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Robust State Estimation for an Electricity-Gas- 

Heat Integrated Energy System Considering 

Dynamic Characteristics 

Jianshu Yu, Dechang Yang, Jinye Cao, Payman Dehghanian, and Nikita Tomin 

Abstract—The data for an energy management system 

(EMS) in an integrated energy system (IES) is obtained 

through state estimation. This is then the basis for optimal 

scheduling, protection and control. At present, the dy-

namic models of gas and heat networks are rarely consid-

ered in such state estimation, and the method lacks ro-

bustness. This paper develops dynamic state estimation 

models for gas and heat networks, and proposes a unified 

method for the electricity-gas-heat network, one which 

takes into account robustness while ensuring accuracy. 

First, the state transition equations in matrix form are 

formulated according to finite difference models consid-

ering the dynamic characteristics of the gas and heat net-

works. Then, combined with a quasi-steady state model of 

the electric power system, a unified state estimation 

method and multi-time-scale measurement strategy in the 

Kalman filter framework are proposed. In addition, the 

prediction accuracies of the electric power and gas systems 

are improved through adaptive adjustment. The kernel 

density estimation method is used to adjust the measure-

ment weights and filter out bad data to ensure robust state 

estimation. Finally, simulation results show that the pro-

posed method not only can improve the estimation accu-

racy by improving prediction accuracy, but also is robust 

to various types of bad data. 

 

Index Terms—Integrated energy system, electrici-

ty-gas-heat system, dynamic state estimation, robust state 

estimation, Kalman filter, nonparametric estimation. 

NOMENCLATURE 

A. Indices 

e  electrical power system 
g  gas system 

h  heat system 
t  time index 
i j、  node number of pipeline  
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F   front of pipeline 

E  end of pipeline 

(.)k  the set of pipelines whose front node is k  

(.)k  the set of pipelines whose end node is k  

x  location of the differential pipeline 

B. General Parameters and Variables 

A  cross-sectional area (m2) 

d   inner diameter (m) 

l  pipe length (m) 

P  gas pressure (Pa) 

  friction coefficient 

c  sound speed (m/s) 

M  mass flow rate (kg/s) 
  gas flow velocity (m/s) 

R   gas constant 

C. Heat System 

inm  
mass flow rate within a pipe coming into 

the node (kg/s) 

outm  
mass flow rate within a pipe leaving into 

the node (kg/s) 

qm   mass flow rate into the load (kg/s) 

h  heat power 

pC  specific heat capacity of water 

sT  supply temperature (℃) 

oT  outlet temperature (℃) 

inT  
water temperature within a pipe coming 

into the node (℃) 

outT  
water temperature within a pipe leaving 

into the node (℃) 

Z   measurement 

X  state variable 

L  load 

tL  typical daily load 

D. Gas System 

g  natural gas density (kg/m3) 

  average gas flow velocity (m/s) 

  
gas density at the horizontal plane and at 

the plane with the inclination   
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z  gas compressibility factor 

w  water density 

gT  ambient temperature 

k  heat transfer coefficient 

E. Coupling Element 

CHP combine heat and power 

CHP  heat power of CHP 

CHPP  electrical power of CHP 

inF  consumption of natural gas 

e  electricity and gas conversion factor 

Ⅰ.   INTRODUCTION 

he fossil energy crisis and environmental pollution 

have accelerated the changes in energy structure, 

and key technologies related to energy coupling have 

been developed rapidly [1][2]. Consequently, how to 

improve energy utilization efficiency and promote the 

deep coupling among different energy sources has be-

come an urgent problem [3]. To address the problem, 

the concept of the energy Internet has aroused wide-

spread interest in researchers [4][5]. In the energy 

Internet, in addition to electricity, natural gas and 

heat/cold energy also play vital roles in energy supply. 

Therefore, an integrated energy system (IES) coupled 

with multi-energy flow is one of the main areas of re-

search in the energy Internet. Compared with traditional 

single-type energy supply, IES-based multi-energy flow 

has higher conversion efficiency. However, because of 

the deep integration of energy and information flows, 

there exist many uncertainties in the system. Thus, the 

traditional energy management system (EMS) cannot 

meet the needs of an IES, and it is necessary to upgrade 

for multi-energy flow [6]. State estimation, as the per-

ception part of the EMS, provides data for the energy 

flow calculation, protection and control, and optimiza-

tion of the system [7][8]. Therefore, it is significant to 

study state estimation methods for IES.  

At present, research on state estimation based on 

multi-energy flow model mainly consists of two aspects: 

static state estimation based on the steady-state model, 

and dynamic state estimation considering the dynamic 

characteristics of the gas and heat networks. 

For static state estimation, a combined electricity-heat 

state estimation model is proposed in [9]. This increases 

measurement redundancy through coupling constraints. 

Compared with only a single energy flow network, it 

shows a better estimation result. On the basis of [9], the 

electricity-gas network is proposed for the energy Inter-

net in [10]. The study shows that the electric-gas cou-

pling is weak, which cannot improve the redundancy of 

measurement, though it is helpful for bad data identifi-

cation at the boundary. The above two models use the 

traditional weighted least squares (WLS) method, which 

belongs to non-convex optimization and has difficulty in 

choosing the initial value. Combining the above gas and 

heat networks, a distributed state estimation algorithm 

based on the alternating direction multiplier method 

(ADMM) is proposed for three types of energy networks 

[11]. Here there is transformation of the problem, using 

the bilinear method, into a three-stage problem to avoid 

non-convex optimization. The bilinear method has also 

been applied to state estimation based on the weighted 

least absolute value (WLAV) method with an electrici-

ty-gas network in [12], electricity-heat network in [13], 

[14], and electricity-gas-heat network in [15]. The 

method adds robustness to the estimation results. 

There are still two problems in static state estimation. 

The first is that when the load changes, only the 

steady-state results can be calculated through the mul-

ti-energy flow calculation, while the dynamic process at 

each moment cannot be reflected. However, the states of 

the gas and heat networks change slowly, while the load 

has changed before they reach a steady state. Thus, they 

are in a dynamic state most of the time, and the measured 

data cannot be used in the steady-state model. Second, 

there are significantly different dynamic processes 

among different energy flows, i.e., the state response in 

the power system is the fastest, followed by the natural 

gas system, while the heating system is the slowest. 

