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Abstract—During the construction of an offshore wind 

farm (OWF), the capital cost of the collector cable system 

accounts for a large proportion of the total cost. Conse-

quently, the optimal design of the collector system topol-

ogy (CST) is one of the most crucial tasks in OWF plan-

ning. However, for a large-scale OWF, the optimal design 

of CST is a complex integer programming problem with 

high-dimension variables and various constraints. 

Therefore, it is difficult to acquire a high-quality optimal 

design scheme. To address this issue, this paper proposes 

a new grouping-based optimal design of CST for a 

large-scale OWF. First, all the wind turbines are divided 

into multiple groups according to their geographical lo-

cations and the maximum allowed connected wind tur-

bines by each cable. This not only reduces the optimiza-

tion dimension and difficulty, but also effectively satisfies 

the ‘no cross’ constraint by putting the geographically 

closed wind turbines into the same group. Secondly, the 

electrical topology among different wind turbines in each 

group is initially generated by an improved dynamic 

minimum spanning tree (DMST). The division groups of 

the OWF are then adjusted to further reduce the capital 

cost by improved simulated annealing. To verify the 

proposed technique, comparison case studies are carried 

out with five algorithms on two different OWF. 

 

Index Terms—Offshore wind farm, collector system 

topology, grouping-based optimal design, meta-heuristic 

algorithm, graph theory. 

NOMENCLATURE 

A. Abbreviations 

OWF offshore wind farm 

CST collector system topology 

DMST dynamic minimum spanning tree 

WT wind turbine 
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MST minimum spanning tree 

GA genetic algorithm 

FCM fuzzy C-means 

PSO particle swarm optimization 

IA immune algorithm 

BPSO binary particle swarm optimization 

APSO adaptive particle swarm optimization 

TSP travelling salesman problem 

ACO ant colony optimization 

ISA improved simulated annealing 

EENS expected energy not supplied 

MGA modified genetic algorithm 

BIP binary integer programming 

B. Variables 

f  total capital cost 

pC  purchase cost of the submarine cables 

sC  cost of shipping and installing the submarine 

cables 

fC  failure opportunity cost of CST 

fN
 

number of feeders connected to the substation 

in
 

number of segments in the ith feeder 

j

iL
 

length of the jth segment in the ith feeder 

j

iC
 

cost coefficient of the jth segment in the ith 

feeder 

rwK
 

reliability weight of CST 

eE
 

total expected energy not supplied of the OWF 


 

efficiency coefficient 

d
 

wind speed 

dV
 

wind speed distribution with d wind speed 

vP
 

output of the WT 

vF  wind speed frequency 

OWFP
 

installed capacity of the OWF 

aE
 

value of hours for the OWF out of operation 

N
 

number of WTs 

Lq
 

failure rate of submarine cables 

q
 failure rate of WTs 
maxn

 
lower bounds of the number of WTs in each 

feeder 
minn  

upper bounds of the number of WTs in each 

feeder 
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tP  rated power of the substation 

WTP  rated power of each WT 

CS  maximum transmission capacity of the 

submarine cable 

U  rated voltage of the collector system 
max

iI  
maximum current carrying capacity of the 

submarine cables in the ith feeder 
cos  power factor 

,i jS  capacity sum of downstream connected WTs 

behind the jth segment in the ith feeder 
max

,i jS  
maximum transmission capacity of the 

submarine cable for the jth segment in the ith 

feeder 

iP , 
iQ , 

iM , and 

iN  

location coordinates of the connected points 

of submarine cable 

“” cross product 
“·” dot product 

min

,i jV  minimum voltage magnitudes in each node 

of feeder 
max

,i jV  maximum voltage magnitudes in each node 

of feeder 

,i jV  voltage magnitude of the jth node in the ith 

feeder 

G  total number of WTs dividing groups 
kX  

rank of WTs with each WT as starting point 
k

lX  
grouping result 

i

k

nF  
capital cost of grouping result 

DMSTF  computation operation of capital cost by the 

DMST method 

inW  
wind turbines of feeder 

1

k

tf   
fitness value of the solution in the (i+1)th 

iteration 

IDMSTf
 

computation operation of the capital cost by 

the improved DMST method 
m

lZ
 

whether the lth vector in L and the mth 

vector in tx  violating the no cross constraint 

1tf 
 

deviation of energy state between the (t+1) 

