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Abstract—In this paper, a collaborative online algo-

rithm is proposed to estimate the state of charge (SOC) 

and state of health (SOH) of lead-carbon batteries that 

participate in frequency regulation of a power system 

with a high proportion of renewable energy. The algo-

rithm addresses the inaccurate estimation of energy 

storage battery states caused by continuous and alter-

nating charging and discharging over a short period. 

Analysis of lead-carbon battery chemistry and materials 

reveals that the resistance of the diaphragm is the most 

influential factor in battery aging. In addition, the hyste-

resis characteristics of an energy storage battery vary 

significantly between the charging and discharging stages. 

A second-order RC equivalent circuit model is proposed 

that considers the contact and diaphragm resistances, and 

hysteresis characteristics. Based on this, models for con-

stant current charging interaction, constant voltage 

charging interaction, and dynamic discharging interac-

tion are developed. The adaptive forgetting factor recur-

sive least square (AFF-RLS) method is used to identify the 

parameters of the interactive models. Then an interactive 

multiple model with the embedded unscented Kalman 

filter (UKF) is used to estimate the SOC of the energy 

storage battery. The membrane and contact resistances 

identified by the interactive multi-model (IMM) are used 

to estimate the SOH, and online collaborative optimiza-

tion of the SOC and SOH is achieved. The error of the 

proposed SOC estimation method is experimentally veri-

fied to be within 2%, which is less than 5% of the stand-

ard value, and the error of SOH estimation is within 0.5%, 

demonstrating the high accuracy of the proposed method. 

 

Index Terms—Battery state of charge, battery health 

status, interactive multi-model, parameter identification. 
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Ⅰ.   INTRODUCTION 

enewable energy is the basic direction for green and 

low-carbon power system transformation [1][3]. 

Renewable energy power generation based on 

large-scale wind and photovoltaic power exhibits in-

termittence and volatility. A high proportion of re-

newable energy grid connection will present significant 

challenges to the power system's power balance and 

frequency stability. Electrochemical energy storage is 

capable of regulating the frequency and voltage of the 

power system and ensuring its safe and stable operation. 

This is achieved because of its fast response, strong 

short-term power throughput, high control accuracy, 

two-way regulation, and other characteristics [4][6].  

Reference [6] comprehensively examines the state of 

charge (SOC) of the energy storage battery in the fre-

quency regulation of a power system. It introduces a 

feedback coefficient to adjust the output of the battery 

energy storage system, thereby preventing the over-

charging or over-discharging of the battery and enhanc-

ing the primary frequency regulation effect. It also in-

creases the service life of the battery to a certain extent. 

SOC and state of health (SOH) are the two most 

important battery parameters. The battery SOC is de-

fined as the ratio between the remaining power of the 

battery under a certain discharge rate and the rated ca-

pacity under the same condition, while SOH is defined 

as a parameter that represents the ability of the battery to 

meet the established performance indicators in its cur-

rent condition [7], [8]. The accurate estimation of SOC 

and SOH can enable the adoption of scientific and effi-

cient control strategies by the battery management 

system (BMS), extend battery service life, and improve 

battery utilization [9]. 

Here we offer a literature review of SOC and SOH 

estimation. References [10], [11] use the ampere-hour 

integration method and its improved version for SOC 

estimation. This method is convenient, but current er-
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rors have a significant impact on estimation accuracy 

while it depends heavily on the initial SOC (SOC0). 

Moreover, long-term estimation errors will accumulate 

large errors. In [12], [13] the open-circuit voltage 

method is used. This has a fast calculation time. How-

ever, the open-circuit voltage cannot be obtained in a 

short period of time. A neural network method is used in 

[14], [15] to estimate the SOC. Although this method 

does not require a battery physical model, massive ex-

perimental data modeling is needed. References [16], 

[17] use artificial intelligence algorithms to estimate 

SOC and SOH, and while the proposed method has 

strong universality, it also relies on massive data for 

modeling. In [18][20], the Kalman filter and its im-

proved version are used for SOC estimation, where its 

one-step prediction and one-step correction can enable 

real-time and accurate online SOC estimation. Conse-

quently, this method is currently the most commonly 

used SOC estimation method. 

The SOC and SOH estimations of batteries described 

in the above literature are mainly applicable to lithi-

um-ion batteries in electric vehicles. There is no con-

tinuous alternating process of charging and discharging 

at the second or minute level over a short time scale. 

However, when energy storage batteries play a signifi-

cant role in frequency modulation in new energy power 

systems, they must operate alternately during charging 

and discharging over such a short time scale. This will 

place greater demands on the SOC estimation of bat-

teries, rendering the above methods inapplicable. 

