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Game-theoretic Applications for Decision-making 

Behavior on the Energy Demand Side: 

a Systematic Review 

Zhenya Ji, Xiaofeng Liu, and Difei Tang 

Abstract—As an essential characteristic of the smart 

grid, energy demand users are being transformed from 

passive roles to active decision-makers. To analyze their 

decision-making behaviors, game theory has been widely 

applied on the demand side. This paper focuses on the 

classification and in-depth analysis of recent studies that 

propose game-theoretic approaches for decision optimi-

zation of multiple demand users. This analysis classifies 

scenarios into various game participant categories, in-

cluding distributed energy prosumers, small- and mid-

dle-sized users, and large energy consumers. The in-depth 

analysis of each scenario, covering non-cooperative game, 

cooperative game, Stackelberg game, Bayesian game, and 

evolutionary game, is conducted by analyzing market 

operation mechanisms, model assumptions/formulations, 

and solution methods. Based on a comprehensive review 

of such studies, it is concluded that game-theoretic appli-

cations on the demand side can benefit both the grid and 

the users, e.g., reductions in the peak-to-average ratios 

and energy costs of the users. The prospects for the ap-

plications of game theory on the demand side are dis-

cussed, including application scenarios and methodologies. 

The overview presented in this paper is expected to sup-

port researchers in comprehending typical 

game-theoretic concepts, keeping with the latest research 

developments, and identifying new and innovative appli-

cations for the energy demand side. 

Index Terms—Energy demand side, game theory, 

Game-theoretic application, demand response, deci-

sion-making behavior. 

 

Ⅰ.   INTRODUCTION 

he second industrial revolution brought us into the 

electrical age. Ever since, the development of soci-

ety has been inseparable from the widespread use of 
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electricity [1]. Primary energy in the power industry has 

gradually developed from fossil energy sources to di-
versified energy sources, such as, wind/solar energy, 

hydroelectricity, and nuclear energy [2], [3]. However, 

with the growing demand for electricity in social de-

velopment, coupled with environmental concerns like 

carbon emissions [4], [5], the issue of power energy has 

attracted widespread attention. There is an increasing 

need to explore solutions that can address the challenge 

of balancing the supply and demand of energy while 
ensuring environmental sustainability. In recent years, 

distributed energy technologies, such as photovoltaic 

(PV) and wind power generation, have had an influence 

in relieving supply-demand conflict from the energy 

source side [6], [7]. In addition to increasing the in-

stalled capacity of distributed generation on the source 

side, addressing the issue from the demand side is also a 

viable and effective solution [8], [9]. 

Generally, demand users can be divided into resi-

dential, commercial, and industrial users according to 

their energy consumption characteristics [10]. Residen-

tial and commercial users, who belong to small- and 

middle-sized users, can realize the flexibility of load 

and relieve the pressure of energy supply via a demand 

response (DR) program [11]. Industrial users, who be-

long to large energy users, can interact with the source 

side through the retail market to improve the reliability 

of energy supply [12]. Because of the massive numbers 

of demand users, and especially the emergence and 

popularization of distributed generation, determining 

the optimal strategy for demand users has become ex-

tremely challenging. Moreover, as power market reform 

progresses, the composition of energy sellers has 

evolved beyond traditional generation companies on the 

supply side to also include prosumers on the demand 

side [13]. Therefore, traditional optimal approaches for 

the single-subject decision-making can no longer satisfy 

the need of multi-subject decision-making. Accordingly, 

game theory is a perfect tool in solving these decision 

problems on the demand side [14], [15]. 

Game theory has been shown to be useful in studying 

how multiple decision-making stakeholders can maxim-
ize their interests by optimizing their decisions. The 

T 
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major difference between game theory and other opti-

mization theories is that decision makers’ interests in the 
game will be affected by each other when any subject 

changes its strategy. Game theory was first applied in the 
economic field, and then in politics, military, biological 
evolution, etc. In the field of electrical engineering, game 

theory was first applied in the power market, especially 
for the optimization problem of generation companies on 
the energy source side [16]. With the increasingly 

prominent position of the demand side, introducing an 
excellent decision-making method will contribute to 

efficient operation of the power grid [17]. Consequently, 
in the past decade, game theory has been extensively 
applied on the energy demand side. In this paper, a sys-

tematic review is conducted on these approaches from 
three aspects: distributed energy prosumers, small- and 
middle-sized users, and large energy consumers. In 

summary, the main contributions are: 

1) A comprehensive framework is proposed to in-

vestigate game-theoretic approaches in deci-
sion-making problems, which involves identifying and 
analyzing game behavior, modeling theory, and appli-

cation scenarios on the energy demand side. 

2) A comprehensive review of the state-of-the-art 

researches are studied, where the components of these 
applications are elaborated from participants, modeling 
assumptions, objective, and operational mechanism. 

Typical applications covering the three types of users 
are examined. 

3) Based on the identified shortcomings of existing 
research, future application scenarios and methodolo-

gies are proposed. These are expected to contribute to 
the development of demand-side game theory. 

The remainder of this paper is organized as follows. 

In Section Ⅱ, game theory on the energy demand side is 
introduced. The applications are reviewed in Section Ⅲ. 
Section Ⅳ provides insight into the potential of future 

applications. Section Ⅴ concludes the paper. 

Ⅱ.   GAME THEORY AND BEHAVIOR ON ENERGY 

DEMAND SIDE 

A. Game Theory 

Game problems can be traced back to the oligarchic 

competition model in the early 19th century. After the 
Nash equilibrium (NE) problem of NG is solved [18], 
[19], game theory has been applied in different fields. 

Generally, a complete game contains at least three basic 
elements [20]: player, strategy, and payoff. In addition 
to those three essential elements, some other elements 

need to be covered for some special games. For example, 
types of players and the brief have to be introduced in 

describing an incomplete information game. Game 
theory can be divided into classical game and evolu-
tionary game (EG) based on player’s rationality. Players 

in the classical game have perfect rationality, while 

players in EG only require limited rationality [21]. 

Moreover, the classical game can be classified into 
non-cooperative game (NG) and cooperative game (CG) 

based on whether players cooperate or not, and static or 
dynamic game based on whether players make deci-
sions orderly. The games can be classified to classical 

game and evolutionary game based on whether players 
have perfect rationality. The classical game forms are 
presented in Table Ⅰ. 

TABLE Ⅰ 

ILLUSTRATION OF CLASSICAL GAME 

Category Game form Classification rule 

Classical 

game 

Non-cooperative game Whether players cooperate 

or not Cooperative game 

Static game Whether players make 

decisions orderly Dynamic game 

Complete information 

game Whether game information 

is public or private 
Bayesian game 

B. Game Behavior Classification on the Energy Demand 
Side 

In the traditional power market, there is fierce compe-

tition between the energy generation side and seller side, 

which can be described as various games. Demand users 

are limited to passively accepting energy prices set by the 

seller side, without any direct competitive relationship 

with either the seller or generation side. However, as the 

power market evolves and distributed energy sources such 

as distributed generation, energy storage, and electric ve-

hicles (EVs) emerge, demand users have the opportunity 

to actively engage in energy trading. Figure 1 shows that 

demand users can be divided into three categories, in-

cluding distributed energy prosumers, small- and mid-

dle-sized users, and large energy consumers [22], [23]. 

 

Fig. 1.  Game behavior on the energy demand side. 

Distributed energy prosumers can make bilateral 

transactions with the seller side. Small- and middle-sized 
users can purchase energy from different energy retailers. 

Large consumers can also purchase energy from the 
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generation side via direct power-purchase trading [24], 

[25]. That is, in an open market environment, demand 
users will be free to choose energy sellers and sell energy 

to the seller side or other users with distributed energy. 
Consequently, there must exist complex and fierce game 
behaviors on all of the demand, seller and generation 

sides. According to the energy trading mode between 
different subjects on the demand side, game behavior can 
be divided into the following three categories. 

1) Game for Distributed Energy Prosumers (Game 1) 
Demand users with distributed energy belong to en-

ergy prosumers, who can trade as energy sellers in the 
market. To obtain better profits, prosumers will for-
mulate games with other prosumers, suppliers, and 

retailers. 
2) Game for Small- and Middle-Sized Users (Game 2) 

Small- and middle-sized users, including residential 

users and commercial users, occupy an important posi-
tion on the demand side. These users can change their 

energy consumption mode to reduce energy cost under 
the incentive of the energy price mechanism. Therefore, 

small- and middle-sized users will formulate games 

with other users, suppliers, and retailers. 
3) Game for Large Energy Consumers (Game 3) 

Large energy consumers, such as industrial users, 
have a high energy demand level. To reduce their en-
ergy cost, large energy users can choose to trade directly 

with generation companies. In such direct pow-
er-purchase trading, both sides want to maximize their 
self-interests, and thus, there must exist game behavior 

between large users and generators. It needs to be noted 
that, when large consumers purchase energy from the 

seller side, the trading is similar to (2), which can be 
analyzed under Game 2. 

C. Game-Theoretic Approach on the Energy Demand Side 

The main existing game-theoretic approaches on the 
energy demand side are summarized in Table Ⅱ. Note 
that, Stackelberg game (SG) belongs to dynamic NG 

and Bayesian game (BG) belongs to NG with incom-
plete information. To specify their applications on the 

demand side, they are distinguished from NG. 

TABLE Ⅱ 

GAME-THEORETIC APPROACHES ON THE ENERGY DEMAND SIDE 

Game form Main application scenarios Main concerns 

Non-cooperative game Game 1 and 2 Design payoff function to guarantee the existence of NE 

Cooperative game Game 1, 2, and 3 Design payoff allocation mechanism to guarantee the stability of coalition 

Stackelberg game Game 1, 2, and 3 Solve NE problem of SG 

Bayesian game Game 1, 2, and 3 Establish type space and joint probability distribution 

Evolutionary game Game 2 Design replication dynamic equation and analyze evolutionary equilibrium 

1) Non-Cooperative Game 

NG is widely employed on the demand side since the 
game individuals generally have profit-seeking behav-

ior. For the formulated NG on the demand side, more 
attention is focused on the design of the profit function 
to guarantee the existence of NE. Because of the diver-

sity and complexity of practical problems, especially 
when many participants are involved in the game, 
searching NE of the game is a vital task. Generally, NG 

can be formulated as follows [26]: 
1) Player: Demand users, who can be energy users, 

energy prosumers, or a microgrid. 
2) Strategy: Each player selects its decision strategy to 

maximize its payoff and such strategy set can be an energy 

consumption scheduling vector or energy selling vector. 
3) Payoff: The payoff of a player mainly consists of 

energy cost or utility, which can be described as: 

( , ) ( , )n n n n n nP x f x x x                    (1) 

where xn represents the strategy of player n and 

 1 1 1, , , , ,n n n Nx x x x  x denotes the strategy vec-

tor for all players other than player n. 
To guarantee the existence and uniqueness of NE, 

( , )n n nf x x  needs to be continuous and concave in nx  

for each fixed value nx . Meanwhile, strategy nx  for 

any player should be in a convex, closed, and bounded 

space [27]. The strategy space is generally constructed 
according to the constraint conditions of deci-
sion-making behavior. Under NE, no rational player 
would benefit by deviating from the optimal strategy 

*

nx  , which is expressed as: 

* * *( , ) ( , )n n n n n nP x P x ≥x x                   (2) 

where  * *, n nx x  is NE of the game. The solution of NE 

is a complex but critical problem. Hence, the research 

on NG concentrates on the proof of the existence and 

the solution of NE [27]. 

2) Cooperative Game 
Overall payoff of a coalition in CG is generally 

higher than the sum of an individual’s payoff in NG. 
Such difference in the payoff is called cooperative sur-
plus [28]. However, considering the selfishness of par-
ticipating individuals, if the allocation of coalition profit 
is unfair, it is highly likely that the coalition would be 
disintegrated rapidly. Therefore, for the CG on the de-
mand side, more attention is given to the design of the 
payoff allocation mechanism [29]. Typically, the payoff 
allocation mechanism is designed according to the 
marginal contribution of each participant. In a CG 
( , ( ))v , in which  represents the coalition 

consisting of  players and  v  is the payoff, the 

marginal contribution of player n can be defined as: 
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( { }) ( )nv v n v n              (3) 

where  \ n  is any sub-coalition other than 

player n and  { }v n  represents the payoff of new 

coalition containing  and n. 
Based on the marginal contribution, the payoff of 

player n in the coalition can be expressed as: 

 \

n n n

n

v v


                          (4) 

where  n
 is the allocation principle of the coalition’s 

payoff. The most common allocation principle is the 
Shapley value [30], given as: 

!( 1)!