state and current best state 
T control parameter of SA in the tth iteration 
r
 

length of the Markov chain 
rand

 
a random number 

SAK
 

attenuation parameters of annealing operation 

Ⅰ.   INTRODUCTION 

n the past decade, wind energy has attracted ever in-

creasing attention and become a hot topic in industry 

and academia [1]. Despite the impact of COVID-19 from 

2020 to 2022, the global wind industry showed a clear 

sign of great resilience and a rising trend of installed 

capacity, with 94 GW added in 2021 [2]. From 2020 to 

2021, global offshore wind energy deployment experi-

enced a record time, with 11 879 MW of new projects 

commissioned, increasing from 5519 MW to 17 398 MW. 

In the meantime, China commissioned 13 790 MW more 

than the entire world had contributed up to this time [3], 

[4]. Based on this development trend, offshore wind 

energy will be one of the main energy sources in the 

future [5], [6]. 

To reduce the construction cost of an offshore wind 

farm (OWF), many studies have been dedicated to the 

optimal internal electrical and submarine cable connec-

tion system [7]. The capital cost of electrical infra-

structure accounts for 15%-30% of the total initial cost 

of an OWF [8]. Thus, the application of optimization 

techniques for electrical infrastructure at the planning 

stage can bring obvious economic benefits [9]. Partic-

ularly, the collector system topology (CST) is the key 

part of the electrical infrastructure in an OWF. In gen-

eral, the CST of an OWF is one of two types, i.e., radial 

or ring, as shown in Table Ⅰ. Based on these two types, 

many optimization methods have been proposed for 

optimal design of a CST. These, are summarized below: 

A. Optimization Methods for Radial Topology 

Radial topology is a more economical topology than 

the ring since it requires shorter cable length for the 

wind turbine (WT) connections without any loops. For 

this design, the most popular methods are designed 

based on the minimum spanning tree (MST), genetic 

algorithm (GA), fuzzy C-means (FCM), K-means 

clustering, and particle swarm optimization (PSO). To 

further explore the advantages of these techniques, 

many methods were proposed with through the com-

binations of them, such as GA & MST, MST & FCM, 

and K-means clustering & MST. These, which can be 

divided into the following three categories, as follows: 

1) Graph Theory Based Methods 
These methods can directly generate the topology 

based on graph theory. The most frequently-used 

methods include MST and the dynamic minimum 

spanning tree (DMST). For the design of CST, MST can 

effectively reduce the required length of connected 

cables. However, it easily deviates from the minimiza-

tion of capital cost because of the cost difference be-

tween different cables. To solve this problem, the 

DMST is proposed by further taking the cost weights of 

different cables into account [10]. Both MST and 

DMST can rapidly generate a feasible design solution 

for CST, but easily lead to high capital cost for a 

large-scale OWF without combination with other global 

optimization methods. 

2) Meta-heuristic Optimization Methods 

These methods can be flexibly applied to the optimal 

design of a CST because of their high independence on 

the optimization mathematical model. In [11][13], 

three variations of GA are proposed for the optimal 

design of a CST. Although they can easily address the 

I 
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high-dimension optimization of a CST for a large-scale 

