
PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 2, MARCH 2024 128 

Curvature Quantified Douglas-Peucker-based 

Phasor Measurement Unit Data Compression 

Method for Power System Situational Awareness 

Weitao Tan, Student Member, IEEE, Tianhan Zhang, Student Member, IEEE, Yuanqian Ma, 

Shengyuan Liu, Li Yang, Member, IEEE, and Zhenzhi Lin, Senior Member, IEEE 

Abstract—Facing constraints imposed by storage and 

bandwidth limitations, the vast volume of phasor meas-

urement unit (PMU) data collected by the wide-area 

measurement system (WAMS) for power systems cannot 

be fully utilized. This limitation significantly hinders the 

effective deployment of situational awareness technologies 

for systematic applications. In this work, an effective 

curvature quantified Douglas-Peucker (CQDP)-based 

PMU data compression method is proposed for situational 

awareness of power systems. First, a curvature integrated 

distance (CID) for measuring the local flection and fluc-

tuation of PMU signals is developed. The Doug-

las-Peucker (DP) algorithm integrated with a quan-

tile-based parameter adaptation scheme is then proposed 

to extract feature points for profiling the trends within the 

PMU signals. This allows adaptive adjustment of the al-

gorithm parameters, so as to maintain the desired com-

pression ratio and reconstruction accuracy as much as 

possible, irrespective of the power system dynamics. Fi-

nally, case studies on the Western Electricity Coordinat-

ing Council (WECC) 179-bus system and the actual 

Guangdong power system are performed to verify the 

effectiveness of the proposed method. The simulation 

results show that the proposed method achieves stably 

higher compression ratio and reconstruction accuracy in 

both steady state and in transients of the power system, 

and alleviates the compression performance degradation 

problem faced by existing compression methods. 

Index Terms—Curvature quantified Douglas-Peucker, 

data compression, phasor measurement unit, power sys-

tem situational awareness. 

 

Ⅰ.   INTRODUCTION 

ecause of the increasing deployment of phasor 
measurement units (PMUs) and phasor data con-

centrators (PDCs), vast volumes of PMU data are being 
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collected at a fairly high reporting rate [1]. Limited by 
communication and storage capacities, these vast vol-

umes may cause severe communication congestion and 
discontinuous storage. This greatly restricts systematic 
applications of enhanced situational awareness tech-

niques (e.g., power system event detection [2] identifi-
cation [3], and location [4]). Also, time-latency in the 

range of 100 ms to 5 s is required by most WAMS ap-
plications [5]. To address these problems, compressing 
PMU data in WAMS substations is an effective ap-

proach. Once the compressed PMU data are transmitted 
through the communication network, they can be re-
constructed at WAMS master stations to restore their 

original resolution for high-accuracy applications.  
Compression techniques for PMU data include loss-

less and lossy categories. Lossless compression tech-

niques tend to reduce the scale of PMU data without any 

loss, i.e., the compressed data can be completely recon-

structed into the original PMU data. In [6], a prepro-

cessing method based on frequency-compensated dif-

ference encoding is presented to reduce the complexity 

of PMU data, and the Golomb-Rice codes-based entropy 

encoder is then exploited to compress the preprocessed 

data. In [7], a slack-referenced encoding (SRE)-based 

technique is used for the compression of PMU data from 

different sources. Nevertheless, these lossless compres-

sion techniques are adapted from other fields for general 

applications, prioritizing high-accuracy reconstruction at 

the expense of achieving low compression ratios. Hence, 

as mentioned in [8], lossless compression methods 

cannot achieve the high compression ratio required for 

big data applications, such as wide-area synchrophasors 

networks where the data of thousands of PMUs are 

shared among multiple entities. In pursuit of a balanced 

approach, the lossy compression technique that achieves 

higher compression ratios, albeit with a degree of in-

formation loss, is preferred and adopted for the com-

pression of PMU data in this study. 