!

n
 

                     (5) 

Then, the solution set of the formulated CG can be 

expressed as  1 2, , , .Nv v v  Additionally, 

before the allocation of coalition profit, the optimization 
of overall payoff belongs to the single-agent optimiza-
tion, whose optimal solution can be obtained by a gen-
eral optimization algorithm [31]. 
3) Stackelberg Game 

SG is a dynamic game behavior, in which both sides 

in the game make decisions successively because of the 
asymmetry of their market positions. Both sides consti-
tute a leader-follower relationship. Therefore, such game 

behavior is often applied in scenarios where one side is 
an energy seller and the other is a large energy consumer. 

However, because of the need to consider the follower’s 
strategy as the leader formulates their own strategy, the 
process of searching for an equilibrium solution in the 

SG can often be complex and arduous. For an SG, the 
optimization problem can be expressed as: 

,

Leader problem   Follower problem

min ( , ) min ( , )

s.t.  ( , ) 0 s.t.  ( , ) 0

( , ) 0 ( , ) 0

n m m
n n m m n m

x y y

n n m m n m

n n m m n m

f x y f x y

g x y g x y

h x y h x y

 
  
 
  
  

≥ ≥
     (6) 

where player n is the leader and player m is the follower; 

( , )n n mf x y  and ( , )m n mf x y  are payoffs of player n and 

m, respectively; while nx  and my  are their strategies; 

ng , nh , mg , mh , are the constraints. 

To obtain the equilibrium of SG, the 
Karush-Kuhn-Tucker (KKT) condition is often used 

[32]. By introducing the KKT condition, the follower 
problem can be embedded into the leader problem. 
Consequently, SG is degenerated into single-level op-

timization problem. To better understand how KKT 
works, a real example can be found in [32]. 

4) Bayesian Game 

In real-world game-theoretic problems, there is often 
incomplete information. Game participants cannot fully 

obtain the decision-making process, payoff or other in-

formation on opponents. To solve such a problem, a 

Bayesian rule is introduced into the game to describe the 
probability characteristic of the incomplete information 

[33]. BG has another two factors as well as three basic 
elements [34]: the type of player and the probability dis-
tribution of the types. These are briefly described below: 

1) Type of player: Types are usually used to define 
the incomplete information of participants. Assuming 

that player n has nT  types, its type space can be ex-

pressed as nT  and the type space combination for all 

participants can be described as 1 2× × × NT T T T . 

2) Belief: Belief is a probabilistic inference of the 
actual type of other participants according to the 
available information, and can be calculated as: 

( , ) ( , )
( | )

( ) ( , )
n n

n n n n

n n

n n n

PR PR
PR

PR PR
 

 







 


t T

t t t t
t t

t t t
      (7) 

where nt is the type of player n; and 

( , ) ( )n n nPR PR t t t  represents the joint probability 

distribution when the type combination of all partici-
pants is t T . 

From the belief (7), the incomplete game can be ex-

pressed in the following form [35]: 

( ) ( , ( ), ( )) ( | )
n n

n n n n n n n n n nEP P PR
 

  



 
t T

t t x t x t t t   (8) 

where payoff ( )n nEP t  is the payoff of player n with type 

n nt T . This demonstrates that the key technology for 

solving the information game mainly depends on es-

tablishing the Bayesian probability model. Therefore, 
for BG on the demand side, the description of the in-
complete information probability distribution is one of 

the main concerns. 
5) Evolutionary Game 

The above game theory belongs to the classical game 

theory, in which game players have absolute rationality. 
However, in real systems, it is unrealistic to assume that 

participants are completely rational. Accordingly, the 
EG is proposed based on the fact that participants have 
bounded rationality, i.e., the participants in EG can only 

make a rational strategy through some learning mecha-
nisms (e.g., imitation or random selection) [36]. 
Therefore, an EG mainly focuses on the replication 

dynamic equation and evolutionary equilibrium. The 
replication dynamic equation depicts dynamic charac-
teristics of population and evolutionary equilibrium 

shows the final evolution state of the game. By de-
signing an appropriate replication dynamic equation, 

the population can gradually achieve its evolutionary 
equilibrium. Generally, the replication dynamic equa-
tion is designed in the following form [37]: 

( , ) ( , )f x f x                          (9) 

where   is the proportion of players choosing strategy x; 

  is the dynamic adjustment of proportion; ( , )f x   is 
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the fitness function under strategy x and proportion  ; 

and ( , )f x   is the expected fitness value. On the de-

mand side, profit or utility functions are often taken as 

the fitness function. 

Ⅲ.   GAME-THEORETIC APPLICATIONS ON THE ENERGY 

DEMAND SIDE 

A. Game for Distributed Energy Prosumers 

Distributed energy prosumers on the demand side can 

make a two-way energy trading with a power grid 

company or other prosumers via energy storages, dis-

tributed power generations, and EVs. A typical scenario 

for distributed energy prosumers is shown in Fig. 2, 

while Fig. 3 shows a typical energy system of a resi-

dential prosumer. To reduce energy cost or increase 

economic profit, the prosumer has to consider multiple 

factors in the dispatching process of energy output, such 

as energy market price and load matching degree. Given 

that such factors are tightly correlated with market par-

ticipants, the application of game theory can provide an 

effective way for prosumers to make decisions. At 

present, the game-based approach for distributed energy 

prosumers mainly contains NG, CG, SG, and BG. 

 

Fig. 2.  Typical scenarios for distributed energy prosumers. 

 

Fig. 3.  Energy system of a residential prosumer. 

1) Non-cooperative Game 
Under an NG pattern, the proposed scenarios in ex-

isting researches can be divided into two categories, i.e., 
one is to describe the game behavior in the trading 
among prosumers and the power grid company, and the 
other is to describe the game behavior in the trading 
among prosumers. In the former, prosumers can only 
make a two-way energy trading with a power grid 
company. This is defined as peer-to-grid (P2G) energy 
trading. In the latter, the energy trading is permitted 
among prosumers, and is defined as peer-to-peer (P2P) 
energy sharing/trading. 

In P2G scenarios, the game approach is generally 
formulated via constructing an energy cost/profit func-
tion as game payoffs and energy consumption/output 
scheduling as game strategies [38], [39]. Then, by 
solving the NE problem, the optimization of energy 
cost/profit can be achieved by the prosumers in the 
game. It is good to hypothesize that the DR capability of 
residential users influences the distributed PV penetra-
tion with NG theory [40]. In this case, the cost of user’s 
energy consumption for a year is modeled as the game 
payoff function, and the load commitment and battery 
operation pattern are taken as the decision-making 
strategy. After formulating the game model, the corre-
sponding NE is generally obtained with an iterative 
algorithm [41]. In [42], NE is achieved by solving the 
optimization problem with the Nikaido-Isoda/Relaxation 
algorithm. Except for energy economy, P2G scenarios 
with NG can also take operational systems into consid-
eration, such as bus voltage, overall system loss, and 
system reliability [43]. It is workable to focus on ana-
lyzing DR’s impact on operation parameters through the 
NG approach, including peak-to-average ratio, bus 
voltage, and total system loss [44]. 

P2P scenarios are based on energy sharing among 
prosumers. Because of flexible energy dispatching, P2P 
energy trading is an effective way to manage prosum-
ers-based energy [45]. However, since prosumers typi-
cally belong to different owners, there must exist inherent 
competition in the energy sharing process considering the 
profit-hunting nature of individuals. In such situations, 
energy balance over the P2P system has to be considered. 
Consequently, non-cooperative behavior in P2P scenar-
ios is actually a generalized Nash game problem with 
global constraints [46]. Reference [47] constructs a gen-
eralized Nash game model among prosumers in P2P 
sharing, where the interactions among prosumers in the 
game process are dynamically reflected via deci-
sion-making state transition probability. Additionally, 
some researchers take P2G and P2P patterns into one 
scenario. For example, the proposed scenario in [48] 
assumes that all prosumers can perform both P2G and 
P2P according to load requirements. Simulation results 
show that, compared with P2G trading, the outcome of 
the multi-objective function has a better performance in 
the P2P energy trading pattern. The summary of the NG 
for distributed energy prosumers is presented in Table Ⅲ. 
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TABLE Ⅲ 
THE SUMMARY OF NG FOR DISTRIBUTED ENERGY PROSUMERS 

Reference Game player Game strategy Game objective Solution method 

[38] DR users 
Energy trading amounts with 

community storage 
Minimize cost during time periods Iterative algorithm 

[39] Virtual power plants Price bidding strategy Minimize operation cost Genetic algorithm 

[40] Smart home consumers Energy sold to/bought from grid 
Minimize energy expenditure in a 

whole year 
Newton-based algorithm 

[41] Smart Buildings Energy consumption  Minimize overall cost Iterative algorithm 

[42] Prosumers and consumers Price bidding strategy Maximize the expected profit 
Nikaido–Isoda/relaxation 

algorithm 

[45] Retailers and prosumers Exchanging power 
Realize the contradictory objectives 

of the various players 

Nikaido–Isoda/relaxation 

algorithm 

[46] Prosumers 
Generation power and power 

interaction 
Minimize energy cost Nesterov’s method 

[47] Prosumers Load distribution Maximize the subjective utility 
Dynamic interval adjust-

ment method 

[48] Prosumers 
Capacity of distributed genera-

tion 

Annual profit and the loss of power 

supply probability 

Particle swarm optimiza-

tion algorithm 

2) Cooperative Game 

In the CG-theoretical scenarios containing distributed 
energy prosumers, all game prosumers operate as a 

coalition, one where members are willing to share en-
ergy/profit with other prosumers. Prosumers can bor-
row/lend renewable energy from/to their neighboring 

prosumers. this is similar to the P2P energy trading 
mode [49]. Therefore, to guarantee the stability of 
partnership, the research concentrates on designing fair 

allocation mechanisms of coalitional payoff [50]. Cur-
rently, the most common allocation mechanisms are 

analyzed via the Shapley value [51] and the Nash bar-
gaining solution [52]. 

For the Shapley value-based method, reference [53] 

proposes two coalitional game-theoretic methods for 
minimizing the energy cost of residential prosumers. 
One is based on the scenarios in which prosumers share 

their renewable energy and storage spaces, while the 
other assumes that prosumers can sell energy to energy 
consuming users. After formulating the coalitional cost 

optimization models, the cost savings are distributed to 
each prosumer according to the Shapley value. Simi-

larly, in [54], although the coalitional payoff is not dis-
tributed with the Shapley value, the proposed Myerson 
value rule is still based on the marginal contribution of 

each prosumer, which has the same allocation mode as 

(4). However, not all coalitional payoffs based on 

Shapley value can ensure the allocation fairness to 

maintain coalition’s stability, especially when the 

founded model is not convex [55]. Therefore, from the 

prospect of the integrality of the theoretical system, it is 

generally indispensable to prove the allocation fairness 

and stability for the formulated CG approach. 

For the Nash bargaining solution-based method, the 

participants in the coalition care more about individual 

interests than they do with the Shapley value-based 

method. Hence, after obtaining the coalitional profit, 

participants rush to strive for the best interest via nego-

tiation [56]. For example, in the proposed scenario [57], 

prosumers and community energy storage develop their 

strength in the cooperation, e.g., prosumers provide 

superfluous energy while community energy storage is 

responsible for storing the energy. The coalition will 

collapse if anyone quits from the cooperation. Therefore, 

it is difficult to allocate the coalitional profit according 

to the marginal contribution of the individual since the 

contribution of each participant is essential to the coa-

lition. Cheating behavior is also discussed in the case 

where prosumers try to obtain more profit by providing 

false information. The summary of CG for distributed 

energy prosumers is presented in Table Ⅳ. 