OWF, they can also easily be trapped into a premature 

convergence and violate the cross constraint [12]. For 

example, an improved GA is proposed in [13] for the 

specific case of CST by converting the optimization as a 

classical multiple traveling salesman problem, but it 

cannot satisfy the cross constraint [13] for a large-scale 

OWF. In [14], a binary GA is employed to determine 

the optimal group division for all WTs, and the con-

nected topology of each group can be rapidly generated 

from MST. Similar to the MST in [14], DMST is also 

combined with a GA [15] to improve the optimum 

quality of the CST, so the capital cost can be further 

reduced. The optimization performance of the GA can 

be improved via a proper operation combined with other 

meta-heuristic algorithms, e.g., the combination be-

tween the cross-operators of the GA and the vaccine 

extraction immune algorithm (IA) [16]. As another 

classical meta-heuristic optimization method, different 

variations of PSO [17][19] are also proposed for the 

optimal design of CST due to its obvious advantages of 

global search and parallel calculation. In [18], the case 

studies show that the PSO (BPSO) can acquire a lower 

capital cost within the shorter convergence time than the 

non-dominated sorting genetic algorithm-Ⅲ. In [19], an 

adaptive PSO (APSO) with MST is proposed to en-

hance the optimization ability for the optimal design of 

a CST. Based on the high similarity between travelling 

salesman problem (TSP) and the optimal design of a 

CST, the ant colony optimization (ACO) [20] is adopted 

to handle the optimal design of the CST with various 

constraints. To further improve optimization efficiency, 

MST is also combined with ACO [21] to achieve an 

effective reduction of optimization dimension. 

TABLE Ⅰ 

OVERALL SUMMARY OF EXISTING OPTIMIZATION ALGORITHMS FOR THE RADIAL AND RING TOPOLOGIES 

Topology Algorithm 
Number of 

WTs 
Stability Complexity 

Computa-

tion Cost 

Optimization 

dimension 

Solution 

quality 

Radial 

topology 

DMST [10] 80 High Low Low Low Low 

GA [11] 280 Low Low Low Medium Low 

GA [12] 60 Low Low Low Low Low 

GA [13] 36, 64, 100, 280 Medium Low Low Medium Low 

GA & MST [14] 80 Medium Medium Low Medium Medium 

GA & DMST [15] 60 Medium Medium Medium Medium Medium 

GA & IA [16] 50 Medium Medium High Medium High 

IPSO [17] 80 Low Low Low Low Low 

BPSO [18] 
78, 75, 73, 75, 

70, 70, 80 
Medium Low Low Low Low 

APSO & MST [19] 80 Medium Medium Medium Low Low 

ACO [20] 30 Low Low Low Low Low 

ACO & MST [21] 25 Low Low Low Low Low 

FCM [22] 626 High Low Low High Low 

DMST & FCM [23] 100 High Low Low Medium Low 

FCM & BIP & MST [24] 40 Medium High Medium High Medium 

FCM&GA&DMST [25] 112 Medium High High High High 

Clark and wright saving algo-
rithm & MST & FCM [26] 

96, 102 Medium High High High Medium 

K-means clustering & MST [27] 66 Medium Low Low Low Low 

K-means clustering & MST & 
firefly algorithm [28] 

40 Medium High Medium High Medium 

K-clustering & MST & local 

search method [29] 
20 High High High High High 

Ring 

topology 

ACO [20] 30 Low Low Low Low Low 

Clark and wright saving algo-
rithm & MST & FCM [26] 

96, 102 Medium High High High Medium 

FCM & GA [30] 259 Medium Medium Medium High Medium 

Clark and wright saving algo-

rithm & PSO [31] 
40 Low High High Medium Medium 

Clark and wright saving algo-

rithm & GA & FCM [32] 
160 High High High High High 

3) Clustering Based Methods 

For a large-scale OWF, the clustering based methods 

can dramatically simplify the optimization dimension by 

dividing the large numbers of WTs into several groups. 

So far, the most frequently-used clustering methods are 

the FCM and K-means clustering. In [22], a low com-

plexity method based on FCM is proposed to directly 

acquire a feasible design solution, but the obtained cap-

ital cost is relatively high. To further reduce the capital 

cost, different optimization techniques including DMST 

[23], binary integer programming [24], DMST and GA 

[25], the Clark and Wright saving algorithm [26], have 

been combined with FCM. Similarly, the K-means 

clustering is often not used alone for optimal design of 

CST. In [27], the K-means clustering is used to group 

the WTs, and then MST can directly generate the to-

pology for each group. Based on the optimization 

framework of K-means clustering and MST, the firefly 
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algorithm [28] and the local search method [29] are 

designed to further improve the topology quality and 

reduce the capital cost of CST. 