Lossy compression techniques can significantly re-

duce the scale of PMU data, though at the cost of in-
troducing limited errors between the reconstructed data 
and the originals. Signal feature analysis is a 

B 
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well-studied lossy compression technique for PMU data, 

among which the most widely used include the principal 
component analysis (PCA)-based [9] and wavelet 

transform (WT)-based [10] methods. However, data 
buffering is required for PCA-based and WT-based 
methods, resulting in insufficient timeliness for re-

al-time applications. Another type of lossy compression 
technique is based on segment approximation algo-
rithms. They approximate the PMU signals as segments 

and select many fewer data points to represent their 
trends. For real-time event detection, the ordinary least 

squares (OLS) [11] and swinging door trending 
(SDT)-based compression algorithms [12], [13] are 
developed to generate multiple compression segments 

of the PMU data. However, the selection of algorithm 
parameters is a serious challenge for OLS and 
SDT-based methods. More specifically, the tunable 

parameters of OLS and SDT-based algorithms are em-
pirically set and remain constant, but the compression 

performance primarily depends on these algorithm pa-
rameters. While a group of algorithm parameters may 
achieve relatively high compression ratios with minimal 

distortion in the steady state of the power system, they 
may not be suitable for compressing rapidly changing 
PMU data under severe disturbance. This can lead to 

significant fluctuations in compression ratios. Similarly, 
the algorithm parameters for disturbed PMU data are 
also unsuitable for PMU data in the steady state of the 

power system. This phenomenon that the compression 
ratios undergo significant and unpredictable changes 

because of the mismatch of algorithm parameters for 
varying power system dynamics is referred to as com-
pression performance degradation. The DP algorithm is 

also a well-studied lossy compression method for vector 
data based on segment approximation [14], [15]. The 
fundamental concept behind the DP algorithm is to 

progressively extract feature points of the data curve, 
transitioning from coarse to fine levels of detail, and 

thus the compressed data can retain the overall trend of 
signals with minimal distortion. However, a notable 
limitation of the DP algorithm is its inability to ade-

quately capture the local characteristics of the PMU 
signals. This hinders its capacity to mitigate the issue of 
compression performance degradation, because of the 

challenge persisting in the selection of the algorithm 
parameters for different system dynamics. 

Fundamentally, there is no absolute “steady state” for 
power systems [16]. Power systems typically operate in 
quasi-steady state, where the system operating condi-

tions change primarily because of stochastic variations 
in demand/generation, while they can also experience 
transient states resulting from severe disturbances [17], 

[18]. Hence, it is of great significance for the compres-
sion method to tune the algorithm parameters for vary-
ing system dynamics, so as to maintain the desired 

compression ratio and reconstruction accuracy as much 

as possible, irrespective of the power system dynamics.  

To address the compression performance degradation 

problem, an effective CQDP-based lossy compression 

method is proposed. Compared to previously used com-

pression methods, the advantage of the proposed ap-

proach lies in its use of the curvature integrated distance 

(CID) and parameter adaptation scheme. This strategy 

effectively mitigates the degradation of compression 

performance caused by inappropriate parameters during 

significant shifts in power system dynamics caused by 

severe disturbances. As a result, it consistently delivers 

superior compression performance. First, CID is pre-

sented to measure the local flection and fluctuation trends 

within the PMU signals. Then, a DP-based algorithm is 

combined with a quantile-based parameter adaptation 

scheme to extract feature points that profile the contour 

of the PMU signals. Finally, the compressed data is re-

constructed by a linear interpolation model to restore to 

the original resolution, for systematic applications in 

power systems. The contributions of this work are: 

1) A CQDP-based PMU data compression method is 

proposed for power system situational awareness. By 

using the CID that measures local flection and fluctua-

tion of PMU signals, and incorporating the DP algo-

rithm that extracts feature points, the scale of PMU data 

can be compressed for easy communication and storage. 

2) A quantile-based parameter adaptation scheme is 

embedded in the CQDP to effectively alleviate com-

pression performance degradation for varying power 

system dynamics. Compared with previous lossy com-

pression methods, the proposed method achieves a 

higher compression distortion composite index when 

the operating status of the power system changes, thus 

verifying its higher compression performance than other 

algorithms. 