Compared with the state estimation for multi-energy 

networks at the same measurement frequency, the design 

for multi-time scale measurement is reasonable. There-

fore, it is more meaningful to study the dynamic models 

that conform to their operating characteristics. 

For integrated modeling of the electricity-gas-heat 

network, the time to steady-state is usually from a few 

minutes to a day, and the dynamic characteristics in an 

electric power system are much faster than those in the 

gas and heating systems. These last two can be regarded 

as quasi-steady state. The gas and heat networks need to 

consider the dynamic process [16], and the system state 

is calculated by the dynamic equation. At present, re-

search on dynamic models is mainly on the following: 

1) Finite difference model. The dynamic process of 

the gas and heat networks is usually described by a set 

of partial differential equations, which are solved by the 

finite difference method. In [17], the Euler difference 

scheme is used to solve the partial differential equations 

of natural gas, and then a robust scheduling model for 

the electricity-gas network is established. The more 

accurate Wendroff difference scheme is introduced in 

[18], [19], and a real-time optimal operation strategy of 

the electricity-gas combined system is proposed. The 

electricity-gas combined system proposed in [18], [19] 

is used in IES state estimation by [20], and an electric-

ity-gas coupling network state estimation under the 

Kalman filtering framework is proposed. A distributed 

real-time state estimation method for electricity-heat 

systems is proposed in [21], where the Wendroff dif-

T 
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ference scheme is used to solve the partial differential 

equations of the heat network, and finally, a cubature 

Kalman filter (CKF) is used to calculate the system state. 

In [22], considering the various resistances in trans-

mission, a more refined model for electric-heat energy 

flow calculation is proposed. 

2) Pipeline storage model. Since gas can be com-

pressed, the pipeline in the gas network is regarded as an 

energy storage element [23]. Transmission delay is 

considered in the heat network, and the water in the 

pipeline can be regarded as stored heat energy [24]. In 

[25], a time-delay model of the heat network is applied 

to the state estimation for a combined heat and power 

system, and a hybrid method with a two-stage iterative 

algorithm is proposed. This has good performance even 

when the measurement number is limited. Although the 

model is easy to understand and is widely used for op-

timal scheduling of electricity-gas and electricity-heat 

combined systems, the relationship between the state 

variables in the model is not clear, and the state transi-

tion equation is not easy to derive.  

3) Energy circuit theory. In [26], [27] and [28], [29], 

the pipelines in gas and heat networks are respectively 

compared with the components in the electricity net-

work, and the 'gas circuit' and 'heating circuit' are pro-

posed and analyzed from the perspective of the elec-

trical circuit. Finally, a unified energy circuit model is 

established by the complex frequency domain. The 

perfect unification in the mathematical form helps us to 

study other physical models with the theory of the 

electric power system. This simplifies the model and 

makes the characteristics of different energy networks 

more intuitive. However, the essentially different en-

ergy properties between gas, heat, and electricity net-

works make it impossible to establish a completely 

unified model without any assumptions, and the ap-

proximate modeling may lead to loss of accuracy.  

Research on the dynamic state estimation for IES is 

mostly based on the analysis of two kinds of energy 

networks, and there is limited unified modeling for the 

three kinds of energy networks. There is no unified 

solution framework for the system coupled with those 

three networks. At present, the dynamic model or qua-

si-steady-state model of a power system is usually 

converted into a time series model [16]. A priori esti-

mation is performed through the state transition equa-

tion, while on the basis of the prior estimation results, an 

a posteriori estimation is then performed considering 

the measurement. The commonly used algorithm is the 

Kalman filter and its improved algorithm. Among the 

above three models, the finite difference model is the 

most suitable for existing power system state estimation 

methods, through which the mathematical relationship 

of the system state in time and space can be clearly 

described. Therefore, based on the finite difference 

model, this paper deduces the state transition equations 

of the heat and gas networks in the form of a matrix, so 

that the existing electric power system state estimation 

methods can be directly applied to the thermal and 

natural gas systems. In addition, a unified solution 

framework for IES state estimation is established. 

The deep coupling of multiple energy systems will 

increase the influence of bad data, while the IES dy-

namic state estimation based on the Kalman filter is not 

sufficiently robust. If the bad data identification link 

based on the largest normalized residual is added, it is 

necessary to continuously remove the bad data and 

re-estimate. This will lead to low computational effi-

ciency. For static IES state estimation, there have been 

many studies on robustness [12][15], but they cannot 

be applied to Kalman filtering.  

In view of the above problems, combined with the ex-

isting dynamic models and state estimation methods, this 

paper proposes a robust state estimation method for elec-

tricity-gas-heat networks. The main contributions are: 

1) The dynamic characteristics of the electricity, gas, 

and heat networks are analyzed, and the state transition 

equations in matrix form are established by the finite 

difference method. A unified state estimation method is 

proposed. 

2) The prediction steps for the electricity and gas 

networks are improved, and the prediction accuracy is 

improved through their adaptive adjustment. 

3) From the speed of dynamic characteristics in dif-

ferent networks, a multi-time scale measurement strat-

egy is proposed, and the influence of different meas-

urement time scales on the state estimation is discussed 

and analyzed. 

4) Non-parametric estimation is carried out through 

the kernel density method to adjust the measurement 

weight adaptively so that the state estimation still has 

robustness without bad data identification. 

II.   IES MODEL CONSIDERING DYNAMIC 

CHARACTERISTICS 

The modeling of an IES includes the electric, natural 

gas, and heating systems. Since the electricity network 

is regarded as a quasi-steady state, the dynamic process 

is ignored. The AC steady-state mode is usually used to 

describe the electricity network in an IES [30], and no 

detailed description is provided here. 