TABLE Ⅳ 

THE SUMMARY OF CG FOR DISTRIBUTED ENERGY PROSUMERS 

Reference Coalition Coalitional strategy Coalitional objective Allocation mechanism 

[50] Households Energy sold to/bought from grid Maximize the expected profit  Nucleolus-based solution 

[51] Prosumers  Generation amount Maximize the profit Shapley value 

[52] Passive/Active users Energy consumption scheduling Maximize individual cost Nash bargaining solution 

[53] Households Energy sharing strategy Minimize the cost of electricity Shapley value 

[54] Prosumers Trading quantity and price Minimize the cost of electricity Myerson value 

[55] Communities Power generation and consumption Maximize the profit 
The worst-case excess 

minimization 

[56] Residential users Energy consumption  
Minimize individual bill and 

system peak demand 
Nash bargaining solution 

[57] 
PV prosumers and 

community storage 
Energy sharing profile Minimize social energy cost Nash bargaining solution 
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3) Stackelberg Game 

In the traditional energy trading mode without the 
penetration of distributed energy prosumers, the SG 

generally consists of retailers and energy consumers, 
where retailers are considered to be the leader with a 
leadership advantage, while energy consumers are the 

follower and follow the leader’s decisions. However, 
with the appearance of distributed energy prosumers, 
the master-slave relation among game players becomes 

diversified in the SG. At present, according to the 
master-slave relation, SG generally contains two cate-

gories: one is similar to the traditional energy trading 
mode [58], and the other is that some prosumers are 
considered as the leader and other prosumers or power 

grid company are the followers [59]. 
For the first category of SG, retailers act as the leader 

who usually determines energy price for prosumers to 

maximize the self-profit or social welfare, while 

prosumers act as the followers who generally determine 

energy consumption and generation to minimize their 
costs [60]. For example, reference [61] proposes an 

SG-based mechanism considering storage, PV genera-

tion, and all class of household appliances. In the for-

mulated game model, the master-level model is built 

based on the retailer’s profit to optimize the energy 

real-time price, while the slave-level model is designed 

based on the energy cost and satisfaction constraints to 

obtain the optimal energy demand. Similarly, an SG 
approach is put forward in [62] for trading between the 

microgrid operator and prosumers. The microgrid op-

erator, taken as the leader, has a responsibility to coor-

dinate the energy sharing among prosumers to maxim-

ize profit, while the prosumers, taken as the followers, 

operate as a coalition to maximize their utilities and 

these will be regulated by each prosumer’s contribution 

to the actual profit of the operator. 

For the second category of the SG, the scenarios 

generally assume that prosumers who have superfluous 
produced energy will take part in the trading as the 
leader, while other prosumers or consumers who have a 

deficit in energy demand will purchase energy from the 
superfluous prosumers as followers [63]. In fact, such 

scenarios belong to typical P2P scenarios. Different 
from the non-cooperative or CG behaviors in the P2P 
scenarios, the application of the SG in P2P has consid-

ered the dominant position of energy surplus prosumers 
who retain more decision-making power in the trading. 
In [64], a robust SG approach is formulated for aggre-

gate prosumers to manage day-ahead energy where it is 
constructed with the consideration of the uncertainty of 

distributed energy and market price. In the formulated 
scenarios, prosumers are divided into one superior and 
multiple inferior prosumers. The superior prosumer acts 

as the leader and is responsible for formulating the in-
ternal price mechanism and energy consumption 

scheduling strategy of the aggregate prosumers, while 

inferior prosumers act as followers who respond to the 
price signal issued by the superior prosumer. A double 

auction-based SG-theoretical approach is designed in 
[65], where each prosumer can choose its role (i.e., a 
buyer or a seller) according to its energy consumption 

and generation at each time slot. That is, the mas-
ter-slave relation is not fixed in the energy trading. 
4) Bayesian Game 

Compared with NG for distributed energy prosumers, 
BG-based scenarios take the incomplete information 

into consideration, such as energy price or player pri-
vacy. In [66], [67], incomplete information is described 
with probability distribution characteristics, Markov 

state transition probabilities, etc. Then, based on the 
description of the incomplete information, the expected 
payoff function can then be formulated with a Bayesian 

formula, which is the payoff of the BG. Finally, the 
solving algorithm is designed for Bayesian NE, which is 

similar to NG. 
The scenario in [68] assumes that the residential 

community provides a charging and discharging service 

for EVs but the service fee standard is unknown to other 
communities. Thus, communities are classified as dif-
ferent types based on the probability characteristic of 

the fee standard. Then, the incomplete information 
scenario is described as a BG. As for the proof of the 
existence of Bayesian NE and the distributed algorithm, 

the basic principle and the iterative process are similar 
to the applications in NG. Similarly, an energy trading 

BG model is built aiming at the optimal dispatching of 
EVs, where the incomplete information is caused by the 
stochastic characteristics of EVs [69]. To describe such 

incomplete information, the expected payoff is con-
structed by Bayesian probability over the estimation of 
other players’ types, and then a best response is made to 

the decision behaviors of others. To increase the pene-
tration of distributed generations, reference [70] build a 

BG model for the scenario where only partial game 
information is shared among consumers. A game-based 
DR algorithm is designed with stepwise price to obtain 

different equilibrium states according to information 
sharing degree among categorized consumers. Simula-
tion results show that consumers who are willing to 

share maximal information will increase payoffs. It also 
demonstrates that the BG will reduce the payoffs of 

players because of the loss of partial game information. 

B. Game for Small- and Middle-sized Users 

Despite the modest energy requirements of small- 

and medium-sized users, their substantial numbers en-
dow them with considerable potential in DR initiatives. 
The electricity market mainly attracts small- and mid-

dle-sized users to actively participate in DR by adjust-
ing the market price mechanism. A typical scenario for 
small- and middle-sized users is shown in Fig. 4. At 
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present, under various market price mechanisms, the 

application of game theory for small- and middle-sized 
users mainly contains NG, CG, SG, BG, and EG. 

 

Fig. 4.  Typical scenarios for small- and middle-sized users. 

1) Non-cooperative Game 

Among game-theoretic approaches for small- and 
middle-sized users, the NG has the most extensive ap-

plications since it can precisely describe the prof-
it-seeking behaviors of residential/commercial users 
[71]. The existing researches are mainly being carried 

out from the following two aspects: one is to describe 
the game behavior in the scenarios containing one en-
ergy seller and multiple users; and the other is for sce-

narios containing multiple energy sellers and users. In 
the former, the main focus is on the design of a market 

mechanism (e.g., market price mechanism) in order to 
guarantee the existence and uniqueness of NE for NG 
among residential/commercial users, who have the 

same decision-making positions in the DR process [72]. 
In the latter, it mainly concentrates on the strategical 
interaction between energy sellers and users, and the 

non-cooperative competition behavior among interior 

sellers/users [73]. 
For the scenarios containing one energy seller and 

multiple users, the energy cost function or the billing 
mechanism for an energy seller (or a utility company, an 
energy provider) is designed first. The NG is then for-

mulated to minimize energy cost or peak-to-average 
ratio [74]. Finally, the existence of NE and the distrib-
uted algorithm are presented according to the formulated 

game approach. This can be shown in a typical model, 
where an energy price model is expressed as [75]: 

( ) ( ) hb

h h h h hp L a L c                        (10) 

where 0, 1, 0h h ha b c＞ ≥ ≥  are price parameters and 

hL  is energy demand during time slot h. 

As the price model will degenerate into the energy 

pricing form in [76] when the value of hb  is set as 1, NG 

is formulated to minimize the user’s total cost and the 

corresponding NE is unique when parameter hb  satis-

fies 3 4 /( 1)hb N ＜ , where N is the number of game 

players. As shown in the simulation using the designed 
energy price model, users are encouraged to participate 

in DR to shift peak-time energy consumption. Some 
common functions are summarized in Table Ⅴ. Addi-
tionally, in recent years, considering the limitation of 

single small- and middle-sized users on DR performance, 
a form called the ‘aggregator’ is introduced into the DR 

market with game-theoretic application [77], [78]. The 
related research has a similar research process to 

[74][76], but the energy consumption scheduling is 

executed at cluster-level. For instance, reference [79] 
proposes a NG-based strategy for cluster-level buildings 
to schedule energy consumption. In this study, the 

building clusters are regarded as game players, who take 
part in the competition with other clusters for the pur-
pose of minimizing the daily energy bill of the buildings. 

TABLE Ⅴ 

THE SUMMARY OF ENERGY COST/PRICE AND UTILITY/SATISFACTION FUNCTION 

Energy cost/price function Energy utility/satisfaction function Reference 

( ) log( 1)h h h h hp L a L L   ( ) 1 e h ha L

h hU L


   [72] 

( ) ( ) hb

h h h h hp L a L c    [75] 

2( )h h h h h h hC L a L b L c     [74], [76][79] 

( ) log 1 h
h h h

h

L
C L a

b

 
   

 
  [82] 

2( )h h h h h h hC L a L b L c    

2

2
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( )

( )

h h
h h h h

h

h h

h
h h h

h

b a
a L L L

b
U L

a
b L L

b





 



≤ ≤

＞

 [83] 

For the scenarios containing multiple energy sellers 
and users, NGs will be formulated for the seller and 

demand sides, respectively. The interaction between 
seller and demand sides is completed via energy price 
and demand. This is similar to the interaction in the SG. 

For example, in [80], two NGs are built: seller and de-
mand side games. In the first game, the profit maximi-

zation problem for energy sellers is formulated with the 
bidding mechanism, while in the second game, users aim 
to maximize the daily payoff. Based on the two games, 
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the existence and uniqueness of the corresponding NE 

are analyzed. Simulations performed for 3 energy sellers 
and 1000 users show that the superior performance of 

the proposed mechanism in flattening load level and 
increasing seller side profit and demand side payoff. 
Similarly, reference [81] propose a double-sided NG 

based on the supply function equilibrium and the energy 
consumption scheduling models. To search the two NEs 
of the double-sided game, the gradient ascent and 

Rosen’s gradient projection methods are applied. The 
summary of energy cost/price and the utility/satisfaction 

function is presented in Table Ⅴ, where the meaning of 

, , , ,h h h h hp a b c L  is consistent with (10), i.e., ( )h hC L  and 

( )h hU L  represent the energy cost and energy utili-

ty/satisfaction for consuming energy 
hL . 

2) Cooperative Game 
Compared with the application of CG for distributed 

energy prosumers, small- and middle-sized users cannot 

realize the cooperative interaction via energy exchange. 

However, they can negotiate their energy consumption 

and obtain the Pareto optimal strategy to reduce energy 

cost or increase energy utility for the formulated coalition 

[84]. Alternatively, from the cluster-level, load aggre-

gators participating in the DR market can reach agree-

ments on DR bidding price or energy trading amount via 

CG theory. Considering that users may quit from the 

cooperation to increase self-profit, the punishment 

mechanism for betrayal is often discussed in a CG [85]. 

In [86], a cooperative DR strategy is proposed to 
reduce user energy costs where the non-cooperative 

behavior in the cooperation was accounted for. Here, a 
cooperative DR model is formulated by minimizing 
coalition’s total cost, including discomfort cost and 

energy cost. To force all members to be in the coalition, 
a special energy price model is designed to detect user’s 
non-cooperative behavior with a Cartel mechanism, and 

selfish users will be punished by a punishment rule. For 
a CG among load aggregators, reference [87] puts for-
ward a bargaining-based cooperative model. In the 

game mechanism, seller and demand sides collabora-
tively decide the energy trading amount and the asso-

ciated payments. To allocate the increased benefit from 
cooperation among these participants, Nash bargaining 
theory is employed, which can guarantee the fairness of 

the allocation. As the Nash bargaining theory is devel-
oped from the initial disagreement point which is the 
equilibrium solution of the SG among distribution 

company and aggregators, it indicates that game par-
ticipants will gradually tend to cooperation for a higher 

profit when they cannot achieve more from NG. Dif-
ferent from [87], a Shapley value-based CG is proposed 
to determine the incentive scheme of load aggregators in 

[88]. In the proposed framework, a fairness allocation 
strategy with Shapley value is designed to enhance the 
willingness of users in the DR. A case study with IEEE 

benchmark distribution networks shows that the pro-

posed framework can achieve fairness rebate allocation 
among aggregators. 