Ⅱ.   CQDP-BASED DATA COMPRESSION METHOD FOR 

PMU MEASUREMENT 

A noteworthy characteristic of the PMU data is that it 
keeps almost constant in the steady state of the power 

system, but fluctuates significantly under disturbances. 
Thus, as mentioned in Section I, robust compression 
methods for PMU data are required for varying power 

system dynamics. In the proposed method, the DP al-
gorithm is improved by combining it with the CID and 

quantile-based parameter adaptation schemes, so as to 
alleviate the compression performance degradation 
problem caused by inappropriate algorithm parameters, 

particularly during significant changes in power system 
dynamics. 

A. CQDP-based PMU Data Compression Method 

Assume M PMUs are installed at major buses of the 

power system, and for each PMU, the reporting rate rf  

and window length L are given. Then, the general form 
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of the N-point data series of the ith PMU ( 1,2, , )i M  

is denoted as: 

,1 ,2 ,[ , , , ]i i i i NV V V V                       (1) 

where 
,i jV  ( 1,2, ,j N ) is the PMU measurement 

(e.g., voltage amplitude data) at time 
jt ; and N is de-

termined by L and rf  (i.e., rN L f  ). Then, N-1 

equal intervals are segregated by N-2 interior points (i.e., 

,2iV , 
,3iV , , 

, 1i NV 
) in the middle. Considering that the 

abrupt fluctuations and sharp variations in the PMU 
signals contain valuable insights into the power system 
dynamics, the motivation of the CQDP-based method is 
to extract data points that can profile the trends within 
the PMU signals. 

CID is used to quantify the local flection and fluctu-

ation of PMU signals, denoted as the product of curva-
ture and Euclidean distance as: 

,CID

, , , ,
2

,1 , 1
1

j i j

i j i j i j i j

kt b V
d i M j N

k

 
 


≤ ≤ ＜ ＜    

(2) 

where 
,i jd is the point-to-edge distance from the interior 

point 
,i jV  to the straight line concatenated by the start 

and end points; k and b are the respective slope and 

intercept coefficients of the straight line; and ,i j  is the 

curvature at point ,i jV , represented as: 
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 (3) 

A higher CID indicates more pronounced and sig-

nificant changes in the PMU signals and vice versa. 

Therefore the feature point of the PMU signals is de-

fined as the data point with the largest CID in each 

iteration of the DP algorithm. Note that for PMU data 

with small fluctuation when there is no large disturb-

ance in an actual power system, the CIDs of the interior 
data points are all significantly low (close to 0). This 

indicates that these data points are approximately linear, 

and can be highly compressed. On the contrary, a much 

higher CID will be obtained if a severe disturbance 

occurs on the corresponding data point. Hence, CID can 

be used for the compression of PMU data in both steady 

state and disturbance of the power system. 
With the local flection and fluctuation measured by 

CID, the DP algorithm is adopted to extract feature 
points. The diagram of the CQDP-based compression 
method is presented in Fig. 1, where the red points de-
note extracted feature points, while the black and red 
lines denote raw PMU data and compressed PMU data, 

respectively. The CID threshold CID  is the only pa-

rameter in the CQDP-based compression algorithm, and 
it controls the error limit of the compression process. In 
each iteration, the maximum CID will be compared with 

CID , and only if the maximum CIDCID ＞  will the 

data point be extracted as the feature point. 

 

Fig. 1.  Diagram of the CQDP-based algorithm for PMU data 

compression. 

B. Quantile-based Parameter Adaptation Scheme for 

Varying Power System Dynamics 

For the CQDP-based data compression algorithm, the 

CID threshold CID  is a critical parameter for compres-

sion and reconstruction performance. Generally, the 

value of CID  is set empirically to minimize the com-

pression ratio within a limited error of the reconstructed 

data. However, the optimal selection of CID  may fluc-

tuate greatly for different dynamics of the power system, 

and thus a constant CID  is not favorable for real-time 

applications. Therefore a quantile-based parameter ad-
aptation scheme is presented here to adaptively select 

the value of CID . 