A. Dynamic Energy Flow of Gas Network 

1) Dynamic Equations of Gas Pipeline 

Ignoring the temperature change, the gas flow in the 

pipeline is usually described by the following three equa-

tions [18]: the momentum equation in (1), the materi-

al-balance equation in (2), and the state equation in (3). 
2 2

g g

g g

( ) ( )
( )sin 0

2

p
g

t x x d


     
   

  
     

  
 (1) 
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 =0
t x

  


 
 (2) 

 
2/ zp RT c    (3) 

The momentum and material relationships in natural 

gas are described by (1) and (2), respectively. Assuming 

both temperature T  and gas compressibility factor z  

are constant, 2zRT=c  is used to simplify the description 

of the relationship between pressure and density in (3). 

Equations (1) and (2) are very complex and difficult 

to solve directly by the finite difference method. Refer-

ring to [18], they can be appropriately simplified under 

the following assumptions: 

1) The altitude does not change along the pipes, and 

then 0  . 

2) Neglect the second term (convection term) in (1), 

which is meaningful only when the gas velocity is close 

to the speed of sound, while the pipeline velocity is 

generally 2040 m/s. 

3) The quadratic term 2  in (1) is represented by the 

average flow rate. 

4) The flow of natural gas in the pipeline is expressed 

by mass flow rate M  (kg/s), while M  is calculated by: 

 M A  (4) 

Under the above assumptions, the momentum equa-

tion (1) and material-balance equation (2) are trans-

formed to: 

 
2 0

2

M
c M

A t x dA

  
  

 
 (5) 

 0
M

t A x

 
 

 
 (6) 

2) Linearization of Dynamic Equations in Gas Network 

The Lax-Wendroff finite difference method is used to 

solve partial differential equations, as: 

 

1 1

1 1

1 1

1 1

1

2

1

2

t t t t

i i i i

t t t t

i i i i

X X X XX

t t t

X X X XX

x x x

 

 

 

 

   
   

    


  
      

             (7) 

The differential pipeline is shown by Fig. 1. Equation 

(7) is replaced by (5) and (6), and written as a matrix 

form [20]: 
1

1

4 4 3 5 3 5

1

1 1 2 2

1

4 4 3 5 3 5

1 1 2 2

+ +
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t

i
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j
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i
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j

t

i

tij ij ij ij ij ij
j

tij ij
i

t

j

M

M

M

M
















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 
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  

 
 
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        (8) 
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t
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t

x

tc t
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 


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


 


A A A
A A

A A
A

                 (9) 

A pipeline can be regarded as several pipelines con-

nected in series after finite difference, and the length is 

the difference space step x , as shown in Fig. 1. There 

are 4 state variables for each pipeline, i.e., 
iM  and jM  

are the mass flow rates at the front and end of the pipe-

line, respectively; while 
i  and j  represent the re-

spective gas densities at the front and end of the pipeline. 

 

Fig. 1.  Pipeline in the gas network after finite difference. 

3) Boundary Conditions 

It can be seen from (8) that the state transition matrix 

with full rank cannot be established according to the 

linearized dynamic equation, and the boundary 

conditions need to be added to make the solution of the 

state transition equations unique. The boundary 

conditions are shown in Fig. 2 and given as: 

 
source

t

ip p                             (10) 

 ( +1)( +1)

t t

F i j Eijp p                        (11) 

 ( +1)( +1)

t t

F i j EijM M                      (12) 

 
,load

(.) (.)

t t t

Fki Ejk k

i k j k

M M M
 

  -            (13) 

 

Fig. 2.  Boundary conditions for nodes and pipes. 

The pressure of the gas source node is constant, and 

the mass flow rate satisfies the dynamic equation. This 

is used to balance the load change, so (10) needs to be 

satisfied. The nodes used to connect the differential 

pipelines are fictitious, and the values of pressure and 
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mass flow rates at those nodes are unique, so they need 

to satisfy (11) and (12). At the real nodes, the pressure 

value is considered to be unique, while the mass flow 

rate is divided into the flow before confluence (at the 

end of the pipe) and the flow after confluence (at the 

front of the pipe), and need to satisfy the flow balance 

equation (13). 

Finally, combining (8)(13), the state transition 

equations in matrix form can be established by: 

 

T T

1 21

3

T

12 12 12 12

0

, , , ,

t t

g g g

t t t t t

g F E F EM M 

   
    
  

   

J J
X X C

J

X

           (14) 

where 
1J  and 

2J  are the coefficient matrices of the 

equations in (8); while 
3J  and gC  are the coefficient 

matrix and constant vector of the equations respectively 

constructed by (10)(13).  

B. Dynamic Energy Flow of Heat Network 

A quantity control method is used to regulate the power 

of the heat network. In this approach, the primary means 

of meeting power demand is by adjusting the water flow 

rate through heat exchangers, while keeping the supply 

water temperature and return water temperature constant. 

The heat network model usually consists of a thermal 

model and a hydraulic model. The hydraulic model is 

used to describe the distribution of flow, and the thermal 

model is used to describe the flow of power. The mass 

flow rate can reach a steady state within a few seconds, 

but the transfer of heat energy may be delayed for tens 

of minutes. Therefore, only the temperature in the heat 

network is estimated, and the change of water velocity 

is regarded as a quasi-steady state. 