B. Optimization Methods for Ring Topology 

Compared with the radial topology, the ring topology 

is a more reliable topology with loop connections from 

WTs to substations. However, the design complexity of 

the ring topology is higher, as is the capital cost. ACO 

[20] and improved FCM [26] can be applied to both the 

radial topology and ring topology. In [30], the ring to-

pology is decomposed into a substation layer, a WT layer, 

and a submarine cable layer, then the FCM and GA are 

combined to solve this hierarchical optimization of CST 

[30]. In [31], the optimal location of each substation can 

be obtained by PSO, and the optimal connections be-

tween different WTs are acquired by a two-phase Clark 

and wright saving algorithm. In order to improve the 

solution quality, the Clark and wright saving algorithm is 

combined with FCM and GA to enhance the ability of 

clustering and searching, respectively [32]. 

In summary, the ring topology based on fixed layout 

can provide higher operational reliability for CST, but it 

leads to higher capital cost [33]. Generally, the power 

system of an OWF contains dozens or hundreds of WTs 

[34]. However, the failure probability of a buried under-

sea cable is quite low, and is about 0.015 occ/(km·year). 

Consequently, the radial topology with a lower capital 

cost has become a popular way for CST in OWF. As the 

existing studies show in Table Ⅰ, it is difficult to acquire 

high-quality design solutions of a CST for large-scale 

OWF by only using a single method. Although, the 

graph theory-based methods can rapidly generate fea-

sible design solutions for a CST, they can easily result in 

high capital cost, especially for a large-scale OWF with 

large numbers of WTs. In addition, while the me-

ta-heuristic optimization methods have excellent char-

acteristic on the global exploration and model-free op-

timization, they are difficult to handle the CST design 

with multiple constraints and high-dimension variables. 

Finally, although the clustering based methods can 

dramatically reduce optimization dimension and diffi-

culty by dividing the large numbers of WTs into several 

groups, it is hard to generate high-quality design solu-

tions due to its weak ability of global exploration. 

Hence, the combination of these methods is more suit-

able for the optimal design of CST through effectively 

integrating their advantage. Consequently, this paper 

proposes a new hybrid method based on graph theory, 

the meta-heuristic optimization, and a grouping-based 

method. Compared with the existing studies, the main 

novelties of this work can be summarized as: 

1) The proposed grouping strategy can fully consider 

the maximum cable transmission capacity, the installed 

capacity of each WT, and the locations of WTs with the 

substation as the coordinate origin. As a result, it can 

effectively avoid violating the cable transmission ca-

pacity and no cross constraints in advance, thus an ef-

ficient optimization can be implemented without these 

strong constraints based on the grouping results. 

2) An improved DMST is proposed to rapidly gen-

erate the electrical topology among different WTs in 

each group, while the division groups will be adjusted 

by an improved simulated annealing (ISA). Hence, a 

global coordinated design and a deep local exploitation 

can be achieved for CST, which can effectively improve 

optimization efficiency and optimum quality. 

The rest of the paper is organized as follows. Section 

Ⅱ provides the optimization mathematical model of the 

CST. In Section Ⅲ, the algorithm principle and design 

process are introduced in detail. Section Ⅳ gives the 

case studies and results discussions, and conclusions are 

presented in Section Ⅴ. 

Ⅱ.   MATHEMATICAL MODEL OF COLLECTOR SYSTEM 

TOPOLOGY DESIGN 

A. Objective Function 

In this paper, the objective function of CST design is 

the minimization of capital cost, consisting of includes 

the purchase, shipping and installation cost of subma-

rine cables, and is given as [13]: 

p s fminf C C C                        (1) 

where f  is the total capital cost; pC  is the purchase 

cost of the submarine cables; 
sC  is the cost of shipping 

and installing the submarine cables, which is set to be 
proportional with the length of the undersea cables; and 

fC  represents the failure opportunity cost of CST. 

Note that the purchase cost pC  is simultaneously 

determined by the type and length of the undersea ca-

bles. In general, the type of undersea cables can be se-

lected according to the transmission capacity require-

ment of the connected WTs. In an OWF, the total pur-

chase cost can be calculated as [15]: 
f

p f

1 1

, 0,1,2, , ; 0,1,2, ,
inN

j j

i i i

i j

C L C i N j n
 

       (2) 

where 
fN  is the number of feeders connected to the 

substation; 
in  represents the number of segments in the 

ith feeder;  j

iL denotes the length of the jth segment in 

the ith feeder; and j

iC  is the cost coefficient of the jth 

segment in the ith feeder. 