Given the preceding analysis, an online collaborative 

estimation algorithm for SOC and SOH of frequen-

cy-regulating lead-carbon batteries in power systems 

with a high proportion of renewable energy is proposed. 

The interactive models of constant current and voltage 

charging, and dynamic discharge are developed using 

the second-order RC equivalent circuit model, which 

considers the contact and diaphragm resistances, and 

hysteresis characteristics. The parameters of the three 

models are identified by the adaptive forgetting factor 

recursive least square (AFF-RLS) methods. Subse-

quently, the SOC is estimated by an interactive mul-

ti-model (IMM) algorithm with embedded unscented 

Kalman filter (UKF), while the battery SOH is esti-

mated using the identified battery diaphragm and con-

tact resistances. Experiments with the measured data 

verify that the errors of SOC and SOH estimated by the 

proposed method are within 2% and 0.5%, respectively, 

demonstrating the high estimation accuracy. 

Ⅱ.   ESTABLISHMENT OF LEAD-CARBON BATTERY 

MODEL 

The lead-carbon battery is considered to be a super 

battery [21], and its operating principle is shown in Fig. 1. 

The high conductivity and dispersion of lead-based 

materials in the carbon materials increase the battery’s 

power output. The carbon materials of the negative and 

positive plates form an asymmetric capacitor to provide 

double-layer capacitance, which can reduce battery 

damage caused by high rate or pulse charging and dis-

charging [22], [23]. Because of their high safety, low 

cost, and simple regeneration, lead-carbon batteries will 

become one of the main choices for large-scale energy 

storage [24]. 

 

Fig. 1.  Schematic diagram of lead-carbon battery. 

Figure 1 shows that carbon does not participate in the 

chemical reaction. Therefore, the chemical reaction 

equation is the same as that of the lead-acid battery. The 

total reaction equation is shown in (1), while as its pos-

itive and negative chemical reactions are carried out 

separately and simultaneously, the negative and positive 

reactions are shown respectively in (2) and (3). 
discharge

charge2 2 4 4 2Pb PbO 2H SO 2PbSO 2H O    (1) 

discharge

charge2 4 4Pb H SO 2e PbSO 2H          (2) 

discharge

charge2 2 4 4 2PbO H SO 2H 2e PbSO 2H O    
 

(3) 

During the discharging process of the negative elec-

trode, lead loses its electrons and is oxidized to divalent 

lead 2+(Pb ) . Subsequently, it reacts with sulfuric acid to 

form lead sulfate particles. During charging, the lead 

ions in lead sulfate particles are reduced to lead, and 

sulfuric acid is precipitated. During the discharge of the 

positive electrode, the tetravalent lead 4+(Pb )  in lead 

dioxide is reduced to divalent lead 2+(Pb ) , which then 

reacts with sulfuric acid to form lead sulfate crystal. 

During the charging process, the divalent lead in lead 

sulfate is oxidized to tetravalent lead, producing lead 

dioxide and precipitating sulfuric acid. The total reac-

tion equation reveals that the reaction of 1 mol PbO2, 

1 mol Pb, and 2 mol H2SO4 can theoretically release 2 F 

(2×26.80 Ah). However, the actual amount of electricity 

released by the lead-carbon battery does not exceed 

50%60% of the theoretical value. 

The internal resistance of lead-carbon batteries is 

composed of ohmic and polarization resistance. The 

ohmic internal resistance consists of contact and dia-
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phragm resistances. The contact resistance is mainly 

composed of metal or alloy, compound and contact 

resistances. Diaphragm resistance is mainly affected by 

the diaphragm material and thickness, electrolyte con-

centration, and battery height, and is the main factor that 

influences battery aging. During the process of an 

electrochemical reaction, the internal polarization re-

sistance can also be divided into concentration and 

activation polarization resistances. The former reflects 

the effect of the lead sulfate layer on the diffusion rate of 

hydrogen ion +(H )  and sulfate ion 2-

4(SO )  in sulfuric 

acid electrolyte relative to the electrode plate, while the 

latter reflects the effect of the lead sulfate layer on the 

active substance and sulfuric acid reaction area. 

The relationship curves between open-circuit voltage 

and SOC of a lead-carbon battery obtained after several 

charge-discharge experiments are shown in Fig. 2. 

 

Fig. 2.  Hysteresis characteristic voltage curve of lead-carbon 

battery. 

It can be seen from Fig. 2 that the discrepancy be-

tween the open-circuit voltage when charging and dis-

charging can reach 0.054 6 V under the same SOC, 

while the difference between SOC during charging and 

discharging under the same open-circuit voltage is as 

high as 15%. Therefore, the different hysteresis char-

acteristics of charging and discharging must be consid-

ered during the process of modeling and parameter 

identification of the batteries. 