1) Hydraulic Model 

The flow continuity equation needs to be satisfied in 

the hydraulic model, i.e., the total flow into the node 

equals the total flow out of the node plus the flow into 

the load, i.e.: 

 
in out qm m m                       (15) 

2) Node Thermal Power Model 

The thermal power of the heat source and load node is 

expressed by: 

 h p q s o( )C m T T                         (16) 

3) Node Temperature Mixture Model 

After the water is mixed at the node, the temperature 

will change. According to the law of conservation of 

energy, the power flowing into the node equals the 

power flowing out of the node, i.e. 

 out out in in( )m T m T                    (17) 

4) Dynamic Heat Transfer Model in the Pipeline 
The heat of the heat network is transferred through 

the flow of water. There is heat loss in the process, so 

the temperature will change. The dynamic characteris-

tics can be described by the partial differential equation, 

as: 

 
w p p g( )

t t

tx x

x

T T
C A mC k T T

t x


 
  

 
           (18) 

When it reaches a steady state, the partial differential 

of temperature with respect to time is negligible, and 

thus (18) degenerates into a steady-state expression, as: 

 p

end start g g( )

kL

C m
T T T e T



                     (19) 

To solve (18), a first-order Taylor expansion is used 

to express t

xT : 

 

t t t

x x x x

t t t t

x x x

T T T

x x

T T T

t t





 


 

 


 

                        (20) 

Substituting (20) into (18), the state transition equa-

tion for temperature is solved by: 
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p

p p

g

p p

+t t t

x t x x xT AT BT C
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A

C A x mC t k t x

C A x
B

C A x mC t k t x

kT t x
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C A x mC t k t x











 




     




     

 


     

             (21) 

Compared with the gas network, the state variable of the 

heat network is only temperature, and the dynamic 

characteristics are simpler. The differential pipelines are 

shown in Fig. 3. In the heat network, only the temperatures 

at the fictitious nodes or real nodes are considered as state 

variables, and the front or end of the pipeline is not 

distinguished. 

 

Fig. 3.  Pipeline in the heat network after finite difference. 

5) Boundary Conditions 

The temperature constraint at the inlet of each real 

pipeline should be considered. The pipes connecting the 

heat source need to meet (22), while the pipes 

connecting other pipes need to meet (23). 

 0, sourcetT T                          (22)  



PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, VOL. 9, NO. 1, JANUARY 2024 70 

 
 in in in

out, in
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t

m T m
T T

m m

 
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 
 




 
     (23) 

The source temperature is constant, so the first pipe 

needs to satisfy (22). For other pipes, the water flowing 

into the pipe is mixed water, and (23) can be obtained 

from (17). 

Considering the constraints (22) and rewriting (21), 

the state transition equation in matrix form of the first 

pipeline can be represented by: 

 
0 0 0 0 0

0
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T
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t t
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J

J J

      (25) 

where 
sC  is the source temperature. 

The state transition matrices of all pipelines need to 

be combined to create the state equations for all varia-

bles. First, equations (26) and (27) are built according to 

(24) and (25). 
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        (27) 

In , 0,1, ,
iC i nJ , s 0C   for nodes not connected 

to the source. 

Equation (23) reflects the connection between dif-

ferent real pipelines and can be written into the state 

transition matrix only when the state equations of all 

pipelines are combined. Therefore, the coefficients in 

(23) can be written into AJ   to obtain AJ , and the final 

state transition matrix can be expressed by: 

 
1t t

A h B h C

  J X J X J                  (28) 

In the state transition equation, the mass flow rate is 

an unknown variable. Since it is regarded as a qua-

si-steady state in the heat network, the steady-state 

value is used as an approximation to simplify the cal-

culation. According to (15)(17), (19) and the node 

loads, the nonlinear equations for the steady-state model 

can be established and then solved by the New-

ton-Raphson method. For the specific solution process, 

please refer to [31]. 

C. Coupling Element Model 

In this paper, the combined heat and power (CHP) 

unit including the micro-combustion turbine and the 

electric boiler are used as the main coupling 

components. The energy relation is expressed by: 

 CHP

CHP

mc
P


                           (29) 

 CHP

in

e

P
F


                         (30)  

There are two operating modes in CHP, i.e., 

following the thermal load (FTL), and following the 

electric load (FEL). Only the FTL mode is considered in 

this paper, so the CHP unit is used as the balance node of 

the heat network, and the electrical power output in 

CHP varies with thermal power output. 

III.   IES STATE ESTIMATION BASED ON KALMAN 

FILTER 

A. Measurement and State Variables in IES 
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The state variables in the electric power system are 

voltage amplitude and phase angle, and the 

measurements include voltage amplitude, phase angle, 

node power, and branch power. The state variables and 

measurements in the gas network are the pressures at the 

real nodes and the mass flow rates at the front and end of 

the pipeline. The state variables and measurements in the 

heat network are the supply and return temperatures of 

the nodes. The return and supply pipelines are 

symmetrical, so the calculation method of the return 

water temperature is the same as that of the supply water. 

B. Measurement Equation and State Transition Equation 

The relationship between measurements and state 

variables in the electric power system is non-linear, and 
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the equations cannot be solved directly by the Kalman 

filter. Thus, it needs first to be linearized. Based on the 

method of extended Kalman filtering, there are: 

 ( )

t t t t

e e e e

t

t e

e t

e

Z H X R

H X
H

X

 






                        (32) 

where ( )t

eH X  is a nonlinear measurement function, 

and only the first-order Taylor expansion is performed 

while high-order terms are ignored. t

eR  is the 

measurement noise. 

In the gas and heat networks, the measurements are 

the same as the state variables, and the state transition 

equations are expressed by: 
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                         (33) 

A quasi-steady state model is used in the electric 

power system, and Holt’s linear exponential smoothing 

method is usually used to establish the state transition 

equation, as: 
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where 
1t t

x
∣  represents the predicted value of the state 

variable at time t to time t-1; and 1| 1
ˆ

t tX    is the 

estimated value at time t-1;   and   are smoothing 

coefficients in the range of [0,1]. 
The gas and heat networks have been linearized by 

finite difference, and the state transition equations in 

matrix form are constructed in (14) and (28). These can 

be solved directly by the Kalman filter algorithm. 

C. State Estimation by Kalman Filter 

1) Prediction Step 

The state prediction value can be calculated by the 

state transition equation (35), and the covariance matrix 

before the measurement update can be calculated by (36). 
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where Q  is the process noise, which is assumed to 

follow a Gaussian distribution. 