3) Stackelberg Game 
In the SG approach for small- and middle-sized users, 

the master-slave relation among game players is largely 

clear. That is, energy supply side (i.e., energy retailer 
[89], utility company [90], and power grid [91]) or en-
ergy management side (i.e., energy management center 

[92] and load aggregator [93]) participates in the game 
as leader, while the energy demand side (i.e., household 

appliances and EVs) is in the follower position. For the 
follower, the optimization problem generally aims to 
minimize/maximize energy cost/utility, whereas for the 

leader, the optimization goals have diversified forms, 
which can be divided into profit-oriented and social 
welfare-oriented forms. For the profit-oriented leader, 

the maximization of the trading profit is the sole aim 
[90], [94], while for the social welfare-oriented leader, 

other optimization goals are also considered, such as 
user satisfaction cost and demand fluctuation cost [95]. 

In the researches on the SG-theoretical approach with 

the profit-oriented leader, there are basic modeling 
process. That is, the energy supply side mainly focuses 
on the optimization of offering energy price to increase 

income or profit, whereas the energy demand side will 
schedule energy consumption behavior to decrease en-
ergy cost or increase energy utility. The differences in 

the existing research approaches depends on whether 
consideration is from the trading scenarios or the optimal 

model design. It can be seen that an SG is first designed 
between a single utility company and users [96]. How-
ever, studies have found that such a trading mode will 

lead to monopoly and discourage other users from par-
ticipating in the DR. Then, an SG among multiple utility 
companies and users is proposed. This can promote 

competition in the electricity market. Different from the 
framework in [96], the researchers in [97] focus on the 

design of the utility function that can better shape the 
objective function. Some studies take the system opera-
tion constraints into consideration in designing a DR 

framework with an SG [98], whereas reference [99] 
introduces voltage and current shadow costs in describ-
ing the competition among a load aggregator and flexi-

ble users, where a network-constrained SG framework is 
formulated. 

In the researches on SG-theoretical approach with a 
social welfare-oriented leader, the leader has various 
optimization targets, such as increasing the DR satis-

faction, reducing the fluctuation of energy demand 
[100], or minimizing the mismatch between supply and 
demand sides [101]. To obtain feasible results, the op-

timization targets are usually converted into economic 
objective functions that can be combined and optimized 
with the leader’s trading income. For instance, reference 

[100] develops a non-cooperative Stackelberg model 



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 2, MARCH 2024 10 

considering the influence of load fluctuation and users’ 

dissatisfaction. To achieve the goal of minimizing the 
load fluctuation, the fluctuation cost is designed as a 

quadratic form about the difference between the energy 
demand in a certain period and the average demand in a 
whole day. At the same time, some studies are not just at 

the economic level. In [102], an objective function is 
formulated for utility company (leader) to determine the 

optimal generation strategy while meeting the energy 

demand of users. Generally, such a modeling method 
will perform better on the pursued target than the eco-

nomic-based way since the pursued target may be 
weakened in the economic-based way. The summary of 
SG for small- and middle-sized users are presented in 

Table Ⅵ. 

TABLE Ⅵ 

THE SUMMARY OF SG FOR SMALL-AND MIDDLE-SIZED USERS 

Reference Leader/follower Solution method Main contribution 

[89] Retailers/customers Interior point method Consider the constraint of EV charging requirements 

[91] Power grids/buildings Backward induction 
Develop the basic and enhanced interaction strategies based 

on identified Nash equilibria 

[93] Aggregators/EVs Gradient descent method Consider the uncertainty in the energy demands 

[94] Retailers/devices Interior point method 
Propose a light-weight DR scheme based on the Stackelberg 

model without iterations 

[95] Retailers/consumers Genetic algorithm 
Study how electric storage space heating loads can be op-

timally controlled using price signals 

[96] 
Utility compa-

nies/customers and EVs 
Particle swarm optimization 

Prove that EVs will discourage other customers to partici-

pate in DR programs 

[97] Retailers/consumers Adaptive diffusion algorithm 
Propose a framework that can optimize aggregate cost, 

utility, and retailer’s profit simultaneously 

[100] 
Power dispatching cen-

ter/users 
NSGA-II algorithm 

Consider the influence of load fluctuation and users’ dis-

satisfaction 

[102] Utility companies/users Iterative algorithm 
Adopt a pricing function to encourage users to join the 

proposed game 

4) Bayesian Game 

The BG-theoretical approach has not been exten-
sively applied to the small- and middle-sized users. 
Different from the application of the BG for distributed 

energy prosumers, in which the incomplete information 
can come from distributed generation, market price, or 
participants privacy, existing researches for small- and 

middle-sized users mainly concentrates on the descrip-
tion of incomplete information from the behavior 
characteristics of game players, such as energy con-

sumption level (i.e., high, moderate, or low) [103], and 
bidding habit (i.e. bid high, bid low, etc.) [104]. 

More specifically, a model is built to analyze the 
energy trading problem between the grid and the users 
as a BG, in which the real-time energy demand and 

energy price belong to incomplete information [103]. 
To describe the incompleteness of information, the 
probability-based strategy for user’s demand and grid’s 

price are formulated respectively by dividing the energy 
demand level and the energy price into different types 

(i.e., high, moderate, or low). Accordingly, the payoff 
function of the BG is founded and its Bayesian NE is 
proved to be unique. Simulation result shows that the 

utility of the grid in the proposed scheme can increase 
by approximately 40% over that in the scenario where 
energy demand with packet loss is not estimated and 

received directly. Aiming at the BG among load ag-
gregators, studies have been carried out in [104], [105], 

where the BG is employed to describe the competition 
among load aggregators, in which each aggregator has 
imperfect information on other opponents’ costs. Thus, 

each load aggregator will evaluate the strategic biddings 

of other aggregators using different scenarios that con-
tain various bidding strategies (i.e., bid high, bid low, 
etc.). Under the assumption, game participants are di-

vided into different types that can be described with 
probability distribution. After this, the expected profit 
of the aggregator is formulated by building the condi-

tional probability about the types of game participants 
and the profit function of the participants with the cor-
responding types. 

5) Evolutionary Game 
In the EG, game participants are assumed to have 

bounded rationality and make decisions based on imi-
tation or random selection. Therefore, the 
EG-theoretical approach for small- and middle-sized 

users mainly focuses on the decision-making behavior 
from the layer of the user population. It should be noted 
that the primary purpose is to analyze the selection 

dynamics of the population with the designed replicator 
dynamics. The application scenarios with EG mainly 

fall into two categories. 
One scenario is to analyze the dynamic process of the 

user population on energy consumption behavior, e.g., 

users decide whether to be in the DR or other kind of 
energy consumption mode [106]. In [107], the deci-
sion-making issues in DR are investigated from the 

perspective of multi-population EG. In the formulated 
scenario, each user has two incompatible strategies 

during each period of DR, i.e. in DR or not in DR. Us-
er’s expected profit consisting of DR incentive profit 
and comfortable utility will be different for different 
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choices. To analyze the dynamic trend of the population 

of users choosing to be in DR, the replication dynamic 
equation is designed according to the form in (9). Sim-

ulation results show that the DR incentive mechanism 
plays an important role in promoting the user population 
to participate in DR. This can provide a decision basis 

for the DR project. In [108], users can make a choice 
from feed-in tariff or real-time tariff and microgrids can 
decide whether the operation is on isolated or 

grid-connected state. Accordingly, the equilibrium 
strategy of microgrid is deduced for both stable and 

flexible users. 
The other scenario is for the energy trading market 

with multiple energy sellers, e.g., users select which one 

to purchase energy [109], [110]. In such scenario, the 

energy trading mode is similar to the mode in the ap-

plication scenarios of the NG or SG containing multiple 

energy sellers and multiple users. The difference is that 

the dynamic process of the user population choosing 

which one to purchase energy is the emphasis in the 

scenario with the EG. For instance, a two-level game is 

modeled in [111] to solve the energy trading problem 

between utility companies and residential users, in 

which residential user behavior is described as an EG. 

According to the EG theory, the selection dynamics of 

the population are designed by comparing individual 

utility and average utility. A case study illustrates that 

users will choose one utility company with a certain 

probability and the population choosing any company 

will tend to in a stable state. The semi-tensor product 

theory is often applied in the formulation of an EG. For 

example, in [112], a scenario is proposed where indi-

vidual communities can switch between grid power and 

local power to purchase energy based on the strategies 

of their neighbors. Then, the semi-tensor product is 

introduced into the model to solve the formulated EG 

systematically. 

C. Game for Large Energy Consumers 

Figure 5 shows the typical scenarios for large energy 

consumers. With the increase of power market reform, 

energy trading for large energy consumers has multiple 

forms, in which the two main trading forms are the most 

popular at present [113]. One form is similar to the 

trading for small- and middle-sized users, where the 

energy seller side is usually the power grid company, 

retailer, or utility company [114], where the other form 

is that large energy consumers can purchase energy 

directly from an energy generation company because of 

the high energy demand level. Since both sides want to 

improve their interest in the trading of direct power 

purchase, game theory can be applied to provide the 

decision-making basis for the purchasing and selling 

strategy. At present, the game-based approach for large 

energy consumers has covered CG, SG, BG, and EG. 

 

Fig. 5.  Typical scenarios for large energy consumers. 

1) Cooperative Game 

In the application of the CG for large energy con-
sumers, the direct power purchase transaction is usually 

completed via negotiation between energy generators 
and large consumers. Since there is no middleperson 

who will earn profit in the trading, the direct power 
purchase transaction can make higher profit margins. To 
allocate such profit reasonably, energy generations and 

large consumers can make bilateral contract with Nash 
bargaining process to guarantee the interest of both 
sides [115].  

In [116], a negotiation process is proposed to sign a 
financial bilateral contract between the generation 

company and load-serving entity considering a loca-
tional marginal pricing mechanism. Since the bilateral 
contract is an essential risk-hedging instrument in the 

trading, both sides can negotiate to achieve a favorable 
balance between expected profits and financial risk 
exposure. Simulation results show that different degrees 

of risk aversion and deviation in locational marginal 
pricing estimation will have a systematic impact on the 

negotiation agreement. In [117], a bilateral pricing 
game-theoretic approach is formulated to balance and 
maximize bilateral profits for wind-thermal combined 

generation, in which the profit distribution is realized by 
the Nash negotiation process. By analyzing specific 
examples, it demonstrates that the proposed direct 

power purchase trading mechanism can achieve a 
win-win situation between generations and large con-
sumers. 

2) Stackelberg Game 
The SG has the most extensive application for large 

consumers since it can precisely describe the mas-

ter-slave position between generation companies and 

large consumers in the trading. Existing researches 

show that the related work is conducted basically from 

the two main trading forms mentioned above [118].  

In the trading form that is similar to the trading for 
small- and middle-sized users, researches focus not only 
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on the strategy optimization for large consumer, but also 

discuss the application from the overall load level, in-
cluding residential, commercial, and industrial loads. 

Such researches are similar to the game-theoretic ap-
plication for small- and middle-sized users from energy 
trading mechanism or method architecture. For example, 

reference [119] proposes a one-leader and N-follower 
SG to describe the decision-making behaviors of net-
work operator and customers. In the proposed game 

model, except for the model of residential users, indus-
trial consumers, acting as a part of followers, are also 

modeled to maximize their profit. Similarly, to formu-
late an SG-based framework involving massive DR 
resources, reference [120] establishes a comprehensive 

resource management mechanism for large industrial 
consumers and small- and middle-sized customers. 

