. In addition, with the emergence of power-to-gas 
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technology, the coupling between electricity and gas 
networks is further strengthened [3]. Consequently, as 

an effective way to enhance energy efficiency, the in-
tegrated electricity and natural gas system (IEGS) has 
attracted wide attention. 

To mitigate the dependence on fossil fuels, renewable 

energy sources have undergone significant develop-

ments in IEGS. However, a deep penetration of renew-
able energy sources in IEGS may pose challenges for its 

operation. First, the day-ahead dispatch strategies may 

deviate from the actual cases and even become infeasible 

in real-time. Hence real-time dispatch strategies become 

indispensable. Second, during the IEGS operation dis-

patch process, some decision-makers’ attitudes may 

change from risk neutrality to risk aversion [4]. There-

fore, it is necessary to study the risk measure and control 
technology to assist their real-time decision-making. As 

a popular risk measurement metric, conditional val-

ue-at-risk (CVaR) is widely used for risk aversion in the 

fields of economics and finance. This motivates the 

development of a CVaR-based risk-averse method for 

the real-time dispatch problem of an IEGS. 

In order to deal with the IEGS operational uncertainties 
caused by the high penetration of intermittent renewable 
energy sources and loads, various methods have been 

proposed, including stochastic and robust optimization, 
chance-constrained programming, fuzzy and interval 
optimization, information gap decision theory methods, 

and their hybrid methods. Among them, stochastic opti-
mization usually describes the uncertainty by a set of 

relevant scenarios generated from a known probability 
distribution [5]. Different from stochastic, robust optimi-
zation tends to find a reliable conservative solution, which 

can avoid the risk, but at the expense of economy [6], [7]. 
To solve this problem, chance-constrained programming 
uses the constraint non-violation rate to describe the un-

certainty risk [8], and can handle the uncertainty at a given 
risk level, though it is easy to ignore the tail risk, which 

widely exists in practice [9]. As one of the mainstream 
uncertainty handling methods, fuzzy optimization has 
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also been applied in the operation of IEGS. By using 

fuzzy numbers (e.g., triangular, trapezoidal and Gaussian) 
to describe the uncertainties, the fuzzy optimization 

problems can be formulated quantitatively [10]. However, 
the establishment of membership function is subjective in 
fuzzy optimization. As a substitute, interval optimization 

characterizes the uncertainties in the form of intervals and 
does not need to know the probability distribution or 
membership function, though it may face a serious inter-

val expansion problem during its calculation processes 
[11]. Information gap decision theory formulates the un-

certainties in the form of a non-probability uncertainty set. 
By presupposing the worst or best objective according to 
the maximum fluctuation range of uncertainty, both ro-

bustness and economy can be ensured [12]. However, 
similar to fuzzy optimization, the presupposition of ob-
jective in information gap decision theory is subjective. 

To deal with the drawbacks of the single optimization 
method, hybrid methods (e.g., hybrid stochastic-fuzzy 

[10], hybrid stochastic-interval [12], and hybrid ro-
bust-stochastic [13]) have also been proposed. 

For the real-time operation of an IEGS, there have 

been various approaches, such as myopic policy and 
model predictive control (MPC) approaches. Myopic 
policy simply uses current information to make real-time 

decisions [14], and since the impact of real-time deci-
sions on future periods is disregarded, it may result in 
high cost. To solve this problem, MPC uses the fore-

casting information of several following periods to con-
sider future situations, and thus can provide better results 

[15]. However, the real-time forecasting information 
may not be available during the operational process of 
IEGS in some cases. 

To measure the operational risk of an IEGS with un-
certainties, the existing methods include value-at-risk 
(VaR)-based methods, CVaR-based methods, etc. 

VaR-based methods can quantify the risk loss at a given 
confidence level α [16], although the tail risk (i.e., the 

loss beyond the given confidence level) is neglected. To 
fill this gap, CVaR is proposed in [17], and by taking the 
conditional probability expected value as the optimiza-

tion objective, CVaR-based methods can consider the 
attitudes of decision makers towards the tail risk well. To 
date, CVaR has been widely applied in various fields, 

including investment strategy [18], the electricity market 

[19], and energy management [20][22]. The results 
demonstrate the effectiveness of CVaR in dealing with 

financial risk. In the field of IEGS, scenario-based CVaR 
methods have also been successfully applied to handle 

the risk. For example, CVaR is used to quantify the risk 
of wind power curtailment and load demand shedding in 
the energy management of IEGS in [23]. To deal with 

the uncertainties of wind power and load demand, a 
scenario-based CVaR framework is established in [24], 
which can quantize and minimize the impact of the un-

certainties from renewable energy power generation and 

load demand. In [25], CVaR and the interval optimiza-

tion method are combined to measure the risk brought by 
the uncertainties in an IEGS. Note that the above 

CVaR-based methods focus on long-term deci-
sion-making problems, in which the time requirement of 
decision-making is not critical. Theoretically, CVaR is 

also suitable for the short-term decision-making problem 
[26]. Therefore, in this paper, CVaR is extended to the 
real-time dispatch of an IEGS, which helps to measure 

and control the risk cost in extreme scenarios. 
Mathematically, the real-time risk-averse dispatch 

model of an IEGS with different risk preferences is 
stochastic, nonconvex and nonlinear. Various algorithms 
can be used to solve this problem, such as meta-heuristic 

algorithms, commercial solvers, and dynamic pro-
gramming (DP)-based algorithms. Classical me-
ta-heuristic algorithms, e.g., genetic algorithm [27], 

particle swarm optimization [28], and genetic simulating 
annealing algorithm [29], can deal with an optimization 

problem with complex mathematical properties. How-
ever, meta-heuristic algorithms are sensitive to parame-
ter tuning, and their solution quality is unstable in most 

cases. Because of their convenience and stability, 
commercial solvers have become mainstream solution 
methods for nonlinear programming (NLP) problems in 