Based on the above analysis, a lead-carbon battery 

equivalent circuit model is proposed as shown in Fig. 3, 

considering the contact and diaphragm resistances, and 

hysteresis characteristics. In Fig. 3, EMF represents the 

balanced electromotive force; hu  represents the hyste-

resis voltage; 
jR  represents the contact internal re-

sistance; 
dR  represents the diaphragm resistance; 

1R  

and 
1C  represent the concentration polarization re-

sistance and capacitance respectively; 
2R and 

2C  rep-

resent the activation polarization resistance and capac-

itance respectively; 
1U  and

2u represent the concentra-

tion and activation polarization voltages respectively. 

Unlike the conventional second-order model, the pro-

posed model can account for the change in the contact 

and diaphragm resistances, as well as the hysteresis 

characteristics of the lead-carbon battery. It offers a 

clear physical interpretation of resistance and accurate 

parameter identification. 

 

Fig. 3.  Improved equivalent circuit model. 

According to Kirchhoff’s law, the equivalent circuit 

model shown in Fig. 3 can be established as: 
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where 
1u  and 

2u  are the concentration and activation 

polarization voltages, respectively. 
0u  is the battery 

terminal voltage, OCV(SOC,H)u  is the open circuit voltage 

considering hysteresis characteristics and SOC values, 

i  is the working current of the battery. 

The hysteresis voltage 
hu  and balance potential EMF 

are calculated as: 

h_ c

h_ d

c d

c d

c d

Charging : ( )

Discharging : (1 )( )

(1 )

u u

u u

EMF u u

u

u





 




 
   =

-

-           (5) 

where the value of  is between 0.5 to 1; h_cu and h_du  

are the battery equilibrium terminal voltages when 

charging and discharging considering hysteresis char-

acteristics, respectively; 
cu and 

du are the battery equi-

librium terminal voltages when charging and discharg-

ing, respectively. 

The open-circuit voltage fitting is performed using 

the measured data of constant current and voltage 

charging, and then constant current discharging. The 

open-circuit voltage fitted by the conventional sec-

ond-order RC model and the charge-discharge 

open-circuit voltage considering the hysteresis charac-

teristics of the battery are shown in Fig. 4. The conven-

tional second-order RC model uses the open-circuit 

voltage as the equilibrium potential voltage. This means 

that the inflection point of the open circuit voltages at 

the end of battery charging and at the beginning of 

discharge are essentially the same, consistent with the 

equilibrium potential EMF shown in Fig. 2. 
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This paper proposes an improved second-order RC 

model that takes into account the hysteresis characteris-

tics of the battery. The inflection point voltage of the 

open-circuit voltage at the initial discharge stage is sig-

nificantly lower than that at the end of charging. This is 

consistent with the charging and discharging open-circuit 

voltage experiment considering hysteresis characteristics 

shown in Fig. 2. Therefore, the model proposed in this 

paper is more in line with the actual state of lead-carbon 

batteries than the conventional method. 

 

Fig. 4.  Comparison of open circuit voltage between traditional 

and improved second-order models. 

Ⅲ.   INTERACTION MODEL AND PARAMETER 

IDENTIFICATION 

Generally, rapid and uncontrolled charging will result 

in the electrolytic water producing a large amount of gas 

and the battery’s temperature rising rapidly. Conse-

quently, the battery’s capacity degrades rapidly, and its 

service life is also drastically reduced. The cell voltage of 

2.4 V can fluctuate suddenly in electrolytic water. The 

reaction of electrolytic water is very weak when the 

voltage is below 2.4 V, but when the voltage exceeds 

2.4 V, electrolytic water will undergo an intense reaction.  

Constant current charging is adopted when the volt-

age of a single battery is below 2.4 V. At this time, the 

weak electrolytic water capacity of the battery can be 

basically ignored. The charging reception capacity is the 

strongest and is almost equal to 100%. The generated 

resistance heat, energy loss, and polarization are not 

significant, and the corresponding SOC of the battery is 

about 70%. When the voltage reaches 2.4 V, the 

charging method changes to constant voltage charging, 

which shortens the charging time and alleviates the 

reaction of electrolytic water. When the voltage is 

higher than 2.5 V, the battery almost only conducts the 

reaction of electrolytic water. This results in the water 

loss of absorbent glass mat (AGM), and the ohmic re-

sistance of the diaphragm increases. Furthermore, the 

concentration of sulfuric acid increases, which has two 

implications: 1) It corrodes the grid; and 2) It increases 

the potential difference and causes an increase in the 

degree of self-discharge. The battery is discharged ac-

cording to the actual dynamic conditions. Based on this 

phenomenon, the models for constant current charging 

interaction, constant voltage charging interaction, and 

dynamic discharge interaction are established. 