With all CIDs calculated by (3), the CID vector is 

formed as: 
* * *

,1 ,1 , 2[ , , , ]i i i i N                       (4) 

where ,1 ,2 , 2i i i N

  

＞ ＞ ＞   . The CID threshold 

CID  is set as the p quantile value of i , expressed as: 

CID , * , * 1 , *
( )( )

i p i p i p
p p       

          
          (5) 

1 ( 3)p N p                         (6) 

where p  is the index of the p quantile value of i ; and 

the symbol     is the floor function that calculates the 

maximum integer not greater than the input data. As the 
CIDs measure the local flection and fluctuation of PMU 
signal segments between two adjacent feature points, it 
can be inferred that the smaller the CIDs of interior 
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points between two adjacent feature points are, the 
higher compressibility these interior points have (i.e., 
the distribution of these points is approximately a line). 
Therefore, the p quantile can indicate the compressibil-
ity of PMU data points, and the data points with high 
compressibility will be removed in iterations of the DP 
algorithm, so as to accelerate the extraction process of 

feature points. The quantile of 0.75p  , also known as 

the quartile, is commonly used to reflect the outlier of a 

distribution in statistics [19]. This is also the set-
ting in this study. 

Since the p quantile defines the relative value of CIDs 

in a non-biased way, CID  can be selected adaptively 

irrespective of power system dynamics. To clarify fur-
ther, the pseudocode of the CQDP-based compression 
method integrated with the quantile-based parameter 
adaptation scheme is presented in Algorithm 1. 

Algorithm 1 CQDP-based data compression with parameter adaption 

1 Input: PMU data series 
,1 ,2 ,[ , , , ]i i i i NV V VV  

2 Set the number of reserved points res

iN  

3 Initialize feature points set as 
,1 ,[ , ]i i i NV VF  

4 While the length of res

i iN＜F : 

5 For adjacent feature points 
, ,, ( )i m i nV V m n＜ , in 

iF : 

6 If ( ) 2:n m ＜  

7 Continue 

8 Else: 

9 
Calculate CIDs from interior points , ( )i jV m j n＜ ＜  to 

the straight line , ,i m i nV V  via (2) 

10 End if 

11 End for 

12 Adjust the CID threshold 
CID  by (5) 

13 For adjacent feature points 
, ,, ( )i m i nV V m n＜  in 

iF : 

14 If max 
CID

, CID( ) :i j ＜  

15 Remove the interior points , ( )i jV m j n＜ ＜  

16 1N N n m     

17 End if 

18 End for 

19 Append 
,i j

V   to 
iF , where 

CID

,
1

argmax i j
j N

j  
＜ ＜

 

20 N ← N - 1, update the interior points and their CIDs 

21 Output: feature point set 
iF , i.e., the compressed PMU data 

Note that the PMU data point is a phasor including 
amplitude and phase angle components, which are 
treated as two independent data series to be compressed 

separately in this study. Even though the compression is 
processed separately, the amplitude and phase angle 
data will be reconstructed in the WAMS master station 

to restore the original resolution. This ensures the sim-
ultaneous and accurate representation of the phasor data. 

The complexity of the DP algorithm (i.e., extracting 
process of feature points), which primarily determines 
the execution time of the proposed method, is proved to 

be O(mn) [22], where m is the iteration number of the 
DP algorithm, and n is the number of raw data points. 
For the compression of PMU data, the value of m is 

related to the status of the power system and the desired 

compression scale. The more PMU data can be com-
pressed, or the more stable the data are, the smaller the 

value of m is. The value of n directly depends on the size 
of the time window given the fixed reporting rate of 
PMU. Thus, to avoid a high complexity, it is recom-

mended to set a small window and a high compression 
ratio whenever feasible. 