recent years [30]. However, for the stochastic, noncon-
vex and nonlinear problems, commercial solvers find it 
difficult to obtain solutions within an acceptable time 

period. As a powerful optimization algorithm, dynamic 
programming can decompose the original NLP problem 

into a series of tractable subproblems [31]. Nevertheless, 
the traditional DP algorithm depends on discretization, 
and as the numbers of the discretized state variables and 

decision variables increase, it will face the challenge of 
“curse of dimension” [32]. To deal with this issue, the 
traditional DP algorithm is developed into an approxi-

mate dynamic programming (ADP) algorithm. By ap-
proximating the exact value function iteratively, the 

problem of “curse of dimension” can be solved, and 
ADP has been successfully applied in the fields of en-
ergy management [33], [34], the electricity market [35], 

and optimal planning [36]. To establish the approximate 
value function, various methods such as piecewise linear 
functions [37], lookup tables [38], and neural networks 

[39], can be adopted. Note that the aforementioned ADP 
algorithms are based on the expected cost-based value 

functions, and thus they are not suitable to solve the 
risk-averse decision-making problem. 

To solve the risk-averse decision-making problem, a 

risk-averse DP algorithm is proposed in [40]. Similar to 
the traditional DP algorithm, the risk-averse DP algo-
rithm faces the challenge of “curse of dimension”. In 

[41], CVaR is further combined with stochastic dual 
dynamic programming (SDDP), so as to obtain the op-
timal operation plan of power systems. However, this 

method is only applicable to linear problems since it 
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depends on a piecewise-linear outer approximation 

technique. Moreover, the iterative process of the SDDP 
algorithm is time-consuming, and it is difficult to meet 

the requirements of the real-time dispatch of an IEGS. 
In this paper, a CVaR-based lookup-table ADP 

(CVaR-ADP) algorithm is proposed for the real-time 

risk-averse dispatch of an IEGS. Compared with existing 
work, the major contributions of this paper are: 

1) A CVaR-based risk-averse dispatch model is for-

mulated as a Markov decision process (MDP) for the 
real-time operation of an IEGS. Then, the decisions can 

be made period by period, while overviewing the whole 
optimization horizon to balance current cost and future 
risk loss effectively. 

2) The traditional lookup-table ADP algorithm is de-
veloped into a novel CVaR-ADP algorithm. The pro-
posed algorithm is suitable for analyzing the aforemen-

tioned risk-averse dispatch model, which represents a 
non-deterministic polynomial (NP)-hard problem. 

Moreover, the value functions of CVaR-ADP can be 
trained offline beforehand. Consequently, both the pre-
diction information and iteration can be avoided, which 

makes the application convenient and efficient. 
The remainder of this paper is structured as follows: 

Section Ⅱ establishes the real-time risk-averse dispatch 

model of an IEGS, and the CVaR-ADP algorithm is 
proposed to analyze the risk-averse dispatch model in 
Section Ⅲ. Numerical simulations are devised to verify 

the effectiveness of the proposed algorithm in Section Ⅳ, 
and finally, Section Ⅴ summarizes the conclusions. 

Ⅱ.   REAL-TIME RISK-AVERSE DISPATCH MODEL OF AN 

IEGS 

The configuration of the IEGS studied in this paper is 

shown in Fig. 1, in which the coupling between the 
electricity and gas subsystems is realized by natural 
gas-fired units and power-to-gas (P2G) facilities. In this 

section, the real-time risk-averse dispatch model of an 
IEGS is mathematically formulated in the MDP and CVaR 

frameworks. First, the basic elements (i.e., state and deci-
sion variables, exogenous information, state transition 
functions, and immediate cost) of the MDP are defined.  

 
Fig. 1.  Configuration of IEGS. 

Then, the objective functions and constraints for the re-

al-time risk-averse dispatch of an IEGS are presented. 

A. Basic Elements 

1) State Variables 
The state variables are used to reflect the current states 

of the IEGS, which are defined as: 

 G NG P2G W load load S L, , , , , , , ,t t t t t t t t t t t t t t t      S P P P P E G G G  

(1) 

where 
tS  is the state variable vector at period t;  is the 

set of periods; G

t tP , NG

t tP , and P2G

t tP  are the active 

power vectors of conventional units, natural gas-fired 

units, and P2G facilities at period ( )t t , respectively; 
W

tP  is the available wind power vector at period t; load

tE  

is the electrical load vector at period t; load

tG  is the gas 

load vector at period t; S

t tG  is the gas production 

vector at period ( )t t ; and L

t tG  is the line pack vec-

tor at period ( )t t . 

2) Decision Variables 
In this paper, the decision variables in the real-time 

risk-averse dispatch of the IEGS are defined as:  

 G NG P2G WC LS LS S A, , , , , , , ,t t t t t t t t t t  a P P P P E G G G     (2) 

where ta  is the decision variable vector at period t; G

tP , 
NG

tP , and P2G

tP  are the active power vectors of conven-

tional units, natural gas-fired units, and P2G facilities at 

period t , respectively; WC

tP and LS

tE
 
are the wind power 

curtailment vector and electrical load shedding vector at 

period t, respectively; LS

tG  is the gas load shedding vector 

at period t; S

tG  is the gas production vector at period t ; 

and A

tG  is the line pack change vector at period t. 

3) Exogenous Information 

The exogenous information is used to describe the 

stochastic factors of the IEGS, and is defined as tW : 

 W load loadˆˆ ˆ, , ,t t t t t  W P E G              (3) 

where Wˆ
tP , loadˆ

tE  and loadˆ
tG  are the prediction random 

errors of wind power, electricity and gas load demands, 

respectively. As with [37], they are uniformly described 
by a Gaussian distribution in this paper. 