In the research on the direct power purchase trading 

form, related work is presented mainly for bilateral 
contracts and incentive-based DR. A good example can 

be found in [121], where an SG is constructed to sign 
energy bilateral contracts, in which large consumers and 
generation companies act as the leaders and the fol-

lowers, respectively. After a generation company and a 
large consumer finalize energy prices and quantity, they 
are allowed to sign a bilateral contract if their agreed 

energy quantity satisfies all network constraints. Com-
pared with the research that only considers the bilateral 
contract, incentive-based DR scenarios generally as-

sume that large consumers can reduce their energy 
consumption in the trading, and that, the trading will 

contain more participants, including the generation, grid, 
and demand sides. For instance, reference [122] studies 
the impacts of incentive-based DR on power grid, gen-

eration companies, and industrial users in the direct 
power-purchase trading. Research results show that the 
power grid companies should implement DR since all 

the participants will obtain the benefits. 
3) Bayesian Game 

Although the electricity market is gradually opening, 
lots of information is still private. Therefore, it is inev-
itable that incomplete information game theory will be 

employed to describe the decision-making behavior in 
market competition. At present, in applications of the 
BG for large energy consumers, incomplete information 

is generally considered from the generation side, such as 
the bidding price and generation cost. 

In [123], a scenario is proposed where large con-
sumers can trade with generation companies directly. 
To describe the incomplete information about the bid-

ding price parameter of each generation company, a BG 
model is formulated among multiple generation com-
panies. In the game, each company can evaluate the 

private information of other companies according to 
type space combination and probability distribution. 
Simulation results demonstrate that information in-

completeness has a negative influence on game player’s 

payoff. A similar study can be found in [124], where the 

researchers analyze the direct bilateral bidding transac-
tions between generation and large energy consumers 

based on the BG. In this paper, the cost of generation is 
unknown to other generators and is subjected to a uni-
form distribution. Basically, Bayesian NE can be ob-

tained by solving the maximization problem of the 
generation’s and consumer’s utility. 

Ⅳ.   PROSPECTS FOR APPLICATIONS OF GAME THEORY 

ON THE ENERGY DEMAND SIDE 

A. Prospects from Perspective of Application Scenarios 

1) Energy Scheduling Strategy for Prosumers 

Ongoing reform in the electricity market has led to 
the integration of prosumers equipped with distributed 

energy as an essential component of energy sellers. 
Nevertheless, energy scheduling for prosumers will face 
many challenges, especially as their numbers continue 

to rise. Therefore, game-theoretic approaches are worth 
further research in the related application scenarios. 

For the power grid, the massive access of distributed 
energy will certainly affect its security and stability. 

Therefore, it is meaningful to study how to coordinate 

the trading period and power among distributed energy 

clusters to maintain power system’s safety and steady 

operation, whereas CG theory is suitable for analyzing 

such a problem. By introducing relevant indicators to 

measure the interactive power fluctuation between 

prosumers and energy suppliers, the coalition can use 
the collaborative optimization function to reduce the 

impact. Additionally, distributed generation, energy 

storage, and EVs can be used as auxiliary equipment for 

regulating the grid’s frequency. It is worthwhile to 

conduct intensive studies with a CG to formulate opti-

mal strategies for achieving better performance. The 

allocation of income obtained by the coalition in 
providing frequency service is also a feasible direction 

in this field. 

For prosumers, in the past, the power and capacity of 

distributed power generation, and energy storage were 

mainly optimized to satisfy self-demand. Nevertheless, 

when users are permitted to sell energy to energy sup-

pliers or other users, the configuration of distributed 

energy needs to consider not only their own demand, 
but also the trading income and the impact of other 

prosumers on the trading market. In this case, the op-

timal configuration of distributed energy for prosumers 

is expected to be solved with an NG. For instance, the 

investment, operational and maintenance costs, and the 

trading income can be comprehensively considered. 

Then the NG model can be built among prosumers to 

search NE as the optimal configuration. 

2) Energy Purchasing Strategy for Large Consumers 

With the improvement and development of trading 
mechanisms in direct energy-purchase, large consumers 
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who are sensitive to energy price can purchase energy 

from different markets, including forward contracts, 
options, and spot markets. Energy price and its fluctua-

tion are different in different markets. Therefore, for 
large consumers, how to reasonably distribute the pur-
chased energy in each market to reduce energy cost is a 

critical problem. For a generation company, how to 
make price quotation strategy in each market to attract 
more consumers is also an inevitable problem. Such 

problems can be solved with an SG. The basic process is 
to build energy purchasing strategy models for large 

consumers and price quotation strategy models for 
generation companies, respectively. Then, a distributed 
algorithm is designed to solve the equilibrium problem. 

Here, the efficiency of the algorithm is also an im-
portant research direction. 

In addition, the information about large consumers 

and generation companies may be concerned with a 

privacy issue, i.e., points unknown to other competitors. 

Most existing researches assume that the cost function 

or quotation of generation company is unknown infor-

mation. However, in the real market, the unknown in-

formation is much more than that, such as, the maxi-

mum capacity of the generation company, load demand 

of large consumers, and energy price in the spot market. 

Consequently, when there are many kinds of unknown 

information in the trading, the problem can be solved 

with a BG. The critical problem is how to divide type 

space and calculate the joint probability distribution 

based on the probability characteristics of unknown 

information. 

3) Demand Response for Small- and Middle-sized Users 
There are significant differences in energy consump-

tion behaviors, load types and consumption views 

among small- and middle-sized users. Most existing DR 

programs with game-based approaches have not fully 

considered the differences of users, resulting in inac-

curate scheduling results compared with the real-world 

system. Therefore, the following research directions 

need to be further studied. 

For residential users, in most existing researches, 

there is a hidden assumption that all residential users are 

willing to participate in DR. Then, users will be in-

volved in game competitions to maximize self-profit. 

However, in real life, it is impossible to attract all users 

to be in DR, and therefore, to attract more users, the DR 

mechanism should take behavioral characteristics of 

users into consideration. For example, an economic 

compensation mechanism in the residential DR is an 

important factor, while consumer psychology theory 

has to be considered in the construction of the DR 

game-based model. Since a DR project may take a long 

time to implement, some users may participate while 

others may exit during the period. Therefore, consid-

ering the dynamic participation of users, it is necessary 

to employ repeated game theory to analyze the compe-

tition over long time scales. 

For commercial users, the air conditioners are the 
main flexible DR resource, which can be aggregated to 
participate in DR by load aggregator. On the premise of 

guaranteeing user comfort, the load aggregator controls 
the operation of air conditioners to reduce energy de-

mand and then obtain profit from the energy suppliers. 
In such scenarios, the problem of how to balance DR 
effect and cost can be solved through Nash negotiation 

theory. That is, DR effect and cost can be regarded as 
two negotiating individuals and each part takes its own 
optimal goal as the basis for decision-making. After 

multiple rounds of games, both sides reach a compro-
mise, so as to obtain the equilibrium between DR effect 

and cost. The conflict of interest between the energy 
supply company and the aggregator can be effectively 
analyzed by zero-sum game theory. For market share 

competition of load aggregators, this problem can be 
solved with an NG or BG. 

B. Prospects from Perspective of Application Method-

ologies 

1) Applications of Potential Game Theory 

By reviewing the existing research on game-theoretic 
approaches, it is found that proving the existence of an 
equilibrium solution is indispensable. The complex 

proof limits further applications of game theory. To 
solve this problem, the potential game provides a novel 
solution [125]. NE in the potential game can be guar-

anteed with finite improvement properties, thus avoid-
ing the tedious proof. Reference [126] proposes a po-
tential game approach to solve the economic dispatch 

problem. Also, the optimization process in the potential 
game is open and dynamic, whose convergence can be 

achieved with no limits to type or number of players. 
However, at present, researches on the application of the 
potential game have not been concerned extensively on 

the demand side. Therefore, it has a great potential for 
applying such game theory to describe game behavior 
for users, especially for heterogeneous and numerous 

residential users. 
Additionally, to guarantee that the optimal solution of 

each game player satisfies constraint conditions from 
the overall level (e.g., the energy balance constraint), 
the game model has to satisfy the coupled constraints 

among all players. To handle the complicated coupled 
constraints effectively, reference [127] extends the po-
tential game to a state-based potential game by intro-

ducing auxiliary state variables to handle the constraints. 
Therefore, the state-based potential game also deserves 

to be studied for demand side users, especially for game 
behavior with complicated coupled constraints. 
2) Applications of Complex Network Game Theory 

Demand users generally have the problem of low ra-
tionality and their decisions may influence each other. 
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Especially for residential users, herd behavior will have 

a non-ignorable impact on decision-making process. 
For example, whether some residential users participate 

in DR may depend on the participation of their neigh-
bors or friends. Therefore, their decision behavior may 
heavily depend on their rationality and social network. 

Considering the complex relationships of social net-
works, complex network game theory can contribute to 
research on decision strategy. 

From Fig. 6, game behavior on the social network can 
be translated into complex network game behavior. To 

quantitatively analyze the influence among user nodes 
in the decision-making process, graph theory can be 
introduced to characterize the association relationship 

among users. As seen in Fig. 6, a node V(D) represents a 
demand user, the edge E(D) represents whether the two 
nodes have association relationship, and Ψ(D) is a cor-

relation function to measure the degree of influence. 
Based on such a complex network game structure, in-

dividual/coalitional interaction behavior can be ana-
lyzed for DR population evolution or coalition cooper-
ation considering the complexity of social networks. 

 

Fig. 6.  Game behavior in a complex network. 

3) Distributed Algorithm for Nash Equilibrium 

For the applications of game theory on energy de-

mand side or in power systems, it is necessary to search 
for the equilibrium of the formulated game-theoretic 
model. In existing research, the widest solution algo-

rithm is designed based on the following game process: 
1) Each game player selects its strategy randomly. 

2) One player updates the strategy for maximal pay-

off by solving optimal problem. 

3) The new strategy is broadcasted to other players, 

and, other players update the strategies for maximal 
self-payoff in turn. 

4) Repeat the steps of (2) and (3) until no player up-
dates the strategy. Such equilibrium state is NE. 

Figure 7 shows the strategic interaction in the game 
process for N game players. In such a distributed algo-
rithm, complex game information interaction is inevi-

table among game players. It demonstrates that each 
player has to broadcast strategy to other players via a 
communication network in step (3). From the compu-

tational perspective, it is hard to handle the problem for 

the scenarios with a large number of users, because 
computational complexity grows rapidly with the in-

crease in players. It can be seen that the running time of 
the algorithm reaches 231.65 s with only 15 players [68]. 
Therefore, the game theory in power systems is mainly 

applied in optimizing the planning decision, such as, 
day-ahead energy consumption scheduling. For the 
scenarios considering the trading decision in real-time, 

it is difficult for the existing algorithm to search the 
equilibrium solution on a real-time scale. Moreover, 

from the perspective of communication, frequent in-
formation interaction can cause communication jam. 
Therefore, to improve the feasibility and further de-

velopment of the game approach in power systems, it is 
significant to design the distributed algorithm that can 
reduce the communications among players and improve 

solution efficiency. 

 

Fig. 7.  Strategy interaction in the game process. 

Ⅴ.   CONCLUSION 

The open market environment and multi-agent deci-

sion-making characteristics on the energy demand side 

provide a promising opportunity for the application of 

game theory. This paper aims to review the 

state-of-the-art research and development in game the-
oretical approaches pertaining to the demand side, with 

specific focus on three key aspects: classification, 

methodology, and application scenarios. The literatures 

reviewed in the work reveals that NG, CG, SG, BG, and 

EG are the main applications used to describe the deci-

sion-making behavior of demand users, and the appli-

cation scenarios mainly contain P2G/P2P trading, DR 
scheduling, and energy direct trading for distributed 

energy prosumers, small- and middle-sized users, and 

large energy consumers. The results derived from these 

studies demonstrate that the integration of the energy 

demand side with game-theoretic applications contrib-

utes to more efficient and economic power systems. 