The model parameters of the three interactive models 

established above are identified using a real-time online 

parameter identification method. This method is known 

as AFF-RLS, whose derivation formula is given as: 
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where   is the adaptive forgetting factor; l and r are the 

adjustment coefficients; 2 ( 1)e g   is the square value of 

the estimation error; g  is the input of the parameter 

identification system; 
T ( 1) gg   is the system ob-

servation value at time 1g  ; ( 1)y g   is the real feed-

back value of the system at time 1g  ; ( 1)g K  is the 

system gain;   is the measurement data; E  is the iden-

tity matrix of the same type; and ( 1)g P  is the system 

covariance matrix. 

During parameter identification, jR is the contact in-

ternal resistance that can be regarded as a fixed value. 

Using an internal resistance tester, the value of jR for 

the lead-carbon battery is measured as 1.36 mΩ. Rd is 

the diaphragm resistance, and as the battery ages, 
dR  

shows an increasing trend. When it increases to twice of 
the value of that when the battery was new, it is con-
sidered that the battery has reached its end of life. 

Ⅳ.   PROPOSED SOC AND SOH ESTIMATION 

A. Improved IMM-UKF Algorithm 

The main idea of IMM is to fuse several different 

models, with each model filtered simultaneously and the 

transfer probabilities between models determined by the 

Markov chain (MC) probability transfer matrix [25], 

[26]. The untraced Kalman filter adds the untraced 

transform (UT) to the Kalman filter (KF) in order to 

consider the nonlinearity that exists for the transfer 

problem of probability density mean and covariance. 

Thus, the untraced Kalman filter is accurate for the 

non-linear battery estimation problem [27]. 

An interactive multi-model is mainly applied to the 

localization and tracking of maneuvering targets such as 

ships and vehicles. In these applications, only state 

quantities are used as inputs, with no interaction with 

external observations. However, the SOC and SOH 

estimations should consider the voltage and current 

measurements. Therefore, to meet this requirement, an 
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enhanced IMM algorithm is proposed that simultane-

ously considers state quantities, voltage, and current 

using a UKF. Figure 5 shows its flowchart. 

 

Fig. 5.  Improved IMM-UKF algorithm flowchart. 

B. SOC Estimation Driven by Model and Measured Data 

Different voltage and current data correspond to dif-

ferent battery parameters. Different interactive models 

are also required at different charging and discharging 

stages. Therefore, it is necessary to establish a model 

and use the actual measurement data and the IMM to 

estimate the SOC of the lead-carbon battery. 

Step 1: Input interaction, i.e., initialize or reinitialize 

the model conditions, and obtain the ˆ ( | )j g gX  and 

( | )j g gP  of the three UKF filter inputs at the current 

time of the model, as: 
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where ˆ ( | )j g gX  is the mixed estimated value of model 

j at time g; ˆ ( )X i g  is the estimated value of model i at time 

g; πij is the probability of model j switching to model i; 

( | )j g gP is the covariance matrix value at time g; 

( )iju g  is the mixed probability of model j switching to 

model i at time g; i ( )u g and ( )ju g are the probability of 

model i and j at time g, respectively. 

Step 2: Unscented Kalman filtering. The battery 

voltage, current, observation equation, ˆ ( | )j g gX , and 

( | )j g gP are used as inputs for unscented Kalman fil-

tering. 

First, calculate σ point at time g as: 
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where ( | )j

p g gX  is the estimated value of the p-th point 

in model j at time g. 

The weights of expectation and variance, and the 

update of |( 1 )ˆ g gX  and ( 1| )g gP  are calculated as: 
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where W is the corresponding weights of Sigma points; 

m is the mean; c is the covariance; the superscript of W 

represents the number of sampled points;   and   are 

the selected parameters; A and B are coefficient matrices; 

and Q  is the noise variance matrix. 