4) State Transition Functions 
The state transition function is used to describe the 

state relationship between two adjacent periods with the 

given decision ta  at the exogenous information t tW : 

 M , , ,t t t t t t t   S S S a W                (4) 

where M ( )S  is the state transition function. Specifically, 

the state transition functions are defined as: 
W W Wˆ ,t t t t t t    P P P                     (5) 

load load loadˆ ,t t t t t t    E E E                   (6) 

load load loadˆ ,t t t t t t    G G G                 (7) 
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L L A ,t t t t t    G G G                      (8) 

A L ,t tx t   G G                       (9) 
L L

L max min ,t t
D


   

G G
G                 (10) 

where x is the integer variable used for discretization; 
L

tG  is the unit discretized value of line pack; L

maxG  

and L

minG  are the maximum and minimum values of line 

pack; and D is the number of discrete segments. 
5) Immediate Cost 

The immediate cost of an IEGS includes the opera-

tional, penalty and maintenance costs, which can be 

described as: 
S G 2 G

, , ,

( ) ( )

P LS P LS P WC

, , ,

( ) ( ) ( )

L L

, , , , ,0

, ( )

( , ) ( ( ) )

+

( ),

mt t t m t i i t i i t i

m m i i

g m t e i t w i t

m m i i i i

m n m n t m n

m n m

C G a P b P c

C G C P C P

C G G t


 

  



    

 

  

 

  



S a

 

(11) 

where ( )tC   is the immediate cost function at period t; 

( )S m , ( )C i , ( )G m , ( )E i , ( )W i , and ( )L m  are sets of gas 

sources, convention units, gas loads, electrical loads, 

wind farms, and pipelines, respectively; m  is the unit 

production cost of gas source m; S

,m tG  is the gas pro-

duction of gas source m at period t; ia , ib , and ic  are 

the cost coefficients of conventional unit i ; G

,i tP  is the 

active power of conventional unit i at period t; P

gC , P

eC , 

and P

wC  are the penalty coefficients of gas load shed-

ding, electrical load shedding, and wind power cur-

tailment, respectively; LS

,m tG  is the load shedding of gas 

load m at period t; LS

,i tP  is the load shedding of electrical 

load i at period t; WC

,i tP  is the wind power curtailment of 

wind farms i at period t; 
,m nC  is the unit line pack 

maintain cost of pipeline mn; L

, ,m n tG  is the line pack of 

pipeline mn at period t; and L

, ,0m nG  is the line pack of 

pipeline mn at period 0. 
In (11), the first and second terms represent the op-

erational costs of gas sources and conventional units 

(i.e., coal-fired units), respectively. The third, fourth 

and fifth terms represent the respective penalty costs of 

gas and electricity load shedding, and wind power cur-

tailment. These are used to prevent load shedding and 

promote wind power consumption. The final term rep-

resents the maintenance cost of the pipeline. 

B. Objective Function 

Generally, the dispatch objective of an IEGS is to 

minimize the expectation of the operational cost across 

the entire optimization horizon, i.e.: min ( , )t t t

t

E C


 
 
 
 S a . 

According to Bellman’s equation, the objective 

function can be described as: 

 ( ) min ( , ) ( )
t

t t t t t t t t t tV C E V  


    a
S S a S S     (12) 

( ) ( , )
T

t t t t

t t

V C  


 

 

 S S a            (13) 

where ( )t tV S  is the value function of state variable tS ; 

( )t t t t tV  S S  is the conditional value function of 

t tS  and represents the optimal total cost of the sub-

sequent periods; while ( )E   represents the expectation 

operator. 
Although the expectation minimization model is 

economical in most cases, it usually ignores the 

high-cost risk in rare critical scenarios. In order to solve 

this problem, a CVaR-based real-time risk-averse 

model is employed. 

CVaR is an effective risk measurement developed on 

the basis of VaR. The relationship between CVaR and 

VaR is illustrated in Fig. 2, in which VaR(α) describes 

the maximum cost loss under the confidence level α, i.e., 

the quantile of cost under the confidence level α, while 

CVaR(α) represents the average value of exceeding this 

quantile. Considering VaR(α) cannot illustrate the cost 

loss beyond the confidence level α, the tail of the 

probability distribution is taken into consideration as an 

addition. In this way, the cost loss exceeding the con-

fidence level can also be evaluated. This helps to reduce 

the cost loss in rare critical scenarios. 

 

Fig. 2.  The relationship between CVaR and VaR. 

According to the CVaR theory and the Bellman op-
timality principle, equation (12) can be reconstructed 

using CVaR-based Bellman’s equation as: 

 ( ) min ( ) ( )t t t

t
t t t t t t t t t t tV C V

   

  


    a
S S S  (14) 

CVaR( ) (1 ) ( ) ( )t

tt t t t t tC E C R C


        (15) 

where ( )t

t tC
  is the risk measure value for the imme-

diate cost; ( ,  )t t t    is the risk-averse preference 

parameter, which refers to the risk-averse level of the 
decision-maker (i.e., the operator of the IEGS); 
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(0,1)t   is the confidence level; (0,1)t   is the 

weighted coefficient of CVaR

t
R ; ( )tE C  and CVaR

t
R  are 

the respective expectation and tail risk value of the 
immediate cost. These can be calculated by: 

CVaR 1
( ) min{ [max{ ,0}]}

1t t tt t

t

R C E C   


  


 (16) 

min{P( ) }
t t

t

t tC


 


   ≤ ≥                 (17) 

where 
t

  is the VaR of tC  at the confidence level t . 

In (14)(17), the confidence level α represents the 
occurrence probability of extreme scenarios, and the 

weight β represents the trade-off between the average 
cost and realized cost of extreme scenarios. These risk 

preference parameters reflect the attitude of the deci-
sion-makers. For example, a larger value of β means 
that the decision-maker places a greater emphasis on 

avoiding potential losses or negative outcomes of 
tail-risk events. Consequently, decision-making result 
of the proposed method will become more conservative. 