2) Correction to the Prediction Step 
By Holt’s method, the current value is calculated by a 

weighted average of the most recent past values, with 

weights decreasing over time. System states in the 

short-term can be quickly predicted by this method, but 

when large disturbances in the load occur, the accuracy 

will be significantly affected. This problem can be 

improved by limiting the weights of the predicted 

values, as [32]: 
2new new

1 2

new

ˆ ˆ( ) ( )exp( ( ) ( ) )

1
( , )

( )

t t t t

t

W j W j x j x j

Q j j
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
     (37) 

It can be seen from (37) that when the states at 

adjacent moments are not much different, it means that 

the load change is not large at this moment, and 
2

-1 2
ˆ ˆexp( ( ) ( ) )t tx j x j   is close to 1, so that the process 

noise is almost unchanged. When the difference between 

them is large, it means that the load change is also large, 

and the reliability of Holt’s method becomes lower, so 

the process noise also increases. 

For the gas and heat networks, the state transition 

equations are derived from physical models, so the 

prediction accuracy is high. However, when the load 

fluctuates, the state variables in the gas network will 

oscillate and attenuate. The amplitude increases as the 

difference time step increases, and the accuracy of the 

prediction decreases. Therefore, the prediction accuracy 

is improved by reducing the change rate of the predicted 

value, as: 

 
2

1 -1 1 1 1 1ˆ ˆ ˆ ˆ ˆ+( )exp( )t t t t t t

g g g g g gX X X X X X          (38) 

As seen from (38), when the predicted value at this 

moment is not much different from the estimated value 

at the previous moment, the predicted value will hardly 

change. Conversely, if it fluctuates greatly, the second 

term in (38) will reduce its change step size.   is an 

adjustable parameter with a small value to prevent 

failure of the predicted value. 

Because the heat network model is relatively simple, 

the prediction accuracy is high, and larger fluctuations 

rarely occur, so it is not necessary to modify the pre-

diction step. 

3) Update Step 

The Kalman gains of the three networks can be cal-

culated by: 

 

1 T
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P H
K

HP H R
                      (39) 

where H is the measurement matrix. The measurement 

matrix of the electric power system has been linearized 

by (32), and the measurement matrices of the gas and 

heat networks are the identity matrices: 
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1ˆ ˆ ˆ( ( ))t t   X X K Z H X                (40) 

The measurement function of the electric power 

system in (40) does not need to be linearized, so the 

predicted values are directly substituted. Finally, the 

state estimation at time t is completed once the updated 

covariance matrix is calculated by: 

  1 1t t  P I KH P                     (41) 

4) Multi-time Scale Measurement Strategy 

Because of the great differences in physical properties 

and system scale of each subsystem, they have 

significantly different dynamic characteristics, as shown 

in Fig. 4. 

 

Fig. 4.  The dynamic process of energy networks with different 

physical properties. 

The dynamic response speed of the electricity, gas 

and heat networks decreases in turn. The state variables 

in a network with a fast response speed are difficult to 

predict, while a faster measurement frequency is 

required to ensure prediction accuracy. Therefore, a 

multi-time scale measurement strategy is proposed in 

this paper, as shown in Fig.5. 

 

Fig. 5.  Multi-time scale measurement strategy. 

Assuming that the sampling times of the electricity, 

gas and heat networks are 1 min, 2 min and 4 min 

respectively, then the electricity and gas networks can 

be synchronized every 2 min, and the three 

electricity-gas-heat networks can be synchronized every 

4 min. The method not only satisfies the different 

dynamic characteristics of each sub-network but also 

ensures the coupling constraints between each network. 

Through the measurement strategy, different dynamic 

characteristics of each sub-network are satisfied, and the 

coupling constraints between each network are ensured. 

IV.   ROBUST STATE ESTIMATION FOR IES BASED ON 

NONPARAMETRIC ESTIMATION 

A. Proposition of Kernel Density Estimation Method 

In the previous descriptions, a unified state estimation 

model in the Kalman filter framework is established by 

linearizing the measurement function and the state 

transition equation. However, the state estimation 

method is not robust to bad data. Identifying bad data by 

maximizing normalized residuals may lead to the 

elimination of valid data, and requires re-estimation, 

which is inefficient. The measurement is used in the 

update step of the Kalman filter, so if the measurement 

can be directly judged (i.e., whether it is bad data or not) 

based on the result of the prediction step, the efficiency 

can be greatly improved. The most direct way is to set a 

threshold for s, with ( )ks Z H x   being the 

difference of the measured values and predicted values. 

If the value is too large, it considers that it is bad data. 

Even if there is an error in the predicted value, it has a 

high probability of appearing near the true value. 

However, bad data may occur in the measurement 

because of data transmission, measurement equipment 

failure, etc. When the difference between the 

measurement and the prediction is large, it is more 

likely that the measurement has bad data. However, the 

accuracy of the predicted value is not stable, and it is 

related to the change rate of the system state. When the 

state of the system changes rapidly, the prediction 

accuracy will also decrease. Therefore, it is not feasible 

to simply set a threshold which does not consider the 

prediction accuracy. In addition, only removing bad 

data by threshold will make the estimated results not 

smooth and lack stability because it may lead to 

misjudgment as the measurement redundancy is 

reduced. 

In view of the above problems, to ensure the 

smoothness of the state estimation results and eliminate 

the influence of bad data, the measurement data are 

processed as follows: 

1) Instead of removing bad data directly by threshold 

setting, the influence of bad data is weakened by 

changing the weight of measurement, which can prevent 

effective measurements from being rejected.  

2) The weight of measurement is determined by (s)p , 

which is the probability density of s. Replacing the 

absolute value with the probability density of s is to 

eliminate the effect of prediction error. If the prediction 

accuracy is low for a certain period of time, it will lead 
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to large deviation values with large probability density. 

The explicit expression of the probability distribution 

function cannot be directly calculated, but with the help 

of nonparametric estimation methods, it can be obtained 

from historical samples, avoiding the need to solve the 

probability distribution function. In nonparametric 

estimation, the kernel density estimation is a commonly 

used method. 

Kernel density estimation (KDE), also known as 

Parzen window technique, is a nonparametric 

estimation method. It does not need to solve the 

parameters of the probability density function, but uses 

a superposition of a set of standard functions to 

represent the function. 

The samples 1,is i n,  in the d-dimensional space 

obey some unknown distribution. Given the kernel 

function ( )K s , the probability density of variable s  

can be obtained from the samples, shown as: 
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where h  is the window radius of the kernel function. 