The updated σ at time ( 1)g  are used to update 

( 1 )ˆ g g∣X  and ( 1 )g g∣P . The further prediction of 

the points is shown as: 
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The above predicted points are weighed to calculate 

the mean and covariance matrix as: 



SHU et al.: ONLINE COLLABORATIVE ESTIMATION TECHNOLOGY FOR SOC AND SOH OF FREQUENCY… 57 

2

( )
0

T

2

( )
0

T

ˆ( 1) ( 1| ) ( 1| )

( 1| ) ( 1| )

( 1) ( 1| ) ( 1| )

( 1| ) ( 1| )

ˆ

ˆ

ˆ

n
p

XZ c
P

p

n
p

ZZ c
P

p

g

p

p

g g g g g

g g g g

g g g g g

g g g g

W

      Z Z

W Z Z

      Z Z R






  


 


 

   
 

 
 

   
 

  
 

 

  

P X X

P

 

(12) 
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where C and D are coefficient matrices; V  is the obser-

vation noise; ( )u g  is the voltage value at time g; Z is the 

systematic observation; and R  is the observation of noise 

variance. 

The calculations of the unscented Kalman gain, state 

update, and covariance update at time ( 1)g   are: 
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Step 3: Model probability update 

The likelihood function of the thj model j  can be 

expressed as: 
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The residual j  and covariance j
S  are respectively: 
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where ( 1)H g   is the first derivative of ( 1)Z g  . 

The expression to calculate the mixed probability at 

the time ( 1)g   is given by: 
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where C is the normalization constant: 
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Step 4: Output interaction 

The model is fused with its corresponding probability 

to calculate the state estimation and covariance at the 

time ( 1)g  , as: 
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Finally, the SOC is estimated jointly with the SOH as: 

 
T

min
ˆ( 1) ( 1) 1 0 0SOC g SOH g    X     (22) 

where 
minSOH  represents the calculated value of SOH 

every 5 minutes; and ( 1)SOC g   represents the esti-

mated SOC value of interaction with SOH within a 

5-minute period. 

C. SOH Estimation Based on the Model and Measured 

Data 

The battery SOH degrades as the diaphragm re-
sistance increases. When energy storage batteries are 
used for frequency regulation, rapid charging and dis-
charging are necessary. The internal chemical reactions 
of the battery are intense, and the diaphragm resistance 
changes significantly, resulting in significant fluctua-
tions in SOH estimation. Therefore, the calculation 
period for the average diaphragm resistance in this pa-
per is 5 min, and the sampling interval is 1 s. The dia-

phragm resistance 
d1R  is identified by the constant 

current charging interaction model and its model 

probability 
1u  is denoted by 

d11
R , whereas the dia-

phragm resistance 
d2R  is identified by the constant 

voltage charging interaction model and its model 

probability 
2

u  is recorded as 
d22R . The diaphragm re-

sistance 
d3R  is identified by the dynamic discharge 

interaction model and its model probability 
3u  is rec-

orded as 
d33R . Subsequently, the diaphragm resistances 

of the three models are combined, and represented as 

nowR , as shown in (23), while its average value is de-

noted as Rave as shown in (24): 

now d1 1 d2 2 d3 3R R u R u R u                 (23) 

ave now

1

/
n

g

R R n


                         (24) 

The 
aveR calculation period is 5 min and sampling 

interval is 1 s, with 300n  . The mean values of the 

diaphragm and contact resistances in SOC estimation 

are used to estimate SOH, as: 

eol ave j

min

eol new

( )
100%

R R R
SOH

R R

 
 


          (25) 
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where 
eolR  is the internal resistance when the battery 

reaches the end of its service life; and 
newR  is the in-

ternal resistance of the new battery. 

Ⅴ.   VERIFICATION AND APPLICATION OF MEASURED 

DATA 

The measured data are used to validate and demon-

strate the accuracy of the proposed method. Then, they 

are applied to the energy storage system to carry out 

real-time online SOC and SOH collaborative estimation 

of the lead-carbon battery. 

A. Verification of actual measurement data 

1) Lead-carbon Battery SOC Estimation 

Figure 6 shows the lead-carbon battery experimental 

test platform. Its rated capacity, rated voltage, discharge 

cut-off voltage, the maximum charging current and the 

current battery SOH are 660 Ah, 2 V, 1.8 V, 600 A, and 

95%, respectively. When discharging to 1.8 V, the SOC 

is regarded as 0, whereas when charging to 2.35 V, the 

SOC is regarded as 100%.  

 

Fig. 6.  Field test process. 

The constant current discharge of the fully charged 

battery is conducted at 0.05 C or 33 A until the voltage 

is 1.95 V, and then the discharging stops. Voltage and 

current data are collected by the LANHE battery testing 

system, and the DS18B20 adhesive temperature sensor 

is used for temperature measurement. The ambient 

temperature is 25 ℃. During charging and discharging, 

the battery’s temperature will rise slightly. However, 

the temperature rise only fluctuates within 3 ℃, so a 

constant test temperature of 25 ℃ can be considered. 