In addition, the tail risk specifically refers to the poten-
tial losses or negative outcomes of tail-risk events 
caused by wind power curtailment and load demand 

shedding. 

C. Constraints 

The decision process is subjected to the following 

constraints [42][44]. 

1) Operating Constraints of Electricity Subsystem 

G NG load LS

, , , ,

( ) ( ) ( )

P2G W WC
( ) , , ,

( ) ( )

L

,max

( )

+

,

i t i t i t i t

i C i i N i i E i

lb

b B b i t i t i t

i P i i W i

l

P P E E

P P P

P t

  



 

   
 
  
  

 

  


 
≤

（ ）
A

 (18) 

 

G NG W WC

, , , ,

( ) ( ) ( )

load LS P2G

, , ,

( ) ( )

( )

( ) ,

i t i t i t i t

i C i i N i i W i

i t i t i t

i E i i P i

P P P P

E E P t

  

 

   

   

  

 
   (19) 

G G G

,min , ,max , ( ),i i t iP P P i C i t   ≤ ≤          (20) 

NG NG NG

,min , ,max , ( ),i i t iP P P i N i t   ≤ ≤         (21) 

P2G W

, ,0 , ( ),i t i tP P i P i t   ≤ ≤             (22) 

WC W

, ,0 , ( ),i t i tP P i W i t   ≤ ≤             (23) 

LS load

, ,0 , ( ),i t i tE E i E i t   ≤ ≤             (24) 

where 
L

,maxlP  is the maximum transmission power of line 

l; ( )B b  is the set of electrical buses; lbA  is the power 

transfer matrix, which represents the impact of the in-

jected power of bus b on line l; NG

,i tP  is the active power 

of natural gas-fired unit i at period t; load

,i tP  is the elec-

trical load demand of electrical bus i at period t; LS

,i tP  is 

the load shedding of electrical load i at period t; P2G

,i tP  is 

the active power of P2G facilitie i at period t; 
L

,maxlP  is 

the maximum transmission power of line l; ( )P i  and 

( )N i  are sets of P2G facilities and natural gas-fired 

units, respectively; W

,i tP  is the available wind power 

wind farms i at period t; G

,miniP  and G

,maxiP  are the lower 

and upper limits of the active power generations of 

conventional unit i; NG

,miniP  and NG

,maxiP  are the lower and 

upper limits of the active power generations of natural 

gas-fired unit i. 
Equation (18) describes the branch power flow con-

straints, and (19) describes the power balance con-

straints. Equations (20)(22) describe the output limits 
of conventional units, natural gas-fired units, and P2G 
facilities, respectively, whereas (23) and (24) describe 

the limits of wind power curtailment and electricity load 
shedding, respectively. 
2) Operating Constraints of Gas Subsystem 

S load LS G2P

, , , ,

( ) ( ) ( )

P2G

, , ,

( ) ( )

( ) +

 , ( ),

m t m t m t m t

m S m m G m m V m

m t m n t

m K m m L m

G G G G

G F m L m t

  

 

  

    

  

 
     (25) 

2 2 2

, , , , ,( ), , ( ),m n t m n m t n tF W m n L m t          (26) 

, , ,1/2( ), , ( ),mn t mn t nm tF F F m n L m t         (27) 

min max

, , ( ),m m t m m L m t      ≤ ≤           (28) 

S S S

,min , ,max , ( ),m m t mG G G m S m t   ≤ ≤         (29) 

LS load

, ,0 , ( ),m t m tG G m G m t   ≤ ≤              (30) 

where load

,m tG  is the gas load demand of gas node m at 

period t; NG

,m tG  is the gas consumption of the natural 

gas-fired unit connected to node m at period t; ( )K m  

and ( )V m  are sets of P2G facilities and natural gas-fired 

units connected to node m, respectively; P2G

,m tG  is the gas 

production of the P2G facility connected to node m at 

period t; 
,m nW  is the Weymouth constant of pipeline mn; 

,m t  and ,n t  is the gas pressure of node m and node n at 

period t, respectively;
, ,m n tF is the average gas flow 

through pipeline mn at period t; 
, ,m n tF  is the gas flow 

injected from node m to node n at period t; 
, ,n m tF is the 

gas flow injected from node n to node m at period t; 
min

m  and max

m are the lower and upper limits of the gas 

pressure of node m; S

,minmG  and S

,maxmG  are the lower and 

upper limits of the gas production of gas source m. 

Equation (25) describes the gas flow balance con-

straints, while (26) and (27) describe the relationship 

between the nodal pressure and gas flow. Equations 

(28)(30) describe the limits of nodal pressure, gas 

production, and gas load shedding, respectively. 
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3) Operating Constraints of Line Pack 
L

, , , , ,1/2 ( ), , ( ),m n t m n m t n tG K m n L m t        (31) 

L L

, , , , , , , ,( ) , , ( ),m n t m n t t m n t n m tG G F F t m n L m t       

(32) 
L L L

min , , max

, ( )

,m n t

m n L m

G G G t


 ≤ ≤               (33) 

A S P2G

, ,

( ) ( )

load LS G2P

, , ,

( ) ( )

( ) ,

t m t m t

m S m m K m

m t m t m t

m G m m V m

G G G

G G G t

 

 

  

   

 

 
       (34) 

where 
,m nW  is the Weymouth constant of pipeline mn; 

, ,n m tF  is the gas flow injected from node n to node m at 

period t; L

, ,m n tG  is the line pack of pipeline mn at period t; 

L

minG  and L

maxG  are the lower and upper limits of the line 

pack of pipeline; A

tG  is the line pack change at period 

t; NG

,m tG  is the gas consumption of the natural gas-fired 

unit connected to node m at period t; P2G

,m tG  is the gas 

production of the P2G facility connected to node m at 

period t; 
,m nK  is line pack parameter of pipeline mn at 

period t; and L

, ,m n tG  is the line pack of pipeline mn at 

period t. 