Based on the existing researches, we suggest pro-
spects for promising applications of game theory on the 
demand side. For application scenarios, more 

game-based scenarios can be introduced catering to the 
needs of demand side users. Similarly, more 

game-based modeling theories should be introduced to 
describe the competitive behaviors, such as potential 
game theory and complex network game theory. 
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In recent years, energy consumption has become the 

main source of carbon emissions [128][130], e.g., 

carbon emissions in the power industry account for 

about 40% of the whole emissions in China. Therefore, 

solving the problem of carbon emissions in the power 

industry will be the key to achieve the goal of carbon 

neutrality. Under such a global national macro policy, 

game theory will have more extensive applications on 

the energy demand side. With the applications of game 

theory in multiple decision-making, a large number of 

demand users can be absorbed into an energy con-

sumption scheduling scheme, to improve terminal en-

ergy efficiencies and reduce carbon emissions. In this 

paper, game theory researches are reviewed and pro-

spects are discussed in detail. Related work is expected 

to provide some worthwhile thoughts for the application 

of game theory on the demand side. 

ACKNOWLEDGMENT 

Not applicable. 

AUTHOR’S CONTRIBUTIONS 

Zhenya Ji: collect all the materials, write the manu-

script. Xiaofeng Liu: write, review, edit, and revise the 
paper. Difei Tang: revise the grammar of the paper. All 
authors read and approved the final manuscript. 

FUNDING 

This work is financially supported by the National 

Natural Science Foundation of China (No. 52107100) 

and the Basic Science (Natural Science) Research Pro-

ject of Jiangsu Higher Education Institutions (No. 

23KJB470020). 

AVAILABILITY OF DATA AND MATERIALS 

Not applicable. 

DECLARATIONS 

Competing interests: The authors declare that they 

have no known competing financial interests or per-

sonal relationships that could have appeared to influ-

ence the work reported in this article. 

AUTHORS’ INFORMATION 

Zhenya Ji received the Ph.D. degree in electrical en-

gineering from Southeast University, Nanjing, China, in 

2018. She is currently an associate professor with 

School of Electrical and Automation Engineering, 

Nanjing Normal University, Nanjing, China. Her re-

search interests include interaction between electric 

vehicles and the power grid, distributed resource ag-

gregation management, and optimization of integrated 

energy system. 

Xiaofeng Liu received the Ph.D. degree in electrical 

engineering from Southeast University, Nanjing, China, 
in 2019. Since 2019, he has been a Lecturer with School 

of Electrical and Automation Engineering, Nanjing 
Normal University, Nanjing, China. His research in-
terests include power market, game theory, and de-

mand-side management. 
 
Difei Tang received the Ph.D. degrees from Nanyang 

Technological University, Singapore, in 2016. He was a 
Research Fellow with the Energy Research Institute at 

Nanyang Technological University from 2015 to 2017, 
and a Postdoctoral Fellow with the Department of 
Electrical and Computer Engineering, University of 

Alberta, Edmonton, Canada, from 2017 to 2019. He is 
currently a Lecturer with School of Electrical and Au-
tomation Engineering, Nanjing Normal University, 

Nanjing, China. His research interests include demand 
response, electric vehicle, and integrated energy system. 

REFERENCES 

[1]    R. Pinto, S. T. Henriques, and P. E. Brockway et al., 

“The rise and stall of world electricity efficiency: 
1900–2017, results and insights for the renewables 

transition,” Energy, vol. 269, pp. 126775, Apr. 2023. 
[2]    G. Aydin, “The modeling and projection of primary 

energy consumption by the sources,” Energy Sources, 

Part B: Economics, Planning, and Policy, vol. 10, no. 1, 
pp. 67-74, Jan. 2015. 

[3]    G. Aydin, “The application of trend analysis for coal 
demand modeling,” Energy Sources, Part B: Economics, 

Planning, and Policy, vol. 10, no. 2, pp. 183-191, Apr. 

2015. 
[4]    K. Wang, X. Su, and S. Wang, “How does the ener-

gy-consuming rights trading policy affect China’s car-

bon emission intensity?” Energy, vol. 276, pp. 127579, 
Aug. 2023. 

[5]    G. Aydin, “The development and validation of regres-
sion models to predict energy-related CO2 emissions in 

Turkey,” Energy Sources, Part B: Economics, Planning, 

and Policy, vol. 10, no. 2, pp. 176-182, Apr. 2015. 
[6]    A. S. Abdelrazik, F. A. Al-Sulaiman, and R. Saidur, 

“Feasibility study for the integration of optical filtration 

and nano-enhanced phase change materials to the con-
ventional PV-based solar systems,” Renewable Energy, 

vol. 187, pp. 463-483, Mar. 2022. 
[7]    C. Jung and D. Schindler, “On the influence of wind 

speed model resolution on the global technical wind 

energy potential,” Renewable and Sustainable Energy 
Reviews, vol. 156, pp. 112001, Mar. 2022. 

[8]    R. S. Kumar, L. P. Raghav, and D. K. Raju et al., “Im-

pact of multiple demand side management programs on 
the optimal operation of grid-connected microgrids,” 

Applied Energy, vol. 301, pp. 117466, Nov. 2021. 
[9]    J. Wang, N. Xie, and C. Huang et al., “Two-stage sto-

chastic-robust model for the self-scheduling problem of 

an aggregator participating in energy and reserve mar-
kets,” Protection and Control of Modern Power Systems, 

vol. 8, no. 3. pp. 752-771, Jul. 2023. 



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 2, MARCH 2024 16 

[10]  B. Masood, G. Song, and J. Nebhen et al., “Investigation 

and field measurements for demand side management 

control technique of smart air conditioners located at 
residential, commercial, and industrial sites,” Energies, 

vol. 15, no. 7, pp. 2482, Apr. 2022. 

[11]  X. Yang, W. Lu, and W. Yu et al., “Optimal dispatching 
and control strategies for residential load of intelligent 

communities,” Power System Protection and Control, 
vol. 51, no. 21, pp. 22-34, Nov. 2023. (in Chinese) 

[12]  M. Li, D. Hu, and C. Lal et al., “Blockchain-enabled 

secure energy trading with verifiable fairness in indus-
trial internet of things,” IEEE Transactions on Industrial 

Informatics, vol. 16, no. 10, pp. 6564-6574, Oct. 2020. 

[13]  M. Gržanić, T. Capuder, and N. Zhang et al., “Prosum-
ers as active market participants: a systematic review of 

evolution of opportunities, models and challenges,” 
Renewable and Sustainable Energy Reviews, vol. 154, 

pp. 111859, Feb. 2022. 

[14]  H. Saeian, T. Niknam, and M. Zare et al., “Coordinated 
optimal bidding strategies methods of aggregated mi-

crogrids: a game theory-based demand side manage-

ment under an electricity market environment,” Energy, 
vol. 245, pp. 123205, Apr. 2022. 

[15]  M. K. Mishra and S. K. Parida, “A game theoretic ap-
proach for demand-side management using real-time 

variable peak pricing considering distributed energy 

resources,” IEEE Systems Journal, vol. 16, no. 1, pp. 
144-154, Mar. 2022. 

[16]  M. J. Exelby and N. J. D. Lucas, “Competition in the UK 
market for electricity generating capacity: a game theory 

analysis,” Energy Policy, vol. 21, no. 4, pp. 348-354, 

Apr. 1993. 
[17]  F. Wen and A. K. David, “Optimal bidding strategies for 

competitive generators and large consumers,” Interna-

tional Journal of Electrical Power & Energy Systems, 
vol. 23, no. 1, pp. 37-43, Jan. 2001. 

[18]  J. F. Nash Jr, “Equilibrium points in n-person games,” 
Proceedings of the National Academy of Sciences, vol. 

36, no. 1, pp. 48-49, Jan. 1950. 

[19]  J. F. Nash Jr, “Non-cooperative games,” Annals of 
Mathematics, vol. 54, no. 2, pp. 286-295, Sep. 1951. 

[20]  L. Cheng and T. Yu, “Nash equilibrium-based asymp-

totic stability analysis of multi-group asymmetric evo-
lutionary games in typical scenario of electricity mar-

ket,” IEEE Access, vol. 6, pp. 32064-32086, May 2018. 
[21]  P. D. Taylor and L. B. Jonker, “Evolutionary stable 

strategies and game dynamics,” Mathematical Biosci-

ences, vol. 40, no. 1-2, pp. 145-156, Jul. 1978. 
[22]  T. Huang, Y. Sun, and M. Jiao et al., “Bilateral ener-

gy-trading model with hierarchical personalized pricing 

in a prosumer community,” International Journal of 
Electrical Power & Energy Systems, vol. 141, pp. 

108179, Oct. 2022. 
[23]  M. Khorasany, Y. Mishra, and G. Ledwich, “A decen-

tralized bilateral energy trading system for peer-to-peer 

electricity markets,” IEEE Transactions on Industrial 
Electronics, vol. 67, no. 6, pp. 4646-4657, Jun. 2019. 

[24]  Planning and Development Department of China Elec-
tricity Council (2022, Jul.) “A briefing of electricity 

market trade in China from January to June 2022,” 

China Electricity Council. [Online]. Available: 
https://www.cec.org.cn/detail/index.html?3-311714 

[25]  H. Kim, J. Lee, and S. Bahrami et al., “Direct energy 

trading of microgrids in distribution energy market,” 

IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 

639-651, Jan. 2020. 

[26]  Z. Zhao, L. Zhang, and M. Yang et al., “Pricing for 

private charging pile sharing considering EV consumers 

based on non-cooperative game model,” Journal of 

Cleaner Production, vol. 254, pp. 120039, May 2020. 

[27]  J. Rosen. “Existence and uniqueness of equilibrium 

points for concave n-person games,” Econometrica: 

Journal of the Econometric Society, vol. 33, no. 3, pp. 

520-534, Jul. 1965. 

[28]  W. Saad, Z. Han, and M. Debbah et al., “Coalitional game 

theory for communication networks,” IEEE Signal Pro-

cessing Magazine, vol. 26, no. 5, pp. 77-97, Sep. 2009. 

[29]  S. Malik, M. Duffy, and S. Thakur et al., “A priori-

ty-based approach for peer-to-peer energy trading using 

cooperative game theory in local energy community,” 

International Journal of Electrical Power & Energy 

Systems, vol. 137, pp. 107865, May 2022. 

[30]  G. O'Brien, A. El Gamal, and R. Rajagopal, “Shapley 

value estimation for compensation of participants in 

demand response programs,” IEEE Transactions on 

Smart Grid, vol. 6, no. 6, pp. 2837-2844, Nov. 2015. 

[31]  I. Antonopoulos, V. Robu, and B. Couraud, “Artificial 

intelligence and machine learning approaches to energy 

demand-side response: a systematic review,” Renewable 

and Sustainable Energy Reviews, vol. 130, pp. 109899, 

Sep. 2020. 

[32]  S. Jia, K. Peng, and X. Zhang et al., “Dynamic pricing 

strategy and regional energy consumption optimization 

based on different stakeholders,” International Journal 

of Electrical Power & Energy Systems, vol. 141, pp. 

108199, Oct. 2022. 

[33]  X. Liu, D. Tang, and Z. Dai, “A Bayesian game ap-

proach for demand response management considering 

incomplete information,” Journal of Modern Power 

Systems and Clean Energy, vol. 10, no. 2, pp. 492-501, 

Mar. 2022. 

[34]  J. Yang, T. Ma, and K. Ma et al., “Trading mechanism 

and pricing strategy of integrated energy systems based 

on credit rating and Bayesian game,” Energy, vol. 232, 

pp. 120948, Oct. 2021. 

[35]  J. Yang, Z. Tian, and K. Ma et al., “A Bayesian game 

approach for noncooperative pricing among multiple 

utility companies in smart grid,” IEEE Access, vol. 6, pp. 

68576-68585, Nov. 2018. 

[36]  O. Han, T. Ding, and L. Bai et al., “Evolutionary game 

based demand response bidding strategy for end-users 

using Q-learning and compound differential evolution,” 

IEEE Transactions on Cloud Computing, vol. 10, no. 1, 

pp. 97-110, Mar. 2022. 

[37]  B. Gao, C. Chen, and Y. Qin et al., “Evolutionary 

game-theoretic analysis for residential users considering 

integrated demand response,” Journal of Modern Power 

Systems and Clean Energy, vol. 9, no. 6, pp. 1500-1509, 

Nov. 2021. 
[38]  C. P. Mediwaththe, E. R. Stephens, and D. B. Smith et al., 

“A dynamic game for electricity load management in 

neighborhood area networks,” IEEE Transactions on 

Smart Grid, vol. 7, no. 3, pp. 1329-1336, May 2016. 