The current and voltage during constant current 

charging are shown in Fig. 7(a). As seen, the current is 

constant at 66 A, while the voltage gradually increases 

from 1.8 V to 2.35 V. The voltage and current during 

constant voltage charging are shown in Fig. 7(b). The 

battery is considered to be fully charged when its volt-

age remains constant at 2.35 V and its current decreases 

gradually from 66 A to 9 A, as shown in Fig. 7(b). The 

voltage and current during constant current discharging 

are shown in Fig. 7(c). As seen, the current is constant at 

-33 A, and the voltage drops gradually from 2.35 V to 

1.95 V at the end of the discharge. 

The parameters of the established models of constant 

current charging interaction, constant voltage charging 

interaction and dynamic discharge interaction are iden-

tified based on the hysteresis characteristics, as shown 

in Figs. 8, 9, and 10, respectively. 

 
Fig. 7.  Actual measured voltage and current curve. (a) Constant 

current charging. (b) Constant voltage charging. (c) Constant 

current discharging. 

 
Fig. 8.  Parameter identification results of the constant current 

charging interaction model. 

 
Fig. 9.  Parameter identification results of the constant voltage 

charging interaction model. 
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Fig. 10.  Parameter identification results of the dynamic discharge 

interaction model. 

By comparing Figs. 8, 9, and 10, it can be seen that 

dR , 
1R , 

2R , 
1C , and 

2C  are different at each stage of 

constant current and constant voltage charging and dis-

charging. The value of 
dR  identified by the three models 

is close to within 3.484 mΩ of the actual measured bat-

tery diaphragm resistance. The battery voltage errors 

between the measured and model voltages are within 

±0.05 V, demonstrating the high accuracy of the pa-

rameter estimation of the three models. 

The three models are fused interactively using the 

interactive multi-model algorithm to calculate the SOC 

of battery fusion. The SOC and its error are shown in 

Fig. 11 after coordination with the battery health status. 

As shown, the error of using the interactive multi-model 

algorithm to estimate the SOC of battery charge and 

discharge is within 2%, compared to the error of higher 

than 2% using the ampere-hour integration method. 

 

Fig. 11.  Coordinated SOC estimation and its error. 

2) Comparative Analysis of SOC Estimation for Dif-

ferent Equivalent Circuit Models 

To verify the accuracy of SOC estimation in the 

equivalent circuit model proposed in this paper, a 

first-order and a traditional second-order RC equivalent 

circuit model are developed, and compared to the pro-

posed model. Interactive multiple-model algorithms are 

used for SOC estimation, as shown in Fig. 12. 

The SOC estimation errors of the first-order RC 

equivalent circuit model and the traditional sec-

ond-order RC equivalent circuit model exceed 4% and 

3%, respectively. In comparison, the error of SOC es-

timation using the proposed model is less than 2%, 

demonstrating higher SOC estimation accuracy when 

using the proposed model. 

 

Fig. 12.  SOC estimation results and errors of different equivalent 

circuit models. 

3) SOH Estimation of Lead-carbon Battery 

According to (23) and (24), the average value of the 

diaphragm resistance can be calculated, as shown in Fig. 

13. As seen, the average value of diaphragm resistance 

is initially 3.9 mΩ, and is then stabilized at 3.5 mΩ. 

 

Fig. 13.  Average value of diaphragm resistance. 

When the battery reaches the end of its service life, 

the internal resistance 
eolR  is 8.32 mΩ, compared to the 

internal resistance 
newR  of the new battery of 4.656 mΩ. 

According to (25), the average SOH value during the 

charging and discharging test process is 94.84%, which 

is only 0.16% lower than the actual value of 95%. Thus, 

the estimation of SOH is very precise. 

4) Applicability of SOH Estimation at Different Tem-

peratures 

To verify the applicability of the proposed SOH es-

timation algorithm at different temperatures, 

2 V/660 Ah lead-carbon batteries with a 95% SOH at 

room temperature (25 ℃) are used. Charging and dis-

charging experiments at temperatures of -20 ℃, 0 ℃, 

25 ℃, and 45℃ are performed, and the voltage, current, 

and discharge capacity are recorded. The SOH is cal-

culated based on the discharge capacity and Nameplate 

capacity as the reference value of SOH. Using the al-

gorithm presented in this paper for calculating the mean 

value of the diaphragm resistance and estimating SOH, 

the estimation error of SOH is calculated (SOH from the 

proposed algorithm subtracts the estimated SOH based 

on the discharge amount from the estimated SOH value), 

and the results are presented in Table Ⅰ. 