This is set manually. The kernel function needs to ensure 

that the value of is s
K

h

 
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 

 decreases as the distance 

between the estimated point s and the sample 
is  increases. 

1
dnh

 is used to ensure that the integration of ( )p s is 1, 

making it a valid probability density function. 

The Gaussian kernel is used as the kernel function, 

as: 
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B. Application of Kernel Density Estimation in IES 

Robust State Estimation 

1) Kernel Density Estimation for Measurement Weights 

With the help of kernel density estimation, the 

probability density on the measurement is calculated. 

The weights of the measurement data are adaptively 

adjusted to make the state estimation robust. Equation 

(38) can be rewritten as: 

 1ˆ ( ( ))t tX X K W Z H X                 (44) 

The weight value does not need to be a legal 

probability density function, so the weight can be 

represented by: 
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Kernel density estimation is calculated based on 

historical samples, and the selection of samples is 

directly related to the validity of the calculation results. 

The most important factor affecting the prediction 

accuracy is the change rate of the system state. This is 

positively related to the load change rate. The load 

change is related to time and has a certain regularity and 

periodicity. Therefore, the historical data of the current 

time period can be used as samples for estimation. 

2) Data Generation Based on Monte Carlo Method 

Considering that the load may vary periodically with 

the season, based on a typical day of a season, mi-

nute-level data are generated by interpolation, and 

90-day load data are generated by: 
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where 
tL  and L represent the typical day load and the 

randomly generated load, respectively.   is the standard 

deviation of the initial value.   is an adjustable 

parameter, and the larger the value, the greater the 

randomness of the load. 

Equation (46) ensures the randomness of the initial 

value, and the data generated by (47) can ensure that the 

generated load not only has the variation characteristics 

of a typical daily load, but also can increase the load 

fluctuation by adjusting  . Finally, the generated loads 

are simulated and a historical database about s  is 

established. 

3) Data Sampling 

To ensure calculation efficiency, not all samples are 

considered in each calculation, and N1 days can be 

randomly selected from the historical database. 

Considering that the load change rate is different in each 

time period, the accuracy of state prediction will also be 

affected. Therefore, N2 samples are sampled within one 

hour before and after the current estimated time. Finally, 

a total of N1×N2 samples are obtained for each 

measurement value. 

C. Calculation Process 

The calculation process is shown in Fig. 6 and is 

described below. First, the estimated system in the 

current time is determined according to the multi-time 

scale measurement strategy, and then the relevant 

parameters in the state transition matrix are updated and 

the state variables are predicted. Subsequently, the 

prediction values of the electricity and gas networks are 

corrected by (40) and (41). Finally, the historical data 

are sampled and the measurement weights are 

determined according to the kernel density estimation, 

and the predicted values are updated by (44). 
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Fig. 6.  Robust state estimation calculation process for IES. 

Ⅴ.   CASE STUDY 

A. Case Description 

The case study of an electricity-gas-heat IES is 

shown in Fig. 7. As seen, there are 7 load nodes and 3 

generators in the electricity network. G1 is a gas turbine 

with a conversion efficiency of 1.8 (MW·s/kg), and G2 

is the power grid, which is regarded as the slack node of 

the electric power system. The working mode of CHP is 

FTL and the output ratio of heat and electricity is 1.3. In 

the heat network, H8 is the heat source, which is 

supplied by CHP, and the source temperature is set to 

100 °C. The other nodes are load nodes, the outlet water 

temperature is 50 °C, and the ambient temperature is set 

to 10 °C. There are 4 load nodes and one gas source in 

the natural gas network. The pressure of the gas source 

is set to 
73 10 Pa. G2 and G5 provide natural gas for 

the gas turbine and CHP, respectively. 

 
Fig. 7.  Electricity-gas-heat coupling network topology. 

The hourly load demands of electricity, heat, and 

natural gas in a day are shown in Fig. 8, and the load 

data at any time can be obtained by (46) and (47). 

 
Fig. 8.  Daily load demand of IES. 

The load adjustment periods of the gas network and 

heat network are set to 10 min and 20 min respectively, 

while the sampling periods of the electricity network, gas 

network and heat network are 1 min, 2 min and 4 min 

respectively. 

According to the load of the day, the flows in the gas 

and heat networks are shown in Figs. 9 and 10, respec-

tively. 

 
Fig. 9.  Gas density distribution in one of the pipelines in the 

natural gas network. 

 
Fig. 10.  Temperature distribution of one of the pipelines in the 

heat network. 
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B. Feasibility Analysis 

To test the estimation accuracy, 
H M/SS , i.e., the ratio 

of the estimated error statistics 
HS  to the measurement 

error statistics 
MS , is used to evaluate the filtering effect, 

and the lower the value, the better the filtering. 
MS  and 

HS  are given as: 
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where T  is the number of Monte Carlo simulations; n  

is the sampling times in a day; m  is the number of 

measured values; 
truex  is the true value of the state 

variable; x̂  is the estimated value; and 
i  is the 

standard deviation of superimposed noise. 
Because of the random nature of a single experiment, 

100 Monte Carlo simulation experiments are carried out, 

i.e., 100.T   The multi-energy flow calculation result 

is regarded as the true value, and is added to a random 

variable with a Gaussian distribution. This is then used 

as the measurement of the IES. 

When calculating the true value of multi-energy flow, 

to ensure accuracy, the difference step size of the gas and 

heat networks is set to 1 s. When state estimation is per-

formed, the difference step size in the Kalman filter pre-

diction step should be consistent with the sampling pe-

riod, so the differential steps of the gas and heat networks 

are 120 s and 240 s, respectively. The energy flow results 

with different differential steps for the heat and gas net-

works are shown in Figs. 11 and 12, respectively. 

It can be seen from Figs. 11 and 12 that, after adjusting 

the difference step sizes, the calculation results are not 

exactly the same as those before adjustment, but the 

change trend of state variables can still be tracked. 