C. Reconstruction of the Compressed PMU Data 

The compressed PMU data are formed by feature 
points that are sparsely extracted from the raw data, and 

the reconstruction is required first before further analy-
sis and application. In order to achieve high fidelity of 
the raw PMU data, the linear interpolation model is used 

for reconstruction, and the reconstructed PMU data can 
be represented as: 

2 1

1

, ,

, ,,

, 1 ,

1 2

                                        if NULL

   if NULL

i j i j

i j j i j ji j

i j j i j

V V

V VV
V j V

j j

 






 
     

(7) 

where ,i jV  is the reconstructed data at time 
jt ; 1j  and 

2j  are the minimum previous and forward intervals 

that make 
1, NULLi j jV    and 

2, NULL,i j jV    re-

spectively. 

D. Performance Evaluation of the Compression Method 

The performance of PMU data compression methods 

can be evaluated from two aspects: the compression 
scale and the accuracy of the reconstructed data. 

Compression ratio (CR) is the most widely used in-
dicator to measure the compression scale, shown as: 

raw res raw

CR ( )/i i iN N N                    (8) 

where raw

iN  and res

iN  are the scales of the raw and the 

reserved PMU data, respectively. 
Normalized mean square error (NMSE) is adopted to 

evaluate the accuracy of reconstructed data, denoted as: 

2 22
NMSE , , ,

1 12

( )
N N

i i

i j i j i j

j ji

V V V
 


   

V V

V
  (9) 

It should be noted that CR is usually associated with 
NMSE for the same compression method, and a higher 
CR will lead to a higher NMSE. As a compromise be-

tween CR and NMSE, the compression distortion 
composite index (CDCI) can be used to represent the 
comprehensive performance of the compression method, 

calculated as: 

* * NMSE

CDCI CR NMSE 3

CR

1

2 10
a b a b


  

 
   


   (10) 

where *

CR  is the normalized value of CR, denoted as 

CR1/  due to its range of (0,1]; whereas *

NMSE  is the 

normalized value of NMSE with its base value set as 
2×10-3 from [10]; a and b are the weights of CR and 
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NMSE, respectively. The smaller the CDCI is, the better 
performance of the compression method will be. Con-
sidering that the CR rather than the NMSE determines 
the communication time delay, a higher CR is more 
important for real-time applications. Thus, a and b are 
set as 0.7 and 0.3 respectively in this study. 

Ⅲ.   NUMERICAL RESULTS AND COMPARISONS 

A. Compression Results with Simulated PMU Data 

The proposed method is evaluated with the simulated 

PMU data on the western electricity coordinating 

council (WECC) 179-bus system, whose diagram can 

be seen in [23]. A three-phase short circuit fault is arti-

ficially set at Bus 8 and is cleared in 0.16 s. The simu-

lated data is of 5 s duration, including the 1 s pre-event 

and the 4 s post-event. 
The CQDP-based method is applied to the compres-

sion of PMU data, with the window length of 1 s in this 
case. Note that for the same compression method, the 
compression scale is contradicted with the reconstruc-
tion fidelity (i.e., the higher CR, the worse fidelity, and 

vice versa). To reach a trade-off, NMSE  is required to be 

kept below 210 , which is a strict constrain for ensuring 
the accuracy of PMU data according to the IEEE 
standard for synchrophasor measurements [24]. Take 
the voltage amplitude data of Bus 1 as an example, the 
CRs, NMSEs and CDCIs over different time ranges are 
presented in Table Ⅰ. 

TABLE Ⅰ 

COMPRESSION PERFORMANCES FOR SIMULATED VOLTAGE 

AMPLITUDE DATA OF BUS 1 

Window 

range (s) 
CR (%) 