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 1, JANUARY 2024 60 

TABLE Ⅰ 

COMPARISON OF SOH ESTIMATION AT DIFFERENT TEMPERATURES 

Temperature (℃) 
Discharge 

capacity (Ah) 

Average value of diaphragm 

resistance (mΩ) 

Reference value for 

SOH (%) 

Estimated value of 

SOH (%) 

Estimation error of 

SOH (%) 

-20 333 5.276 50.45 45.96 -4.49 

0 584 3.798 88.48 86.23 -2.18 

25 627 3.485 95.00 94.84 -0.16 

45 635 3.396 96.21 97.27 1.06 

At temperatures of -20 ℃, 0 ℃, 25 ℃, and 45 ℃, the 

average membrane resistances estimated using the 

proposed algorithm are 5.276 mΩ, 3.798 mΩ, 

3.485 mΩ, and 3.396 mΩ, respectively. The SOH are 

estimated to be 45.96%, 86.30%, 94.84%, and 97.27%, 

respectively. The discharged electricity at the four 

temperatures is 333 Ah, 584 Ah, 627 Ah, and 635 Ah, 

respectively. According to the discharge and Nameplate 

capacities, the SOH is 50.45%, 88.48%, 95%, and 

96.21%, respectively. The estimation errors of the 

proposed algorithm are -4.49%, -2.18%, -0.16%, and 

1.06%, respectively. The algorithm proposed here has 

small estimation errors and is still applicable at different 

temperatures. 

B. Application 

A high-proportion new energy power system model 

is built in the RTLAB environment for the application 

of this method, as shown in Fig. 14. The main compo-

nents of the real-time simulation platform are the mul-

ti-core CPU, multi-FPGA expansion, and development 

host. Among them, the CPU is the main calculation unit 

for the large-scale new energy model and the IEEE 

9-node model, and is also responsible for CAN, serial, 

TCP/IP, and IEC61850 communications, and other 

different communication implementations. FPGA is 

high-speed, and is responsible for some high-precision 

model calculations, high-speed IO, and optical fiber 

communication management. The CPU and FPGA use a 

high-speed PCIe bus for real-time communication. 

 

Fig. 14.  Establishment of RTLAB real-time simulation envi-

ronment. 

 

A high-proportion new energy power system topol-

ogy is shown in Fig. 15. The total capacity of the wind 

turbines is 200 MW, with a rated voltage of 690 V. The 

system is connected to the power grid through a trans-

former that boosts the voltage to 35 kV. The energy 

storage configuration is equipped with a lead-carbon 

battery of 20 MW/40 MWh, with a rated voltage of 

690 V, and is also connected to the 35 kV power grid 

through a step-up transformer. The total capacity of the 

hydro turbine generator units is 400 MW, with rated 

voltage of 6.3 kV and step-up transformers connecting 

to the 35 kV power grid.  

The energy storage configuration adopts a 

2 V/660 Ah lead-carbon battery with a rated power of 

660 W. A pack is comprised of 23 individual batteries, 

and 15 packs are connected in series to form a battery 

cluster. The voltage of the battery cluster is 690 V, with 

a total of 88 clusters. Each of the 22 clusters is boosted 

to 1500 V through a DC/DC converter and the 22 clus-

ters are connected in parallel to a 5 MW PCS to form an 

independent energy storage unit. Each energy storage 

unit is connected to the power grid through a 1 kV/5 kV 

transformer, and four energy storage units form a 

20 MW/40 MWh energy storage system. When simu-

lating system frequency modulation, the voltage, cur-

rent, and temperature of each battery can be measured. 

 

Fig. 15.  High proportion new energy system topology. 

The model consists of wind power, energy storage, 

and water turbine units, with detailed parameters shown 

in Table Ⅱ. 

A continuous load disturbance with an amplitude per 

unit value of 0.025 is added to the model. The SOC0 and 

the simulation duration are set to 60% and 25 min, re-

spectively. In the condition of a continuous load dis-

turbance, constant current charging is used when the 



SHU et al.: ONLINE COLLABORATIVE ESTIMATION TECHNOLOGY FOR SOC AND SOH OF FREQUENCY… 61 

battery voltage is less than 2.35 V. Otherwise, constant 

voltage charging is used. During discharge, dynamic 

discharge is performed based on the actual demand for 

discharge. The voltage and current curves of the energy 

storage battery are shown in Figs. 16 and 17, respec-

tively. 

TABLE Ⅱ 

MODEL PARAMETERS 

 Parameter value 

hydro turbine 

rated voltage (kV) 6.3 

rated capacity (MW) 18.75 

rated power (MW) 15 

Total quantity (unit) 27 

wind turbine 

rated voltage (V) 690 

rated power (MW) 3 

Total quantity (unit) 67 

Energy storage 

Single battery voltage (V) 2 

Single battery capacity (Ah) 660 

Pack rated voltage (V) 690 

Pack rated power (kW) 227.7 

Battery cluster 88 

Energy storage unit 4 

PCS power (MW) 5 

 

Fig. 16.  Voltage curve of energy storage battery. 