JI et al.: GAME-THEORETIC APPLICATIONS FOR DECI-SION-MAKING BEHAVIOR ON THE ENERGY DEMAND SIDE: A… 17 

[39]  Y. Wang, X. Ai, and Z. Tan et al., “Interactive dispatch 

modes and bidding strategy of multiple virtual power 

plants based on demand response and game theory,” 

IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 

510-519, Jan. 2016. 
[40]  G. Wang, Q. Zhang, and H. Li et al., “Study on the 

promotion impact of demand response on distributed PV 

penetration by using non-cooperative game theoretical 

analysis,” Applied Energy, vol. 185, pp. 1869-1878, Jan. 

2017. 

[41]  L. Ma, N. Liu, and L. Wang et al., “Multi-party energy 

management for smart building cluster with PV systems 

using automatic demand response,” Energy and Build-

ings, vol. 21, pp. 11-21, Jun. 2016. 

[42]  M. Marzband, M. Javadi, and J. L. Domínguez-García et al., 

“Non-cooperative game theory based energy manage-

ment systems for energy district in the retail market 

considering DER uncertainties,” IET Generation, 

Transmission & Distribution, vol. 10, no. 12, pp. 

2999-3009, Sep. 2016. 

[43]  M. Ghorbanian, S. H. Dolatabadi, and P. Siano, “Game 

theory-based energy-management method considering 

autonomous demand response and distributed genera-

tion interactions in smart distribution systems,” IEEE 

Systems Journal, vol. 15, no. 1, pp. 905-914, Mar. 2021. 

[44]  M. K. Mishra, K. Murari, and S. K. Parida, “De-

mand-side management and its impact on utility and 

consumers through a game theoretic approach,” Inter-

national Journal of Electrical Power & Energy Systems, 

vol. 140, pp. 107995, Sep. 2022. 

[45]  M. Marzband, M. Javadi, and S. A. Pourmousavi et al., 

“An advanced retail electricity market for active distri-

bution systems and home microgrid interoperability 

based on game theory,” Electric Power Systems Re-

search, vol. 157, pp. 187-199, Apr. 2018.  

[46]  Z. Wang, F. Liu, and Z. Ma et al., “Distributed gener-

alized Nash equilibrium seeking for energy sharing 

games in prosumers,” IEEE Transactions on Power 

Systems, vol. 36, no. 5, pp. 3973-3986, Sep. 2021. 

[47]  L. Chen, N. Liu, and L. Liu et al., “Data-driven sto-

chastic game with social attributes for peer-to-peer en-

ergy sharing,” IEEE Transactions on Smart Grid, vol. 

12, no. 6, pp. 5158-5171, Nov. 2021. 
[48]  L. Ali, S. M. Muyeen, and H. Bizhani et al., “A 

peer-to-peer energy trading for a clustered mi-

crogrid-game theoretical approach,” International 

Journal of Electrical Power & Energy Systems, vol. 133, 

pp. 107307, Dec. 2021. 

[49]  L. Ali, S. M. Muyeen, and H. Bizhani et al., “A mul-

ti-objective optimization for planning of networked 

microgrid using a game theory for peer-to-peer energy 

trading scheme,” IET Generation, Transmission and 

Distribution, vol. 15, no. 24, pp. 1-12, Dec. 2021. 

[50]  C. Feng, F. Wen, and S. You et al., “Coalitional 

game-based transactive energy management in local 

energy communities,” IEEE Transactions on Power 

Systems, vol. 35, no. 3, pp. 1729-1740, May 2020. 
[51]  N. Zhang, Y. Yan, and W. Su, “A game-theoretic eco-

nomic operation of residential distribution system with 

high participation of distributed electricity prosumers,” 

Applied Energy, vol. 154, pp. 471-479, Sep. 2015. 

[52]  L. An, J. Duan, and M. Chow et al., “A distributed and 

resilient bargaining game for weather-predictive mi-

crogrid energy cooperation,” IEEE Transactions on 
Industrial Informatics, vol. 15, no. 8, pp. 4721-4730, 

Apr. 2019. 

[53]  A. Chiş and V. Koivunen, “Coalitional game-based cost 
optimization of energy portfolio in smart grid commu-

nities,” IEEE Transactions on Smart Grid, vol. 10, no. 2, 
pp. 1960-1970, Mar. 2019. 

[54]  M. I. Azim, W. Tushar, and T. K. Saha, “Coalition graph 

game-based P2P energy trading with local voltage 
management,” IEEE Transactions on Smart Grid, vol. 

12, no. 5, pp. 4389-4402, Sep. 2021. 

[55]  A. Safdarian, P. H. Divshali, and M. Baranauskas et al., 
“Coalitional game theory based value sharing in energy 

communities,” IEEE Access, vol. 9, pp. 78266-78275, 
May 2021. 

[56]  B. Lokeshgupta and S. Sivasubramani, “Cooperative 

game theory approach for multi-objective home energy 
management with renewable energy integration,” IET 

Smart Grid, vol. 2, no. 1, pp. 34-41, Mar. 2019. 

[57]  S. Cui, Y. Wang, and Y. Shi et al., “Community energy 
cooperation with the presence of cheating behaviors,” 

IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 
561-573, Jan. 2021. 

[58]  T. Lu, Z. Wang, and J. Wang et al., “A data-driven 

Stackelberg market strategy for demand re-
sponse-enabled distribution systems,” IEEE Transac-

tions on Smart Grid, vol. 10, no. 3, pp. 2345-2357, May 
2019. 

[59]  N. Liu, M. Cheng, and X. Yu et al., “Energy-sharing 

provider for PV prosumer clusters: a hybrid approach 
using stochastic programming and Stackelberg game,” 

IEEE Transactions on Industrial Electronics, vol. 65, no. 

8, pp. 6740-6750, Aug. 2018. 
[60]  G. Li, Q. Li, and Y. Liu et al., “A cooperative Stackel-

berg game based energy management considering price 
discrimination and risk assessment,” International 

Journal of Electrical Power & Energy Systems, vol. 135, 

pp. 107461, Feb. 2022. 
[61]  M. Latifi, A. Rastegarnia, and V. Vahidpour et al., “A 

distributed game-theoretic demand response with mul-

ti-class appliance control in smart grid,” Electric Power 
Systems Research, vol. 176, pp. 105946, Nov. 2019. 

[62]  N. Liu, X. Yu, and C. Wang et al., “Energy sharing 
management for microgrids with PV prosumers: a 

Stackelberg game approach,” IEEE Transactions on 

Industrial Informatics, vol. 13, no. 3, pp. 1088-1098, 
Jun. 2017. 

[63]  J. Lee, J. Guo, and J. K. Choi et al., “Distributed energy 

trading in microgrids: a game-theoretic model and its 
equilibrium analysis,” IEEE Transactions on Industrial 

Electronics, vol. 62, no. 6, pp. 3524-3533, Jun. 2015. 
[64]  S. Yin, Q. Ai, and Z. Li et al., “Energy management for 

aggregate prosumers in a virtual power plant: a robust 

Stackelberg game approach,” International Journal of 
Electrical Power & Energy Systems, vol. 117, pp. 

105605, May 2020. 
[65]  H. T. Doan, J. Cho, and D. Kim, “Peer-to-peer energy 

trading in smart grid through blockchain: a double auc-

tion-based game theoretic approach,” IEEE Access, vol. 
9, pp. 49206-49218, Mar. 2021. 



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 2, MARCH 2024 18 

[66]  M. Motalleb, A. Annaswamy, and R. Ghorbani, “A 

real-time demand response market through a repeated 

incomplete-information game,” Energy, vol. 143, pp. 
424-438, Jan. 2018. 

[67]  M. Latifi, A. Khalili, and A. Rastegarnia et al., “A 

Bayesian real-time electric vehicle charging strategy for 
mitigating renewable energy fluctuations,” IEEE 

Transactions on Industrial Informatics, vol. 15, no. 5, 
pp. 2555-2568, May 2019. 

[68]  X. Liu, B. Gao, and C. Wu et al., “Demand-side man-

agement with household plug-in electric vehicles: a 
Bayesian game-theoretic approach,” IEEE Systems 

Journal, vol. 12, no. 3, pp. 2894-2904, Sep. 2018. 

[69]  Y. Yu, G. Li, and Z. Li, “A game theoretical pricing 
mechanism for multi-microgrid energy trading consid-

ering electric vehicles uncertainty,” IEEE Access, vol. 8, 
pp. 156519-156529, Aug. 2020. 

[70]  A. Talwariya, P. Singh, and M. Kolhe, “A stepwise 

power tariff model with game theory based on Mon-
te-Carlo simulation and its applications for household, 

agricultural, commercial and industrial consumers,” In-

ternational Journal of Electrical Power & Energy Systems, 
vol. 111, pp. 14-24, Oct. 2019. 

[71]  K. Ma, C. Wang, and J. Yang et al., “Energy manage-
ment based on demand-side pricing: a supermodular 

game approach,” IEEE Access, vol. 5, pp. 18219-18228, 

Aug. 2017. 
[72]  Z. M. Fadlullah, D. M. Quan, and N. Kato et al., “GTES: 

an optimized game-theoretic demand-side management 
scheme for smart grid,” IEEE Systems Journal, vol. 8, 

no. 2, pp. 588-597, Jun. 2014. 

[73]  S. Belhaiza and U. Baroudi, “A game theoretic model for 
smart grids demand management,” IEEE Transactions on 

Smart Grid, vol. 6, no. 3, pp. 1386-1393, May 2015. 

[74]  A. Mohsenian-Rad, V. W. S. Wong, and J. Jatskevich 
et al., “Autonomous demand-side management based 

on game-theoretic energy consumption scheduling for 
the future smart grid,” IEEE Transactions on Smart 

Grid, vol. 1, no. 3, pp. 320-331, Dec. 2010. 

[75]  H. Chen, Y. Li, and R. H. Y. Louie et al., “Autonomous 
demand side management based on energy consumption 

scheduling and instantaneous load billing: an aggrega-

tive game approach,” IEEE Transactions on Smart Grid, 
vol. 5, no. 4, pp. 1744-1754, Jul. 2014.  

[76]  S. Pal, S. Thakur, and R. Kumar et al., “A strategical 
game theoretic based demand response model for resi-

dential consumers in a fair environment,” International 

Journal of Electrical Power & Energy Systems, vol. 97, 
pp. 201-210, Apr. 2018. 

[77]  C. Li, X. Yu, and W. Yu et al., “Efficient computation 

for sparse load shifting on demand side management,” 
IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 

250-261, Jan. 2017. 
[78]  D. Fan, S. Zhang, and H. Huang et al., “Three-stage 

day-ahead scheduling strategy for regional thermostat-

ically controlled load aggregators,” Protection and 
Control of Modern Power Systems, vol. 8, no. 2, pp. 

321-331, Apr. 2023. 
[79]  R. Tang, H. Li, and S. Wang, “A game theory-based 

decentralized control strategy for power demand man-

agement of building cluster using thermal mass and en-

ergy storage,” Applied Energy, vol. 242, pp. 809-820, 

May 2019. 

[80]  M. J. Jalali and A. Kazemi, “Demand side management 
in a smart grid with multiple electricity suppliers,” En-

ergy, vol. 81, pp. 766-776, Mar. 2015. 

[81]  N. Guo, Y. Wang, and G. Yan, “A double-sided 
non-cooperative game in electricity market with demand 

response and parameterization of supply functions,” 
International Journal of Electrical Power & Energy 

Systems, vol. 126, pp. 106565, Mar. 2021. 

[82]  H. M. Soliman and A. Leon-Garcia, “Game-theoretic 
demand-side management with storage devices for the 

future smart grid,” IEEE Transactions on Smart Grid, 

vol. 5, no. 3, pp. 1475-1485, May 2014. 
[83]  P. Samadi, H. Mohsenian-Rad, and R. Schober et al., 

“Advanced demand side management for the future 
smart grid using mechanism design,” IEEE Transac-

tions on Smart Grid, vol. 3, no. 3, pp. 1170-1180, Aug. 