The failure opportunity cost 
fC  is equivalent to the 

cost during the failure of a submarine cable which 

prevents WTs from generating electricity, and can be 

written as [35]:  

f rw eC K E                              (3) 
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rw WT

0

/ , 0,1,2, ,
dV

v v d

v

K T P F P V d


 
  
 
 
       (4) 

e OWF aE P E                             (5) 

x

OWF

8760 1a

E
E

P

 
  

 
                       (6) 

where 
rwK  represents the reliability weight of the CST, 

which can be affected by wake effect and ambient 

temperature; 
eE  represents the total expected energy 

not supplied (EENS) of the OWF, which is the total 
amount of power outages caused by the failure of the 
CST in a year based on WTs being normal throughout 

the year [36];   represents the efficiency coefficient 
which for carefully laid out wind farms will have a 

typical value of 0.90.95; d  represents the wind speed; 

dV  represents the wind speed distribution with d wind 

speed, while 
vP  and 

vF  represent the output of the WT 

and the wind speed frequency, respectively; 
OWFP  rep-

resents the installed capacity of the OWF; and 
aE  rep-

resents the value of hours for the OWF being out of 
operation [37]. 

xE  represents the expected value of the output power 

for the topology considering the failure of the CST, 

which can be written as: 

x L WT

0 0

1 1 1
N N

l l N l

N

k l

E q N l P C q q 

 

  
      
  
 ( ) ( ) ( )      (7) 

where N  represents the number of WTs; 
Lq  represents 

the failure rate of submarine cables; and q  denotes the 

failure rate of WTs. 

B. Constraints 

For the CST design, the constraints mainly include 

the selection constraints of undersea cable connected 

WTs and the undersea cable connection constraints, as 

described below: 

1) Quantity Constraint of WTs in Each Feeder 

Limited by the allowed number of feeders connected 

to the substation, the number of WTs of each feeder 

should be more than the minimum required number. In 

addition, the number of WTs of each feeder is limited by 

the maximum transmission capacity of the submarine 

cables. Therefore, the quantity constraint of WTs in 

each feeder can be described as: 
min max

min t

max

WT

max C

WT

max

C

 

 

3 cos

i

i

n n n

P
n

n P

S
n

P

S UI 













 

≤ ≤

                       (8) 

where maxn  and minn  represent the lower and upper 

bounds of the number of WTs in each feeder, respec-

tively; 
tP  is the rated power of the substation; 

WTP  

denotes the rated power of each WT; 
CS  represents the 

maximum transmission capacity of the submarine cable; 

U  is the rated voltage of the collector system; max

iI  

represents the maximum current carrying capacity of 

the submarine cables in the ith feeder; and cos  is the 

power factor. 

2) Capacity Constraint of Submarine Cable 

For each feeder, the types of submarine cables for 

each segment are different. Hence, the maximum 

transmission capacity of the submarine cable for each 

segment should be larger than the capacity sum of the 

downstream connected WTs, as [13]: 
max

, , f, 0,1,2, , ; 0,1,2, ,i j i j iS S i N j n ≤    (9) 

where ,i jS  denotes the capacity sum of downstream 

connected WTs behind the jth segment in the ith feeder; 

and 
max

,i jS  is the maximum transmission capacity of the 

submarine cable for the jth segment in the ith feeder. 

3) No Cross Constraint of Submarine Cables 

Crossing submarine cables (see Fig. 1) leads to extra 

expense for building one cable on the top of another, 

additional reactive power loss, and higher damage risk [23]. 

Hence, any two different submarine cables should sat-

isfy the no cross constraint, which is employed to each 

segment of feeder. From the location coordinates of 

connected WTs, this constraint can be described as: 

 
Fig. 1.  Illustration of cross submarine cables. (a) Cross subma-

rine cables. (b) No cross submarine cables. 
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f
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
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

＜

＜
 

(10) 

where 
iP , 

iQ , 
iM , and 

iN  are the location coordinates 

of the connected points by these two submarine cables; 

“” represents cross product; and “·” denotes the dot 

product. 