Equations (31) and (32) describe the relationship 
between nodal pressure and line pack, equation (33) 
describes the upper and lower bounds of line pack, and 

(34) describes the change of line pack. 
4) Operating Constraints of Coupling Facility 

The coupling facilities include natural gas-fired units 
and P2G facilities, whose operational characteristics 
can be described respectively as: 

NG NG

, NG , , ( ),m t m tG P m N m t                  (35) 

P2G P2G

, P2G , , ( ),m t m tG P m K m t                (36) 

where NG  and P2G  are the conversion coefficients of 

the natural gas-fired units and P2G facilities, respec-

tively; ( )N m  and ( )K m  are sets of nodes including 

gas-fired units and P2G facilities, respectively; NG

,m tG  is 

the gas consumption of the natural gas-fired unit con-

nected to node m at period t; NG

,m tP  is the active power of 

the natural gas-fired unit connected to node m at period t; 
P2G

,m tP  is the active power of the P2G facility connected 

to node m at period t; and ( )N m  and ( )K m  are sets of 

nodes including gas-fired units and P2G facilities, re-
spectively. 

Ⅲ.   CVAR-ADP ALGORITHM 

Due to stochastic, nonconvex, and nonlinear proper-

ties, the real-time risk-averse dispatch model of an 
IEGS is difficult to analyze by traditional algorithms in 
an acceptable time. As an effective optimization method, 

ADP is able to decompose the complex problem into a 

series of small problems. However, the traditional ADP 
algorithm, which takes the minimum expected cost as 

the optimization objective, is not suitable for the above 
risk-averse dispatch model. In order to deal with this 
problem, the traditional ADP algorithm is developed 

into the CVaR-ADP algorithm in this section. 

A. Formulation of CVaR-VF 

In (14), the value function is the key to solving the re-

al-time risk-averse dispatch problem. Since the real value 

function is unknown, it needs to be approached by the 

approximate value function. The commonly used ap-

proximate value functions include look-up tables and 

piecewise-linear functions. However, they cannot be di-

rectly applied to (14), which includes the CVaR cost at a 

given confidence level. In order to solve this problem, a 

new CVaR-based value function (CVaR-VF) is proposed. 

Similar to the look-up table-based approximate value 
function, the CVaR-VF is described as: 

  CVaR CVaR

ˆ

ˆ ˆ ˆ( ) min ( )t t t

t
t t t t t t t t t t tV C V

   

  


  
 a

S S S (37) 

where CVaR ( )tV   and CVaR ( )t tV   are the CVaR-VF at period 

t and  t t , respectively;  is the set of feasible 

decision; while ˆ
tS  and ˆ

ta  are the discretized state 

variables and decision variables, respectively, which 
can be obtained by: 

max min( )/ ZZ Z Z d                       (38) 

 min min min max max
ˆ , , 2 , , ,Z Z Z Z Z Z Z Z Z      

(39) 

where Z represents the element in tS  and ta ; Z  rep-

resents the unit discretized value of Z; 
Zd  represents the 

number of discrete segments of Z; and Ẑ  represents the 
discretized Z. 

To tackle the problem of “curse of dimension” in the 

information space, the post-decision state proposed in 

[36] is introduced and (37) can be rewritten as: 

 CVaR, CVaR,( ) min ( ( , , )) ( )t

t

a a a a a

t t t t t t t t t t t tV C V
   

a
S S a W S

(40) 

where CVaR, ( )a

t tV    is the CVaR-VF of the post-decision 

state; and a

tS  is the post-decision state. The physical 

meaning of (40) is the impact of the current decisions on 

the subsequent periods, i.e., the sum of CVaR cost of the 

subsequent periods. 

In (40), ( ( , , ))t a

t t t t t tC
 S a W  and CVaR, ( )a a

t tV S  

should be calculated period by period. The details are 
presented in the following two subsections. 

B. Calculation of CVaR Immediate Cost 

In (40), the CVaR immediate cost 

( ( , , ))t a

t t t t t tC
 S a W  can be specifically described as: 
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CVaR

( ( , , )) (1 ) ( ( , , ))

( ( , , ))

t

t

a a

t t t t t t t t t t t t
a

t t t t t t

C E C

R C





 


 



  S a W S a W

S a W
 (41) 

From [16], Monte Carlo (MC) sampling is employed 

to respectively approximate ( ( , , ))a

t t t t tE C S a W  and 
CVaR ( ( , , ))

t

a

t t t t tR C S a W  as: 

1

1
( ( , , )) ( , , )

M
a a s

t t t t t t t t t t

s

E C C
M

 



 
  

 
S a W S a W  (42) 

 

CVaR

1

( ( , , ))

1
min max ( , , ) ,0

(1 )

t

t t

a

t t t t t

M
a s

t t t t t

st

R C

C
M



  










 
  

 


S a W

S a W
 

 (43) 

where M is the number of MC sampling scenarios; s

tW  

is the exogenous information vector of scenario s; and 

( , , )a s

t t t t tC S a W  is the immediate cost of the sth sce-

nario at period t. 
As long as the immediate cost of each scenario is sub-

stituted into (42), ( ( , , ))a

t t t t tE C S a W  can be directly 

calculated. 

For calculating CVaR ( ( , , ))
t

a

t t t t tR C S a W , the bi-level 

optimization problem described in (43) is handled using 
the approximate method proposed in [45]. First, the 
auxiliary variables are introduced to replace the in-
ner-layer problem of (43) as: 

 , max ( , , ) ,0
t

a s

s t t t t t tC   S a W             (44) 

where 
,s t  is the auxiliary variable of the sth scenario at 

period t. 
Then, equation (43) can be transformed to the trac-

table single-level optimization problem as: 

CVaR

,

1

1
( ( , , )) min

(1 )t t

M
a s

t t t t t s t

st

R C
M

  






 
  

 
S a W  

(45) 

s.t. ,( , , )   ,
t

a s

t t t t t s tC s t   ≤S a W           (46) 

, 0   ,s t s t ≥         (47) 

C. Update of CVaR-VF 

In (40), the CVaR-VF CVaR, ( )a

tV   should be iteratively 

updated through the following two processes, while the 

update principle of CVaR-VF is depicted in Fig. 3. 