2012. 
[84]  A. Mondal, S. Misra, and M. S. Obaidat, “Distributed 

home energy management system with storage in smart 

grid using game theory,” IEEE Systems Journal, vol. 11, 
no. 3, pp. 1857-1866, Sep. 2017. 

[85]  M. Hu, F. Xiao, and S. Wang, “Neighborhood-level 
coordination and negotiation techniques for managing 

demand-side flexibility in residential microgrids,” Re-

newable and Sustainable Energy Reviews, vol. 135, pp. 
110248, Jan. 2021. 

[86]  J. Yang, T. Ma, and K. Ma et al., “A cooperative de-
mand response strategy based on repeated game and 

cartel mechanism,” Electric Power Systems Research, 

vol. 201, pp. 107475, Dec. 2021. 
[87]  S. Fan, Q. Ai, and L. Piao, “Bargaining-based coopera-

tive energy trading for distribution company and de-

mand response,” Applied Energy, vol. 226, pp. 469-482, 
Sep. 2018. 

[88]  J. Wang, Q. Huang, and W. Hu et al., “Ensuring prof-
itability of retailers via Shapley Value based demand 

response,” International Journal of Electrical Power & 

Energy Systems, vol. 108, pp. 72-85, Jun. 2019. 
[89]  S. Yoon, Y. Choi, and J. Park et al., “Stackel-

berg-game-based demand response for at-home electric 

vehicle charging,” IEEE Transactions on Vehicular 
Technology, vol. 65, no. 6, pp. 4172-4184, Jun. 2016. 

[90]  S. Maharjan, Q. Zhu, and Y. Zhang et al., “Dependable 
demand response management in the smart grid: a 

Stackelberg game approach,” IEEE Transactions on 

Smart Grid, vol. 4, no. 1, pp. 120-132, Feb. 2013. 
[91]  R. Tang, S. Wang, and H. Li, “Game theory based inter-

active demand side management responding to dynamic 

pricing in price-based demand response of smart grids,” 
Applied Energy, vol. 250, pp. 118-130, Sep. 2019. 

[92]  M. Yu, X. Zhang, and J. Jiang et al. “Assessing the 
feasibility of game-theory-based demand response 

management by practical implementation,” IEEE Ac-

cess, vol. 9, pp. 8220-8232, Jan. 2021. 
[93]  C. Gong, S. Lin, and X. Bian et al., “Economic optimi-

zation model of a load aggregator based on the mul-
ti-agent Stackelberg game,” Power System Protection 

and Control, vol. 50, no. 2, pp. 30-40, Jan. 2022. (in 

Chinese) 



JI et al.: GAME-THEORETIC APPLICATIONS FOR DECI-SION-MAKING BEHAVIOR ON THE ENERGY DEMAND SIDE: A… 19 

[94]  C. Lee, L. Park, and S. Cho, “Light-weight Stackelberg 

game theoretic demand response scheme for massive 

smart manufacturing systems,” IEEE Access, vol. 6, pp. 
23316-23324, Apr. 2018. 

[95]  O. Kilkki, A. Alahäivälä, and I. Seilonen, “Optimized 

control of price-based demand response with electric 
storage space heating,” IEEE Transactions on Industrial 

Informatics, vol. 11, no. 1, pp. 281-288, Feb. 2015. 
[96]  P. Shinde and K. S. Swarup, “Stackelberg game-based 

demand response in multiple utility environments for 

electric vehicle charging,” IET Electrical Systems in 
Transportation, vol. 8, no. 3, pp. 167-174, Sep. 2018. 

[97]  M. Latifi, A. Khalili, and A. Rastegarnia et al., “Fully 

distributed demand response using the adaptive diffu-
sion–Stackelberg algorithm,” IEEE Transactions on 

Industrial Informatics, vol. 13, no. 5, pp. 2291-2301, 
Oct. 2017. 

[98]  L. Xu, Q. Xie, and L. Zheng, “Stackelberg-game-based 

demand response for voltage regulation in distribution 
network with high penetration of electric vehicles,” 

Energies, vol. 15, no. 10, pp. 3654, May 2022. 

[99]  N. Aguiar, A. Dubey, and V. Gupta, “Net-
work-constrained Stackelberg game for pricing demand 

flexibility in power distribution systems,” IEEE Trans-
actions on Smart Grid, vol. 12, no. 5, pp. 4049-4058, 

Sep. 2021. 

[100]Q. Lu and Y. Zhang, “Demand response strategy of 
game between power supply and power consumption 

under multi-type user mode,” International Journal of 
Electrical Power & Energy Systems, vol. 134, pp. 

107348, Jan. 2022. 

[101]M. Tavakkoli, S. Fattaheian-Dehkordi, and M. 
Pourakbari-Kasmaei et al., “Bonus-based demand re-

sponse using Stackelberg game approach for residential 

end-users equipped with HVAC system,” IEEE Trans-
actions on Sustainable Energy, vol. 12, no. 1, pp. 

234-249, Jan. 2021. 
[102]M. Yu and S. Hong, “Supply-demand balancing for 

power management in smart grid: a Stackelberg game 

approach,” Applied Energy, vol. 164, pp. 702-710, Feb. 
2016. 

[103]S. Misra, S. Bera, and T. Ojha et al., “ENTICE: 

agent-based energy trading with incomplete information 
in the smart grid,” Journal of Network and Computer 

Applications, vol. 55, pp. 202-212, Jun. 2015. 
[104]S. Abapour, B. Mohammadi-Ivatloo, and M. Hagh, 

“Robust bidding strategy for demand response aggre-

gators in electricity market based on game theory,” 
Journal of Cleaner Production, vol. 243, pp. 118393, 

Jan. 2020. 

[105]S. Abapour, B. Mohammadi-Ivatloo, and M. T. Hagh, 
“A Bayesian game theoretic based bidding strategy for 

demand response aggregators in electricity markets,” 
Sustainable Cities and Society, vol. 54, pp. 101787, Mar. 

2020. 

[106]X. Wang, S. Zou, and Z. Ma, “Decentralized integrated 
energy management for residential users based on evo-

lutionary game,” in Proceedings of IEEE 40th Chinese 
Control Conference, Shanghai, China, Jul. 2021, pp. 

6856-6861. 

[107]L. Cheng, L. Yin, and J. Wang et al., “Behavioral deci-
sion-making in power demand-side response manage-

ment: a multi-population evolutionary game dynamics 

perspective,” International Journal of Electrical Power 

& Energy Systems, vol. 129, pp. 106743, Jul. 2021. 
[108]Y. Zhang, T. Zhang, and L. Pan, “Operational strategy 

and user price preference analysis of china’s microgrids: 

based on an evolutionary game model,” Chemical En-
gineering Research and Design, vol. 180, pp. 437-450, 

Apr. 2022. 
[109]Y. Dai, Y. Gao, and H. Gao et al., “Real-time pricing 

scheme based on Stackelberg game in smart grid with 

multiple power retailers,” Neurocomputing, vol. 260, pp. 
149-156, Oct. 2017. 

[110]Z. Tu, X. Xia, and B. Zhu, “Demand-side management 

and control for a class of smart grids based on game 
theory,” in Proceedings of IEEE 36th Chinese Control 

Conference,  Dalian, China, Jul. 2017, pp. 10662-10667. 
[111]B. Chai, J. Chen, and Z. Yang et al., “Demand response 

management with multiple utility companies: a 

two-level game approach,” IEEE Transactions on Smart 
Grid, vol. 5, no. 2, pp. 722-731, Mar. 2014. 

[112]B. Zhu, X. Xia, and Z. Wu, “Evolutionary game theo-

retic demand-side management and control for a class of 
networked smart grid,” Automatica, vol. 70, pp. 94-100, 

Aug. 2016. 
[113]X. Peng and X. Tao, “Cooperative game of electricity 

retailers in China's spot electricity market,” Energy, vol. 

145, pp. 152-170, Feb. 2018. 
[114]S. Mohseni, A. Brent, and S. Kelly et al., “Modelling 

utility-aggregator-customer interactions in interruptible 
load programmes using non-cooperative game theory,” 

International Journal of Electrical Power & Energy 

Systems, vol. 133, pp. 107183, Dec. 2021. 
[115]K. Imran, J. Zhang, and A. Pal et al., “Bilateral negoti-

ations for electricity market by adaptive agent-tracking 

strategy,” Electric Power Systems Research, vol. 186, 
pp. 106390, Sep. 2020. 

[116]N. Yu, L. Tesfatsion, and C. Liu, “Financial bilateral 
contract negotiation in wholesale electricity markets 

using Nash bargaining theory,” IEEE Transactions on 

Power Systems, vol. 27, no. 1, pp. 251-267, Feb. 2012. 
[117]X. Gao, W. Liu, and M. Fu et al., “Strategy decision game 

approach of the combination generation system of wind 

and thermal power participating in the direct power pur-
chase transaction of large consumer,” Electric Power 

Systems Research, vol. 200, pp. 107463, Nov. 2021. 
[118]X. Zhang, T. Bao, and T. Yu et al., “Deep transfer 

Q-learning with virtual leader-follower for sup-

ply-demand Stackelberg game of smart grid,” Energy, 
vol. 133, pp. 348-365, Aug. 2017. 

[119]Y. Shakrina and H. Margossian, “A Stackelberg 

game-inspired model of real-time economic dispatch 
with demand response,” International Transactions on 

Electrical Energy Systems, vol. 31, no. 11, pp. e13076, 
Nov. 2021. 

[120]M. Yu, S. Hong, and X. Ye, “An incentive-based de-

mand response (DR) model considering composited DR 
resources,” IEEE Transactions on Industrial Electronics, 

vol. 66, no. 2, pp. 1488-1498, Feb. 2019. 
[121]H. Kebriaei, A. Rahimi-Kian, and V. J. Majd, “An 

agent-based system for bilateral contracts of energy,” 

Expert Systems with Applications, vol. 38, no. 9, pp. 
11369-11376, Sep. 2011. 



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 2, MARCH 2024 20 

[122]H. Wang, N. Hu, and S. Jia et al., “An analysis from the 

perspective of direct power-purchase for industrial users: 

Should the power grid company implement incen-
tive-based demand response management?” IEEE Ac-

cess, vol. 9, pp. 95651-95664, May 2021. 

[123]Y. Tang, J. Ling, and C. Wu et al., “Game-theoretic 
optimization of bilateral contract transaction for gener-

ation companies and large consumers with incomplete 
information,” Entropy, vol. 19, no. 6, pp. 272, Jun. 2017. 

[124]Y. Li, “The analysis of bilateral bidding model of elec-

tricity market based on Bayesian Nash equilibrium,” in 
Proceedings of International Conference on Manufac-

turing Engineering and Intelligent Materials, Feb. 2017, 

pp. 483-487. 

[125]D. Monderer and L. S. Shapley, “Potential games,” 

Games and Economic Behavior, vol. 14, no. 1, pp. 
124-143, 1996. 

[126]L. Du, S. Grijalva, and R. G. Harley, “Game-theoretic 

formulation of power dispatch with guaranteed conver-

gence and prioritized best response,” IEEE Transactions 

on Sustainable Energy, vol. 6, no. 1, pp. 51-59, Jan. 2015. 
[127]J. R. Marden, “State based potential games,” Automatica, 

vol. 48, no. 12, pp. 3075-3088, Dec. 2012. 

[128]G. Aydin, “The modeling of coal-related CO2 emissions 
and projections into future planning,” Energy Sources, 

Part A: Recovery, Utilization, and Environmental Ef-
fects, vol. 36, no. 2, pp. 191-201, Jan. 2014. 

[129]İ. Karakurt, G. Aydin, and C. Hamzacebi, “Forecasting 

of Turkey’s coal consumption using grey prediction 
technique,” in Proceedings of 24th International Mining 

Congress and Exhibition of Turkey, 2015, pp. 78-82. 

[130]I. Karakurt and G. Aydin, “Development of regression 
models to forecast the CO2 emissions from fossil fuels in 

the BRICS and MINT countries,” Energy, vol. 263, pp. 
125650, Jan. 2023. 