 

Fig. 17.  Current curve of the energy storage battery. 

In Fig. 16, it can be seen that the battery voltage rises 

gradually at first, and after reaching 2.35 V, it turns to 

constant voltage. The enlarged graph reveals that the 

voltage remains constant during the constant voltage 

charging phase when the battery is in the charging state, 

but fluctuates dynamically during discharge.  

The error between the battery voltage and model 

identification voltage is depicted in Fig. 18. As seen, the 

voltage error fluctuates within ±0.05 V. The error is 

small, which indicates that the model is accurate. The 

SOC of the energy storage battery is estimated using the 

method proposed in this paper, and the corresponding 

results are shown in Fig. 19. As seen, the proposed 

method can adapt effectively to the SOC estimation of 

the battery during frequency regulation. 

The parameters of the three interactive models are 

identified independently. Table Ⅲ shows the calculated 

average values of the diaphragm resistance 
aveR  with a 

5-min sampling period according to (23) and (24), and 

the calculated SOH according to (25). 

As is seen from Table III, the average values of the 

diaphragm resistance 
aveR  for five cycles are 3.397 mΩ, 

3.428 mΩ, 3.522 mΩ, 3.53 mΩ, and 3.533 mΩ, respec-

tively. The contact internal resistance is 1.36 mΩ, and 

the SOH of the energy storage batteries calculated using 

(25) are 97.24%, 96.4%, 93.83%, 93.61%, and 93.53%, 

respectively. The average value of the diaphragm re-

sistance during the entire process is 3.482 mΩ, and the 

estimated average SOH of the energy storage battery is 

94.92%, which is only 0.08% different from the actual 

value of 95%, demonstrating high SOH estimation ac-

curacy. 

 

Fig. 18.  Error diagram of battery voltage and model identifica-

tion voltage. 

 

Fig. 19.  SOC estimation of energy storage battery. 

TABLE Ⅲ 

AVER  AND SOH DURING FREQUENCY REGULATIONS 

aveR calculation cycle aveR (mΩ) SOH (%) 

1 3.397 97.24 

2 3.428 96.40 

3 3.522 93.83 

4 3.530 93.61 

5 3.533 93.53 

Average value 3.482 94.92 
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Ⅵ.   CONCLUSION 

This paper proposes an online collaborative algo-

rithm for estimating the SOC and SOH of lead-carbon 

batteries for frequency regulation in a power system 

with a high proportion of renewable energy. This algo-

rithm mitigates the inaccuracies in the SOC and SOH 

estimations of energy storage batteries caused by con-

stant charging and discharging on short time scales 

when the storage batteries participated in frequency 

regulation. The following conclusions can be drawn 

from the theoretical analysis, experimental data, and 

simulation results: 

1) The composition materials of the resistance of 

lead-carbon batteries used for energy storage are dif-

ferent, and so are the time and magnitude of the changes 

in resistance values for different materials. Classifying 

the resistance values of batteries as contact and dia-

phragm resistances can clarify the physical meaning of 

the identified resistance values and provide a theoretical 

foundation for SOH estimation. Multiple experimental 

tests demonstrate that there are hysteresis characteristics 

during the charging and discharging process of 

lead-carbon batteries. Based on this, an equivalent cir-

cuit model of lead-carbon batteries is proposed that 

considers the contact and diaphragm resistances, and 

hysteresis characteristics. 

2) The interactive multi-model algorithm with em-

bedded unscented Kalman filter is used to perform SOC 

co-estimation on the established interactive models of 

constant current and voltage charging, and dynamic 

discharging. This algorithm is more suitable for esti-

mating the SOC and SOH when energy storage 

lead-carbon batteries are charged and discharged alter-

nately over short time scales. It is determined that the 

SOC estimation error is within 2% of that obtained 

using the measured data. This is less than the allowable 

standard error of 5%. 

3) The interaction model is used to determine the 

diaphragm resistance which is multiplied by its model 

probability to obtain the mean for SOH estimation. 

Using the mean can reduce abnormal data errors. By 

validating the small estimation error of SOH through 

measured data at different temperatures, it demonstrates 

that the algorithm is applicable at different temperatures 

and is more in line with the actual application situation 

of energy storage batteries than other methods. 

4) The estimation accuracy of the algorithm and its 

robustness are verified using the validation and appli-

cation of the measured data. 
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