 
Fig. 3.  Update principle of the CVaR-VF. 

1) Forward Process 
The forward process aims to obtain the CVaR im-

mediate cost of each period by solving (40) from period 
1 to period T. Then, the post-decision state variables of 
current period t are passed to subproblem ( )t t  , 

which is used to update its state in the next iteration. 
Note that when solving subproblem (40) in the forward 
process, the decision variables are known in advance, 
according to which the feasible decision is traversed to 
obtain a better one. 
2) Backward Process 

The backward process aims to update CVaR-VF by 
recursively solving (40) from period T to period 1. Then, 

the CVaR-VF of current period t is passed to subprob-

lem ( )t t . This helps to update its decision in the 

next iteration. 
According to [46], the iteration process should stop 

when one of the convergence conditions is satisfied, i.e., 
the maximum training number is reached or the fol-

lowing tolerance of CVaR-VF is met: 
CVaR, , CVaR, ,( ) ( ) ,a,n a n a,n-1 a n

t t t tV V t ≤S S      (48) 

where CVaR, ,( )a,n-1 a n

t tV S  is the value of CVaR, ,( )a,n a n

t tV S  in 

the ( 1)thn   iteration. 

The update process of CVaR-VF is summarized as 

algorithm 1, which is shown in Table Ⅰ. 

TABLE Ⅰ 

ALGORITHM 1. UPDATE OF CVAR-VF 
Algorithm 1. Update of CVaR-VF 
1: Initialization: Initialize the maximum training number N, the 

convergence tolerance  , the optimization horizon , and the 

discrete segments of variable 
zd . 

2: Set the training index 1n   and the optimization interval 1t  . 

3: Solve subproblems forwards 

for 1,2, ,t T   

1) Enumerate the feasible decisions in the feasible decision 

space t constructed by (18)(36); 

3) Solve subproblem (40) subjected to (9), (11), (18)(36), and 

(44)(48); 

4) Record ,*n

ta  and ( ( , , ))t a,n n,* n

t t t t t tC
 S a W ; 

5) Step into the next state according to (5)(8). 

end for 

4: Update value functions backwards 

for , 1, ,1t T T   

1) Receive ( ( , , ))t a,n n,* n

t t t t t tC
 S a W ; 

2) Update CVaR, ( )a,n a,n

t t t tV  S according to (41). 

end for 

5: Let 1n n  .  

6: Check convergence 

1) If n N or (49) is satisfied, terminate the update process, and 

return CVaR, ( )a,n a

t tV S ;  

2) Otherwise, go to Step 3. 

D. Procedure of the Proposed Algorithm 

In Algorithm 1, the update of CVaR-VF is 

time-consuming, and it is difficult to satisfy the real-time 
operational requirement of an IEGS. To handle this 

problem, the value functions are trained offline in this 
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subsection. When large numbers of scenarios are con-

sidered in this offline training process, we can consider 

that the value function has been embedded with enough 

empirical knowledge [37]. Then, these well-trained value 

functions can be applied to the real-time dispatch, which 

facilitates the acceleration of the decision-making pro-

cedure in the real-time risk-averse dispatch stage. 

The procedure of the CVaR-ADP algorithm with the 

offline training process is outlined as algorithm 2, which 

is shown in Table Ⅱ. 

TABLE Ⅱ 

ALGORITHM 2. PROCEDURE OF CVAR-ADP 
Algorithm 2. Procedure of CVaR-ADP 

Stage Ⅰ: Offline value function training procedure  

1: Initialization: Initialize the state
1S , and choose the risk-averse 

preference. 
2: Input the distribution information (i.e., mean and standard devia-

tions) of the prediction errors of gas load, electricity load, and wind 

power.  
3: Sample M training scenarios by the MC method. 

4: Obtain the CVaR, ( )a,n a

t tV S  according to Algorithm 1. 

Stage Ⅱ: Real-time optimization dispatch procedure  

1: Input the well-trained CVaR, ( )a,n a

t tV S  obtained from stage Ⅰ. 

2: for 1,2, ,t T  

1) Obtain the real-time electricity load demand, gas load de-
mand, and wind power generation;  

2) Solve (41) subjected to (9), (11), (18)(36), and (42)(48), 

and obtain the near-optimal decision *

ta ; 

3) Execute decision *

ta  and step into the next state according to 

(5)(8). 
3: end for 

Similar to [34] and [38], when solving (40), the op-

timality in theory cannot be guaranteed because of the 

nonconvexity and nonlinearity of the problem. However, 

the proposed algorithm can provide satisfactory solu-

tions in all the practices. 

Ⅳ.   NUMERICAL ANALYSIS 

In this section, the effectiveness of the proposed method 

is tested by numerical cases on a 4-bus-4-node IEGS [43] 

and a modified IEEE-39-bus-Belgian-20-node IEGS [44]. 

The optimization horizon  is set to 24 h, and the 

risk-averse preferences at different periods are set to be the 

same. As for the proposed algorithm, the convergence 

tolerance   is set to 0.001 and the discrete segments of 

state and decision variables are set to 11. The proposed 

algorithm is coded in GAMS 24.3, and each subproblem is 

solved by the MINOS (i.e., an NLP commercial solver) on 

a computer with i7-10700 CPU and 16GB memory. 

The proposed method is compared with various 
methods in this section. According to [37] and [45], the 

errors of different methods can be calculated using: 
*

*

s s
s

s

F F
e

F


        (50) 

ave

1

1 M

s

s

e e
M 

       (51) 

where se  represents the error of the compared method 

in the sth scenario; avee  is the average error of the 

compared method; sF  represents the operational cost of 

the compared method in the sth scenario; while *

sF  

represents the optimal operational cost (i.e., benchmark) 
in the sth scenario. It is obtained under the asesumption 
of accurate dispatch in each scenario. 