NMSE  

(×10-3) 
CDCI 

Average 

CDCI 

01 98.0 0.065 0.724 

0.831 

12 91.0 0.970 0.923 

23 90.0 0.424 0.841 

34 91.0 0.450 0.830 

45 91.0 0.408 0.839 

It can be seen from Table Ⅰ that, for the pre-event 

stage (01 s), the voltage amplitude of Bus 1 is almost 
constant, and thus only the start point and the end point 

are reserved, i.e., CR 98%  . Significantly low NMSE 

of 0.0065% and CDCI of 0.724 are also observed for 

these stable data. For the post-event stages (15 s), the 
CR slightly decreases but is still higher than 90%, with a 
NMSE of no higher than 0.097%. The reconstruction 
results of the compressed data are obtained with the 
linear interpolation, as shown in Fig. 2, where the blue 
lines denote the original PMU data, the black circles 
denote the compressed PMU data, and the red lines 
denote the reconstructed data. As can be seen in Fig. 2, 
the reconstructed data closely proximate the original 

one ( NMSE  ranges from 0.0065% to 0.097%) despite an 

average CR of 92.2%. Moreover, owing to CID, the 
compressed data (i.e., extracted feature points) are 

densely distributed in segments with abrupt changes and 
bends on the PMU signals. This aligns with the fact that 
more data are required for preserving critical changes in 
PMU signals as the disturbance information is more 
important to power system operators. Thus, the pro-
posed method is effective to compress the simulated 
PMU data. 

 
Fig. 2.  Reconstruction result of the voltage amplitude data of Bus 1. 

B. Compression Results with Actual Recorded PMU 

Data of the Guangdong Power System 

The proposed method is further verified with actual 

PMU data of the Guangdong power system (GDPS) in 

this subsection. GDPS is a large interconnected power 

grid in southern China, with PMUs installed on all power 

plants and critical substations. Time-stamped streaming 

PMU data including voltage, frequency, and real/reactive 

power are recorded at 50 frames per second (FPS). Note 

that the actual recorded PMU data, which comes from 

our industrial partners in GDPS, have been filtered before 

archiving, so as to reduce the impact of noise. 

On March 2, 2017, an actual generator ramping event 

was recorded by the PMUs. However, because of the 

limited storage and transmission capabilities, only partial 

recorded data in 31 PMUs were actually transmitted and 

saved. The recorded PMU data are shown in Fig. 3, where 

the PMU record is 56 s long from 11:50:0011:50:56, 

including the whole duration of the event. 

The compression performances for the CQDP-based 
method are presented in Fig. 4. It can be seen that: 

1) With the proposed CQDP-based method, most of 
the PMU data are highly compressed yet the recon-

struction error is still relatively low for all the data types 

in the steady state of the GDPS, i.e., the minimum CR is 

75.4% for real power data, and the maximum NMSE is 

0.153×10-3 for reactive power.  

2) There are only slight changes on the CDCI during 
the generator ramping event, which means that the 

compression performance of the proposed method is 
largely unaffected by this disturbance.  

3) The compression performances are different for 

different data types. Specifically, the CDCIs of the real 
and reactive power data are higher than those of the 
frequency and voltage data, but are still lower than 

0.943 even in the worst case scenario. 
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Fig. 3.  Actual recorded PMU data of frequency, voltage, real/ 

reactive power in GDPS. 

 

 

 
Fig. 4.  Compression performance of the actual recorded PMU 

data in GDPS. (a) Compression ratio (CR). (b) Normalized mean 

square error (NMSE). (c) Compression distortion composite 

index (CDCI). 

It can be concluded that the proposed method is ef-

fective in compressing PMU data while ensuring re-
construction accuracy for different data types and power 

system dynamics. 

C. Sensitivity Analysis of the Window Length on Com-
pression Performance 

Because of the limited communication bandwidth, 
the PMU data are compressed and transmitted only 
when they accumulate to a certain size for achieving a 

high CR. Therefore the window length (i.e., the data 
buffering) is of great significance to the time delay. In 

this subsection, the compression performance with dif-
ferent window lengths are discussed. It should be noted 
that the average communication delay of PMU data is 

around 100 ms, and the data buffering for the WAMS 
master station is generally more than 1 s according to 
[25]. Thus, the window lengths of 1 s, 2.5 s, and 5 s are 

discussed here. 
The test cases are performed on the actual recorded 

PMU data of the GDPS, and the PCA-based method [9] 
is used for comparison. Taking the voltage data of sub-
station DG as an example, the reconstruction results 

with a 1 s window length are presented in Fig. 5, where 
the CRs for these two methods are both 90%. It can be 
seen that there are obvious distortions in the recon-

structed data for the PCA-based method since crucial 
information during the severe disturbance is lost, while 
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the reconstructed data for the proposed method fit the 

original PMU data well, achieving much higher fidelity.  