4) Voltage Constraint 

The voltage magnitude of each node should be lim-

ited within its lower and upper bounds, as 
min max

, , , f, 0,1,2, , ; 0,1,2, ,i j i j i j iV V V i N j n ≤ ≤      (11) 

where 
min

,i jV  and 
max

,i jV  represent the minimum and 

maximum voltage magnitudes in each node of the 

feeder, respectively; and ,i jV  represents the voltage 

magnitude of the jth node in the ith feeder. 

Ⅲ.   ALGORITHM PRINCIPLE AND DESIGN PROCESS 

Generally, the optimization method relies on a graph 

theory-based method, meta-heuristic algorithm, and 

clustering based method, and suffers from unstable re-

sults and being unable to iterate and search for a better 

solution of global optimization [34]. There are two main 

challenges in the combination of these methods. First, the 

optimization task of CST design need be effectively 

decomposed into multiple processes, so each algorithm 

can then be effectively implemented for each process. 

Secondly, the advantages of each algorithm need to be 

fully exploited, while their disadvantages should be 

avoided as much as possible. In this paper, the combina-

tion of graph theory-based method, meta-heuristic algo-

rithm, and clustering based method is optimized to solve 

the CST optimization of OWF. As illustrated in Fig. 2, 

the proposed approach consists of two main processes. 

 

Fig. 2.  Operational framework of the proposed approach for CST 

design. 

First, a few initial need to be found to the problem 

solutions while satisfying all constraints. All of WTs with 

the same power divided into groups by polar coordinates 

can avoid the no cross constraint effectively. In general, 

each group of WTs has the same quantity to achieve 

power balance, and WTs are then connected group by 

group with an improved minimum spanning tree. This 

algorithm is called improved DMST, and will be intro-

duced in the following sections. The layout of an OWF 

with large numbers of WTs is quite complex, and satis-

fying the no cross constraint can be difficult. However, 

this grouping method can generate solutions without 

submarine cable crossing, regardless of the complexity of 

the OWF. The solutions satisfying the no cross constraint 

with high feasibility can be the initial solutions. 

Secondly comes, optimizing those initial solutions by 

ISA. The initial solutions are generated by dividing and 

connecting while grouping is only determined by polar 

coordinates. Therefore, it is mostly likely not the best 

grouping and has room for optimization. ISA can op-

timize initial solutions by switching WTs between 

groups. In this way, better grouping can be generated by 

ISA, while the grouping optimization schemes can be 

further optimized by the improved DMST. 

A. Problem Decomposition 

To simplify CST the problem, the original optimiza-

tion problem can be decomposed into two sub-problems 

of initial optimization and deep optimization. The initial 

optimization can acquire feasible solutions, which are 

not economic enough for application in practical cases. 

Subsequently, the deep optimization process can further 

optimize the solutions which are produced by initial 

optimization to keep the capital cost as low as possible. 

Then each part of problem can implement a 

self-organizing optimization for each sub-problem. 

B. Generate Initial Solutions 

1) Polar Grouping 

To achieve a distributed optimization for the WT 

connection system, WTs are ranked and divided into 

groups by polar coordinates with substation as the 

origin. Each group has same number of WTs, but the 

last group can be fewer in number than the general 

number of other groups. The quantity of WTs can be 

changed from 
minn  to 

maxn . Each WT can be the 

starting point which means the quantity of WTs decides 

the dividing number of groups, as shown in Fig. 3. The 

total number of groups can be described as: 

 

Fig. 3.  Grouping traversal process. 
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max min( 1)G N n n                        (12) 

where G denotes the total number of WTs divided in 

groups. 

2) Intra-Group Connections 

To find the best connection scheme for the single 

group of WTs, the optimization model applies improved 

DMST to optimize the intra-group connection. In a WT 

connection system, upstream undersea cables can be 

changed while adding WTs downstream. Therefore, 

every time WTs are added, the factor of upstream edges 

should be changed while calculating optimization 

model cost. The improved DMST is based on prim 

algorithm and the added factors to generate a minimum 

spanning tree. Modified by the prim algorithm, the 

improved DMST can form a directed graph and add 

factors to every edge to update iterations while adding 

each edge.  