A. Case of the 4-bus-4-node IEGS 

The topology of the 4-node-4-bus IEGS is shown in 

Fig. 4, and the parameters are given in Tables ⅢⅤ. 
The total installed capacity of the wind farm is 400 MW. 

Similar to [37], the exogenous information (i.e., the 
prediction errors of gas and electricity load, and wind 
power) are assumed to follow Gaussian distributions, in 

which the standard deviation of each exogenous infor-
mation is 10% of its mean value. As shown in Fig. 5, 
1000 sets of training scenarios and 100 sets of testing 

scenarios are sampled by MC simulation. 

 
Fig. 4.  Topology of the 4-node-4-bus IEGS. 

 
Fig. 5.  Sampled scenarios. (a) Gas demand. (b) Electricity de-

mand. (c) Wind power. 

To demonstrate the advantage of the proposed 
risk-averse method, it is compared with the risk-neutral 
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method. In the proposed method, the risk-averse model 

is analyzed by algorithm 2, while in the risk-neutral 
method, the traditional risk-neutral model (i.e. (13)) is 

directly analyzed by the traditional lookup table-based 
ADP algorithm [37]. In order to accelerate the compu-
tation speed, the value functions of these two ADP 

algorithms are trained offline as described in Algorithm 
2. The convergence processes of CVaR-ADP with dif-
ferent risk-averse preferences are shown in Fig. 6. It can 

be seen that CVaR-ADP is able to converge after about 
190 iterations (i.e., within 5 minutes), regardless of the 

choice of risk preference. 

TABLE Ⅲ 

PARAMETERS OF NODE PRESSURES AND GAS SOURCES 

Node 1 2 3 4 

min

m  (bar) 40 40 40 40 

max

m  (bar) 60 55 55 60 

,

o

m t  (bar) 45 44 44 46 

m  ($/Mm3) 10 000   8000 

S

maxG  (Mm3/h) 3   3.5 

S

minG  (Mm3/h) 0   0 

TABLE Ⅳ 

PARAMETERS OF CONSTANTS 

Parameters Values Parameters Values 

mnC  ($/MWh) 10 000 P2G  (Mm3/MW) 0.005 

mnW  (Mm3/bar·h)2 1.2268 
P

gC  ($/MWh) 100 000 

mnK  (Mm3/bar) 0.3424 
P

eC  ($/MWh) 10 000 

NG  (Mm3/MW) 0.01 P

wC  ($/MWh) 1000 

TABLE Ⅴ 

PARAMETERS OF GENERATORS 

Generator G1 G2 G3 

G

minP  (MW) 50 50 50 

G

maxP  (MW) 200 300 250 

ib /($/MW·h) 75  70 

 
Fig. 6.  Convergence processes of CVaR-ADP in the 4-bus-4- 

node IEGS. 

Table Ⅵ takes the value function at period 1 as an 
example to illustrate the changes of convergence results 
with different risk preferences. When the risk prefer-
ences are set to 0.8   and 0.95  , the CVaR-VF at 

period 1 is $ 4.473×106. When the risk preferences are 

adjusted to 0.4   and 0.95  , the CVaR-VF 

changes to $ 4.116×106 accordingly. The reason is that 
the larger   and   are, the more conservative the 

decision is. In this way, the CVaR-VF can be trained 
under different risk preferences, which can then be 
applied in the real-time decision-making stage to speed 
up the method. 

Table Ⅶ shows the comparison of the proposed 
risk-averse method and the risk-neutral method. Alt-

hough the average cost of the proposed method is 
slightly larger than that of the risk-neutral method, the 
CVaR cost of the proposed method is much smaller than 

that of the risk-neutral method. The greater the risk 
preference coefficients, the more obvious are the ad-
vantages of the proposed method over the risk-neutral 

method. This is because the proposed method can con-
sider the tail risk, which facilitates the reduction of the 

risk cost in extreme scenarios. 

TABLE Ⅵ 

OFFLINE TRAINING RESULTS IN THE 4-BUS-4-NODE IEGS 

Algorithm CVaR-VF at period 1 ($) 
CPU time 

(s) 

CVaR-ADP 

( 0.8, 0.95)    
4.473×106 269.73 

CVaR-ADP 

( 0.4, 0.95)    
4.116×106 265.88 

CVaR-ADP 

( 1)    
3.583×106 189.88 

TABLE Ⅶ 

REAL-TIME OPTIMIZATION RESULTS IN THE 4-BUS-4- NODE IEGS 

Method 
Average cost  

($) 

95%CVaR  

cost ($) 

Average 

error (%) 

Risk-averse 

( 0.8, 0.95)    
3.661×106 4.618×106 0.166 

Risk-averse 

( 0.4, 0.95)    
3.685×106 4.834×106 0.463 

Risk-neutral 3.579×106 5.219×106 1.871 

In Figs. 7 and 8, the results in an extreme scenario are 
taken as an example to illustrate the differences between 
the proposed risk-averse method and the risk-neutral 
method. As Fig. 8(a) depicts, the results provided by the 

proposed risk-averse method (corresponding 0.8   and 

0.95  ) have three line pack peaks. The first can absorb 

surplus wind power, while the second and third can pro-
vide sufficient power supply for the later peak loads. 
Therefore, there is no load shedding and wind power cur-
tailment, as shown in Fig. 8(b). However, it can be seen 
from Fig. 9(a) that there are only two line pack peaks when 
the risk-neutral method is applied. Because of the lack of 
line pack, the result of the risk-neutral method exhibits a 
certain degree of load shedding in load peak periods, as 
shown in Fig. 9(b). Thus, the CVaR cost of the risk-neutral 
method is higher than that of the proposed method. 