 

 
Fig. 5.  Reconstruction results of actual recorded PMU data in 

GDPS with the 1s-length window. (a) PCA-based compression. 

(b) CQDP-based compression. 

The overall compression performance with different 

window lengths are demonstrated in Table Ⅱ.  

TABLE Ⅱ 

COMPRESSION PERFORMANCE FOR VOLTAGE DATA WITH 

WINDOWS OF VARIOUS LENGTHS 

Method Window length (s) CDCI Execution time (s) 

PCA [9] 

1.0 1.106 0.005 

2.5 0.935 0.038 

5.0 0.905 0.181 

CQDP 

1.0 0.875 0.005 

2.5 0.874 0.031 

5.0 0.872 0.155 

It can be seen that the CDCI of PCA changes from 
0.905 to 1.106 as the window length decreases from 5 s 
to 1 s, which means that the compression performance is 

sensitive to the window length in case of disturbance, 
while a bigger window length is preferred. Hence the 

PCA-based method is more suitable for situations with 
low timeliness such as the data archival in PDCs inte-
grated with multiple PMUs. For the CQDP-based method, 

the CDCI is largely unaffected by the window length, i.e., 
less data buffering is required. In practice, the selection 
of window length depends on the actual requirements of 

communication time delays (e.g., if a 2 s time delay is 
required, the window length can be set as 1.5 s, and the 

remaining time of 0.5 s is used for transmission and re-
construction). In addition, considering that a single PMU 

also has a certain data storage and processing capability, 

the CQDP-based compression method can be executed 
on a single PMU instead of the PDC, which further im-

proves the near real-time processing capability. 

D. Computational Complexity Analysis 

To illustrate the practical computational complexity 

of the CQDP algorithm, case studies are conducted to 

calculate the time delay on a typical personal computer. 

The total time delay can be denoted as [26]: 

tot comp trans prop queu PMU                 (11) 

where 
tot  is the total delay; comp  is the execution time 

of the compression algorithm; 
trans  is the time delay of 

transmission, which approximately takes 2 ms for 10 
phasors with a 10 Mbps bandwidth; and prop  is the 

time required for sending an electric signal, this is 
about 0.3 ms for a 300 km transmission line, and thus 
can be ignored; queu  is the queuing time delay related 

to the bandwidth of the communication network, and is 
insignificant until the network bandwidth downgrades 
to a certain threshold, and so can also be ignored as a 
high compression ratio is applied; 

PMU  is the PMU 

reporting delay, and its maximum value is 2/ rf , where 

rf  is the reporting rate of PMU. 

The average execution times of multiple tests for the 

proposed CQDP method are shown in Table Ⅲ, where 

the time windows are all 100 samples-length. 

TABLE Ⅲ 

RESULTS OF THE AVERAGE EXECUTION TIME FOR THE PROPOSED 

METHOD 

Tested PMU data 
Power system 

status 

Average execution 

time (s) 

Simulated data 
Steady state 3.9 

Disturbance 15.6 

Actual data 
Steady state 6.1 

Disturbance 17.3 

It can be seen that the maximum average execution 

time of the proposed CQDP method is 17.3 ms. As a 

result, in a real power grid, the proposed method could 

deliver compression results to PDC in less than 0.1 s 

after the PMU data is collected. Hence, the total time 

delay of the proposed method can satisfy the 

time-latency requirement (i.e., from 100 ms to 5 s) in 
[5], and can be applied for real-time applications in 

WAMS. 