Comparing the prediction results of the two networks, 

the prediction accuracy of the heat network is 

significantly higher than that of the gas network. This is 

because the model of the heat network is relatively 

simple, the mass flow rate in the same pipeline is equal 

everywhere, and its dynamic process is ignored. For the 

gas network, the mass flow rate and pressure in the 

pipeline are not equal everywhere but change all the time. 

Moreover, the state variables in the gas network show 

periodic oscillation and attenuation. This is because 

when the load is disturbed, not only the new load balance 

equations but also the dynamic equations must be 

satisfied, resulting in the persistence of gas inflation and 

deflation until the gas in the pipeline reaches a steady 

state. The pipelines in a gas network can be regarded as 

energy storage elements, similar to capacitors in electric 

power system. Therefore, the dynamic characteristics in 

the natural gas system are much more complicated than 

those in the thermal system. 

 

Fig. 11.  Calculation results of energy flow with different dif-

ferential steps in the heat network. 

 

Fig. 12.  Calculation results of energy flow with different dif-

ferential steps in the gas network. (a) The density of node G2. (b) 

The mass flow rate of MF2. 

To visually display the filtering effect in each net-

work, the simulation results of some estimated values 

are shown in Figs. 1315. 

From Figs. 1315, the following observations can be 

made: 

1) In the electricity network, the voltage amplitude and 

phase angle change periodically. This is caused by the 

coupling of the electricity-gas-heat network. The load of 

the gas network is adjusted every 10 min, resulting in a 
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sudden change in the output of G1 every 10 min, while the 

load adjustment of the heat network will change the heat 

output of the CHP, thus changing the electric output.  

 

 
Fig. 13.  State estimation results of node E4 in the electricity network. 
(a) Amplitude of node E4. (b) Angle of node E4. 

 

 
Fig. 14.  State estimation results of node G3 and pipeline 2 in the gas 

network. (a) The mass flow rate of ME2. (b) The density of node G3. 

 
Fig. 15.  State estimation results of node H3 in the heat network. 

2) In the gas pipeline network, since the power and 

gas systems are unidirectionally coupled, the gas system 

acts as a constant output power source for the power 

system. Therefore, although the state variable of the gas 

network shows periodicity, it is only related to the load 

adjustments of the heat and natural gas networks.  

3) Since the equivalent physical model of the heat 

network is simple, only the temperature needs to be 

estimated. It is not affected by the load changes of the 

electricity and gas networks, so the prediction is 

accurate and the filtered curve is smooth.  

4) The natural gas and heat networks are represented 

by dynamic models, so even if their states change dra-

matically, the changing trends can still be tracked by the 

predicted steps, and after filtering the update steps, 

better estimation results can be obtained. In contrast, the 

electricity network has a quasi-steady state model. In 

the condition of a gentle load change, only the 

short-term state can be predicted by Holt's method in the 

prediction step, while the long-term change of the state 

cannot be tracked by the prediction alone. However, the 

measurement redundancy of the electricity network is 

much larger than those of the other networks, and good 

filtering results can also be corrected by measurement. 

The quantitative indicators of the filtering results are 

shown in Table Ⅰ. In Method 1, only the Kalman filter is 

used for state estimation, whereas in Method 2, the 

predicted values of the electricity and gas networks are 

adaptively adjusted according to (40) and (41). In 

method 3, based on method 2, adaptive robust weights 

are added according to (44) and (45). 

TABLE I 

FILTERING RESULTS WITHOUT BAD DATA 

Network 
/H MS S  

Method 1 Method 2 Method 3 

Electricity 

network 
0.2667 0.2319 0.2404 

Gas network 0.3094 0.2856 0.2866 

Heat network 0.1732  0.1733 

As shown in Table I, after the prediction is adaptively 

adjusted, the filtering accuracies in the power and gas 

networks have been improved, which shows that the 

method proposed in this paper is effective. The prediction 
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accuracy of the heat network is sufficiently high, and the 

filtering accuracy cannot be improved by adaptive 

adjustment, so Method 2 is not considered. For the gas 

and heat networks, there is almost no accuracy loss 

through the robust state estimation method (Method 3) 

without bad data, indicating that the proposed method is 

general for the gas and heat networks. Because of the 

large number of measurements in the electric power 

system and the strong nonlinear relationship with the 

state variables, the measurements with small errors may 

be misadjusted by the method in this paper, resulting in 

a decrease in the estimation accuracy. However, it is 

worthwhile to make the whole system robust by slightly 

reducing the filtering accuracy, as discussed below. 

C. Feasibility Analysis 

To ensure calculation efficiency, only a small number 

of samples are selected from the historical database as 

the kernel density estimation samples of the adaptive 

weights. It is assumed that 10 days are randomly se-

lected from the historical 90 days, and a total of 10 

samples are randomly selected from the time window of 

1 hour before and after the current time, so 100 samples 

are required to calculate each measurement weight. 

Since measurements and samples are independent, 

weights for different measurements can be calculated 

simultaneously. 

Only one bad data is set at the same time, and the 

calculation results are shown in Table II. 

TABLE Ⅱ 

SETTING A SINGLE BAD DATA AT DIFFERENT TIME 

Network 
Bad data 

location 

True 

value 
Measurement 

Estimated 

value 

Electricity 

network 

Branch active 

power (E1-E2) 
1.9593 4.6829 1.9566 

Branch reac-

tive power 

(E1-E2) 

1.8296 7.6426 1.8296 

Node active 

power (E3) 
-2.0815 3.46 -2.0811 

Node reactive 

power (E3) 
-0.58 1.2 -0.5807 

Node voltage 

amplitude (E4) 
0.9922 1.7828 0.9926 

Gas  

network 

Gas density (G3) 259.4407 210.1457 259.4425 

Mass flow rate 

( 1EM ) 
28.4818 12.2241 28.4856 

Heat 

network 

Supply tem-

perature (H3) 
99.8683 49.7911 99.8680 

Return tem-

perature (H3) 
49.7911 99.8683 49.7902 

It can be seen from Table  Ⅱ that a single bad data has 

almost no effect on the state estimation accuracy. The 

weight of the bad data is set to be close to zero so that it 

can be eliminated without using the bad data 

identification link. The determination of whether the 

measurement is bad data is done according to the weight 

value. 