In improved DMST, two sets  0M  and 

 
ˇ

| lN i i n   are created first to represent the set of 

substations and WTs, which have been connected to the 

tree and a set of WTs not connected to the tree, respec-

tively. Secondly, the connection order of WTs is ranked 

by the distance to the substation. Thirdly, the first WT 

of in N  is chosen and connected to each individual in 

M  to calculate the factor and find which connected 

object can be the best. Next comes adding the WT to M  

and deleting from N . Additionally, a set of edge 

 L    is created to save the connection relationship. 

The third step is then repeated for all WTs connecting to 

the tree until  N    and  0, | lM i i n  . Lastly, 

the topology tree and the capital cost of CST are gen-

erated. 

The processes of the improved DMST forming di-

rected graph and connecting WTs are shown in Fig 4. 

In this work, all WTs are assumed to be the same and 

there are four types of submarine cables. According to 

the constraints, black cable, green cable, blue cable, 

yellow cable can load 2, 3, 4, and 5 WTs, respectively. 

As shown above, every step of connecting has a corre-

sponding cable to show the directed graph. 

 

Fig. 4.  The processes of improved DMST in single group.

C. Deep Optimization 

In this section, ISA is proposed to solve the CST for 

the OWF. First, to find search the optimal result quickly, 

the mutation operator and the mutation operation are 

proposed in ISA. Secondly, in the iteration process, the 

memory mechanism is proposed to quickly calculate the 

cost function by computing the costs of the two groups 

in the mutation operation. Lastly, in the no cross con-

straint, the priority of the judgment of violation con-

straint is lower than computation of capital cost, be-

cause the computation of capital cost is easier and faster 

than the judgment of violation constraint. 

1) Initialization for ISA 

The maximum number of groups 
fN  and maximum 

number of the WTs in each group max

in  are initialized 

according to the number of WTs. First, the preliminary 

solution is obtained by the polar grouping method, as: 
1 2[ , , , ]k NX X X X                       (13) 

where kX  represents the rank of WTs with each WT as 

starting point. 

Then, the ranks are decomposed by different numbers 

of WTs in one group, which can be written as: 

min min max

min min max

f f f
min min max

1 1 1

1

2 2 2

1

1

, , ,

, , ,

, , ,

i

n n n

k n n n
n

N N N

n n n

X X X

X X X
X

X X X







 
 
 

  
 
 
 

           (14) 

where k

lX  represents the grouping result. 

The corresponding inter-group connection with the 
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capital cost can be computed by DMST, which cost can 

be described as: 

DMST ( , 0,1,2, ,)
i i

k k

n nF F X k N            (15) 

where 
i

k

nF  represents the capital cost of grouping result; 

and
DMST F  represents the computation operation of 

capital cost by the DMST method. 

Through the grouping method, all initial solutions can 

satisfy the no crossing constraint. Each epoch of ISA 

has one individual, and the optimal capital cost 
0f  and 

best grouping solution 
0x can be selected from the ini-

tial solutions. 

2) Mutation Operation for ISA 

Generally, the new solution is obtained by the muta-

tion operation. Two random parameters are given in the 

mutation operation. The two parameters p  and q  are 

given to select the two mutation wind farms in different 

groups. For example, the solution in the tth iteration is 

given as the random parameters  1 2,
T

p p p  and 

1 2 f1 2, , , , , , ,p p N

t t t t t tx x x x x x    to determine the 

selected feeders, where t  represents the number of 

WTs. Then the random parameters  1 2,
T

q q q  deter-

mine the selected WTs, which can be represented as 

1

11 2, , , , ,
i

p

t q nx W W W W      and 

2

21 2, , , , ,
i

p

t q nx W W W W    . The new solution in the 

(t+1)th iteration is given as 

1

21 1 2, , , , ,
i

p

t q nx W W W W
     and 

2

11 1 2, , , , ,
i

p

t q nx W W W W
     . Particularly, if the two 

mutation WTs are in the same group, i.e., 
1 2p p , the 

mutation operation will be reset.  