E. Comparisons with Other PMU Data Compression 

Methods 

To demonstrate the superiority of the proposed method, 

the other two segment approximation-based methods, 

SDT [12] and DP [14] are employed for comparison. The 

comparison is first performed on the WECC 179-bus 
system with the simulated voltage data, and an ablation 

test is designed as follows. The PMU data in a steady 
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state of the power system is compressed with SDT, DP 

and CQDP methods, and the algorithm parameters of the 

compression methods are fine-tuned to achieve the same 

CDCI of 0.787 (i.e., the CRs are all 90%, and NMSEs are 

all around 3.6×10-5). A three-phase short circuit fault is 

then applied, and the compression methods are used to 

compress the PMU data in the disturbance, without 

changing the algorithm parameters. The average CRs, 
NMSEs, and CDCIs of the above compression methods 

are calculated, as shown in Table Ⅳ. 

TABLE Ⅳ 

COMPRESSION PERFORMANCE FOR SIMULATED PMU DATA UNDER 

DISTURBANCE USING DIFFERENT METHODS 

Method CR (%) NMSE (×10-3) CDCI 

SDT [12] 42.5 0.155 1.667 

DP [14] 27.7 0.074 2.424 

Proposed CQDP 79.0 0.523 0.839 

It can be seen from Table Ⅳ that CDCIs of SDT and 

DP reach 1.667 and 2.424 respectively after the 

three-phase short circuit fault. The main reason for the 

increases in CDCI is the rapid decrease in CR, while the 

compensated reconstruction accuracy does not increase 

significantly. This indicates that the compressed data 

obtained by SDT and DP still retain high compressibility 

potential. Thus, inappropriate algorithm parameters may 

lead to the degradation of compression performance 

when there are large changes in power system dynamics, 

even though these parameters have been proved to be 

effective for the steady state of the power system. The 

benefits of the CID and parameter adaptation scheme in 

the CQDP method are fully demonstrated when com-

pared with the basic DP algorithm. The CDCI of the 

proposed method only increases slightly from 0.787 to 

0.839 after the severe disturbance. Thus, the results of 

the ablation test show that the merit of the proposed 

method is to alleviate the compression performance 

degradation when the power system dynamics change. 

Then, the SDT, DP and CQDP compression methods 

are performed on the actual recorded PMU data of 

GDPS for further comparisons, and the results are 

shown in Table Ⅴ.  

TABLE Ⅴ 

COMPRESSION PERFORMANCE FOR VOLTAGE DATA WITH 

WINDOWS OF VARIOUS LENGTHS 

Method Data type CR (%) CDCI 
Average 

CDCI 

SDT [12] 

Frequency 86.0 0.813 

1.222 
Voltage 87.1 0.804 

Real power 62.9 1.122 

Reactive power 32.6 2.149 

DP [14] 

Frequency 75.9 0.923 

1.093 
Voltage 81.5 0.860 

Real power 73.2 0.956 

Reactive power 42.9 1.631 

As can be seen there, for SDT and DP-based methods, 

there is significant degradation in compression perfor-

mance of the reactive power data, i.e., only 32.6% of the 

reactive power data is compressed for SDT, and 42.9% 

for DP. The reason is that the parameters of SDT and 

DP are set empirically based on the base value and error 

tolerance, but the optimal parameters are different for 

different data types and power system dynamics. As a 

result, the CRs of SDT and DP greatly reduce since 

there are more drastic fluctuations in reactive power. 

For the proposed method, it can adjust the algorithm 

parameter adaptively based on the trends within the 

PMU data, and thus outperforms SDT and DP in terms 

of CR for reactive power data (the CR is 78.2% as 

shown in Fig. 4). Also, the average CDCI for CQDP is 

0.871, which is also much better than the 1.222 for SDT 

and 1.093 for DP. 

Ⅳ.   CONCLUSIONS 

To address the challenges of insufficient communi-

cation and storage capabilities caused by large volumes 

of PMU data, an effective CQDP-based PMU data 

compression method is proposed for power system 

situational awareness. Case studies on simulated and 

actual PMU data demonstrate that the proposed method 

is capable of highly compressing PMU data in the 

presence of steady state and dynamic transient states of 

the power system, and achieves higher compression 

ratios and less data buffering for near real-time situa-

tional awareness. 
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