For multiple related bad data at the same time, the 

calculation results are shown in Table Ⅲ. As seen, the 

estimation accuracy of the electricity network decreases 

when there are multiple related bad data at the same 

time. At this time, most of the measurements related to 

the node fail, but rough results can still be obtained by 

the forecasting-aided method, while the state estimation 

at the next moment will not be greatly affected. For the 

other two networks, because of the higher accuracy of 

the predicted values, the estimation accuracies are still 

high even if there are multiple correlated bad data at the 

same time. The above results show that the method 

proposed in this paper can overcome the influence of 

multiple types of bad data in each sub-network, and has 

good filtering results for normal measurement data. 

TABLE Ⅲ 

SETTING MULTIPLE RELATED BAD DATA AT THE SAME TIME 

Network 
Bad data 

location 

Time 

(min) 

True 

value 

Measur-e

ment 

Estimated 

value 

Electricity 

network 

Branch 

active 

power 

(E5-E6) 

550 

-5.4879 0 -5.5297 

Branch 

reactive 

power 

(E5-E6) 

0.2655 -2.0365 0.2466 

Node 

active 

power 

(E5) 

-5.0988 0.56 -5.1158 

Node 

reactive 

power 

(E5) 

-0.56 -5.0988 -0.5927 

Node 

voltage 

amplitude 

(E5) 

1.0068 0.6972 1.0062 

Gas 

network 

Gas den-

sity (G3) 

720 

259.2913 276.4562 259.2904 

Mass flow 
rate 

(
1EM ) 

29.7026 15.0264 29.8075 

Heat 

network 

Supply 

tempera-

ture (H5) 
800 

99.7195 49.8805 99.7321 

Return 

tempera-

ture (H3) 

99.8680 49.7964 99.8681 

D. Influence of Different Measurement Periods on Es-

timation Accuracy 

Without changing the adjustment time of the heat and 

gas networks, the measurement period is changed and 

its influence on the estimation accuracy is analyzed. The 

electric power system is in the quasi-steady state model, 

and changing the measurement period means that the 

time scale of the quasi-steady state changes. The final 

estimation results are shown in Table Ⅳ. 
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TABLE Ⅳ 

SETTING MULTIPLE RELATED BAD DATA AT THE SAME TIME 

Network 
Measurement period 

10 s 30 s 1 min 2 min 4 min 10 min 

Electricity 

network 
0.1404 0.1888 0.2180 0.2754 0.3474 0.5817 

Gas network 0.2264 0.2499 0.2624 0.2851 0.3560 0.5497 

Heat network 0.0975 0.1001 0.1104 0.1243 0.1726 0.4004 

In the electricity network, the estimation accuracy 

increases with the shortening of the measurement period. 

This is because the change of state variables is small 

after the shortening of the measurement period, and 

there is rarely a large load fluctuation in a short period, 

so that the accuracy of the prediction step becomes 

higher, leading to high estimation accuracy.  

For the gas network, the estimation accuracy is not 

significantly improved by reducing the measurement 

period from 2 min to 10 s. However, the estimation 

accuracy is decreased significantly by increasing the 

measurement period to 10 min. It shows that the 

prediction accuracy does not change much within these 

time scales (10120 s). To reduce the calculation cost, it 

is reasonable to set the measurement period to 2 min. 

Moreover, a very long measurement period makes it 

difficult to capture the state dynamics, resulting in 

insufficient estimation accuracy. 

Compared with the gas network, the dynamic char-

acteristics of the heat network are slower and the model 

is simpler. A longer measurement period can be selected  

for a condition of sufficient accuracy, but the meas-

urement period cannot be too long, for similar reasons 

to those for the gas network. When the measurement 

period is small, the uncertainty of the initial value 

makes the estimation accuracy of the heat network lim-

ited. Thus, reducing the measurement period cannot 

significantly improve the calculation accuracy, but will 

greatly increase the calculation cost. In the simulation 

calculation, the influence of uncertain factors such as 

the environment cannot be considered, the actual upper 

limit of accuracy will be lower, and it is uneconomical 

to set a shorter measurement period. Therefore, it is 

necessary to develop a multi-time-scale measurement 

strategy for the electricity-gas-heat coupled network. 

Ⅵ.   CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this paper, based on a quasi-steady state model of 

the electric power system, dynamic models of the gas 

network and the heating system, combined with the 

Kalman filter framework and the kernel density 

estimation algorithm, a robust state estimation with 

multiple-time scale measurement for the 

electricity-gas-heat coupled network is proposed. The 

analysis shows that: 

1) The dynamic models of the gas and heat networks 

based on the finite difference method provide accurate 

prediction values for the prediction step of state 

estimation. Reducing the measurement period can 

improve the accuracy of state prediction, but it will also 

increase the computational cost. Therefore, the 

measurement period should be adjusted according to the 

size of the system and the need for state estimation 

accuracy. 

2) The adaptive measurement weight makes the IES 

state estimation robust, and different types of bad data 

can be identified through the method. It fits perfectly 

with the forecasting-aided state estimation used in this 

paper. Even if all measurements fail, rough results can 

still be obtained through state prediction. This reduces 

the impact of bad data on the current time section on 

future estimates. 

B. Future Work 

1) In terms of an IES model, the natural gas and heat 

networks are simplified in this paper, so more refined 

models can be considered in future work. 

2) In terms of state estimation methods, the boundary 

conditions of the IES are not fully considered, so that 

some constraints cannot be fully satisfied, such as zero 

injection node constraints. Therefore, special treatment 

of boundary conditions and constraints should be 

considered in future work. 

3) Although the coupling between the three networks 

is weak, intermittent disturbances still occur because of 

their different dynamic characteristics, especially the 

impact of load disturbances in the heat and gas networks 

on the electricity network. Therefore, in future work, the 

disturbance effect of the heat and the gas networks can 

be considered in the state prediction of the electricity 

network, and a deeper coupling relationship of the 

electricity-gas-heat network can be established. 
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