In terms of calculation time, since the well-trained 

value functions are used in both methods, the iterative 

calculation in the real-time optimization dispatch stage 

can be avoided effectively. Therefore, the decisions can 

be made within 0.2 s in both methods. 
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Fig. 7.  Real-time optimization results of the risk-averse method 

in the 4-bus-4-node IEGS. (a) Gas dispatch results. (b) Power 
dispatch results. 

 
Fig. 8.  Real-time optimization results of the risk-neutral method 

in the 4-bus-4-node IEGS. (a) Gas dispatch results. (b) Power 

dispatch results. 

B. Case of the 39-bus-20-node IEGS 

To illustrate the effectiveness of the proposed 
risk-averse method, further comparisons with more 
methods (i.e., the risk-neutral method, myopic policy and 
MPC) are carried out on a modified IEEE-39-bus-Belgian 
-20-node IEGS [44] depicted in Fig. 9. The parameters are 
given in Tables Ⅷ and Ⅸ. The total installed capacities 
of conventional units, natural gas units, and wind farm are 
6000 MW, 6000 MW, and 12 000 MW, respectively. 
Similar to the previous test, the exogenous information 
(i.e., the prediction errors of gas and electricity load, and 
wind power) are also assumed to follow Gaussian distri-
butions, and the standard deviation of each exogenous 
information is 10% of the mean value. In the tests, 1000 
sets of training scenarios and 100 sets of testing scenarios 
are sampled by MC simulation. In addition, the risk pref-
erences are set to 0.8   and 0.95  . 

TABLE Ⅷ 

PARAMETERS OF NODE PRESSURES AND GAS SOURCES IN THE 

20-NODE SYSTEM 

Node 
min

m  

(bar) 

max

m  

(bar) 
,

o

m t  

(bar) 

m  

 ($/Mm3) 

S

maxG  

 (Mm3/h) 

S

minG  

 (Mm3/h) 

1 60 35 40 7000 10 0 

2 60 35 40    
3 60 35 40    
4 60 35 40    

5 60 35 40 6500 10 0 

6 60 35 40    

7 60 35 40    
8 60 35 40 6500 8 0 

9 60 35 40    

10 60 35 40    

11 60 35 40    

12 60 35 40    
13 60 35 40    
14 60 35 40    

15 60 35 40    
16 60 35 40 7500 10 0 

17 60 35 40    
18 60 35 40    
19 60 35 40    
20 60 35 40 7000 8 0 

TABLE Ⅸ 

PARAMETERS OF GENERATORS IN THE 39-BUS SYSTEM 

Bus 
G

maxP  (Mm3/h) 
G

minP  (Mm3/h) ib  (Mm3/h) 

30 100 1000 70 

31 100 1000  

34 100 1500 75 

36 100 1000  

37 100 1500 70 

38 100 1000  

39 100 1000  

Myopic policy simply considers the optimality of the 

current period, while MPC uses the forecast information 
of the following 4 periods. For the proposed risk-averse 
and risk-neutral methods, the value functions of the 

proposed CVaR-ADP algorithm and the traditional 
ADP algorithm are also trained offline beforehand, and 
the convergence processes are shown in Fig. 10. 
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Table Ⅹ shows the optimization results of different 

methods in the real-time dispatch stage. Compared with 
traditional real-time methods (i.e., the myopic policy 

and MPC), the proposed method can reduce the opti-
mization errors to some extent. It can also be seen that 
both the average cost and CVaR cost of the proposed 

method are smaller than those of myopic policy and 
MPC. This is because the proposed method can over-
view all optimization periods, while the other two only 

use the information of the current period or the fol-

lowing four periods. 

Although the calculation time of the proposed 
method is longer than that of the myopic policy method, 

the decisionsc an still be finished within 10 s. Consid-
ering that the average time shown in Table 6 is the sum 
of the decision times of 24 periods, the calculation time 

to obtain the optimal decision for each period is 1/24 of 
the data in Table Ⅵ. Therefore, the proposed algorithm 
can meet well the requirement for real-time dispatch of 

an IEGS. 

 
Fig. 9.  Topology of the 39-bus-20-node IEGS. 

 

Fig. 10.  Convergence processes of CVaR-ADP in the 39-bus-20- 

node IEGS. 

TABLE Ⅹ 

REAL-TIME OPTIMIZATION RESULTS IN THE 39-BUS-20-NODE IEGS 

Method 
95% CvaR 

cost ($) 
Average 
cost ($) 

Average 
error (%) 

Average 
time (s) 

Risk-averse 8.955×107 7.977×107 0.362 10 

Risk-neutral 10.337×107 7.897×107 2.737 10 

MPC 11.146×107 8.186×107 3.394 12 

Myopic 13.364×107 8.458×107 12.437 1 

Ⅴ.   CONCLUSION 

This paper proposes a risk-averse real-time dispatch 

model for the real-time operation of an IEGS with un-

certainties. This is analyzed using a CVaR-ADP algo-

rithm. The main conclusions are: 

1) The proposed method can effectively deal with the 

uncertainties according to the risk preferences. 

2) Compared with the traditional risk-neutral method, 
the proposed method is more favorable for reducing 
load shedding and wind power curtailment in extreme 

scenarios. 
3) Compared with the myopic policy and MPC, the 

proposed method can obtain lower average cost and 
CVaR cost.  

4) The proposed method reduces the CVaR cost, 

while increasing the average cost. In actual application, 
the operator of an IEGS should make real-time deci-
sions according to its risk preference. 

5) This paper focuses on a new ADP framework to 
deal with risk and uncertainty. The limitation of the 

proposed method is that the calculation of CVaR is 
based on the assumed distribution information, which 
may be difficult to acquire in practice. Therefore, it is 

intended to apply data-driven techniques to improve the 
applicability of the proposed method in future research. 
In addition, the proposed method will be extended to the 

decentralized optimization of multi-area IEGS. 
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