3) Mutation Operation for ISA 
After the new solutions are obtained, the improved 

DMST is employed to rapidly obtain the inter-group 

connection with the two mutation groups and combine 

with the other groups remaining the as same as in the 

previous iteration. From the two mutation groups, the 

algorithm only computes the cost values of the two 

groups. The cost values of the other groups remain 

unchanged, as: 

IDMST,V 1

1 1 2

1 f

( ),

        

 , 1,2, ,

i

t

i

t

i

t

f X

f if i p or i p is satisfied

f i N










  




             (16) 

where 1

k

tf   represents the fitness value of the solution in 

the (i+1)th iteration; and IDMSTf  represents the com-

putation operation of the capital cost by the improved 

DMST method.  

Then the total fitness value should take the capital 

cost value and the violation of the no cross constraint 

into account. Through the group format, the algorithm 

reduces not only the cost computation of the two groups, 

but also the computation cost of the no cross constraint 

with a judgement of matrix L . The connection set of 

the sth feeder can be given as 
1

2

 

s

t

s

t

x

x

 
  
 

L , which repre-

sents the set of the selected feeder. The total connection 

set of the OWFs can be given as  

1 2 f1 2, , , , , , , .
s s N

t t t t t tx x x x x x     The improved 

DMST can judge whether the two selected feeders are 

crossing each other, and the judgement result matrix Z 

can be described as: 

f

0, . . .(6)
, 1,2; 1,2, ,

1

m

l

s t Eq
l m N


  


Z        (17) 

where m

lZ  represents whether the lth vector in L  and 

the mth vector in tx  violate the no cross constraint. 

In practical application, the CST needs to be sub-

jected to the voltage constraint. Thus, a power flow 

calculation will be applied in the optimization results to 

judge whether the CST violates the voltage constraint, 

and the judgement result matrix Y can be written as:  

f

0, .(3)  
, 1,2; 1,2, ,

1,

i

l

If Eq is satisfied
l i N

Otherwise


  


Y  (18) 

The fitness value can be determined by judgement 

matrix Z, matrix Y and the capital cost, as: 

f2

15

1 1

1 1

1 2

1 f

10 ( ),

        

 , 1,2, ,

N

i i i i

t t l l

l i

i

t

f f

if i p or i p is satisfied

f i N

 

 




   



 
 

 Z Y             (19) 

4) Annealing Operation 

Through the fitness values computation, the new so-

lution can be accepted if the Metropolis formula meet 

the demand, i.e.: 
1 2 1 2

1 1 1 best best

p p p p

t t tf f f f f               (20) 

1

1 1 2

1best

best

f
, . .exp , . . ,i t

ti

t

i

f s t rand s t i P P
Tf

f







  
   

   



＞
 (21) 

1

1 1 2

1best

best

f
, . .exp , ,i t

ti

t

i

X s t rand i P P
TX

X







  
   

   



＞
 (22) 

SA

1

, . .      ·t

t

t

K T s t t is the multiples of r
T

T



 


        (23) 

where 1tf   represents the deviation of energy state 

between the ( 1)t   state and the current best state; and 
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1f
exp t

T

 
 
 

 is the parameter that determines whether 

the system receives the ( 1)t   state’s change; T  is the 

control parameter of SA in the tth iteration; r is the 

length of the Markov chain; rand represents a random 

number; and 
SAK  represents the attenuation parameters 

of the annealing operation. 

D. Execution Procedure 

Overall, the specific execution procedure of ISA for 

the submarine cable connection system of an OWF is 

given in Table Ⅱ. 

TABLE Ⅱ  

THE SPECIFIC EXECUTION PROCEDURE OF ISA FOR SUBMARINE 

CABLE CONNECTION SYSTEM 

Input: The submarine cable cost factor and coordinates of WTs; 

1: Calculate the distance matrix between WTs and substation; 
2: Dividing WTs into groups by polar coordinates; 

3: Connecting each WTs groups by DMST; 

4: Initialize the parameters and operators of ISA; 
5: Initialize the groups, connections, solution and fitness value; 

6: WHILE 
maxtT T   

7: Select the mutation groups and execute the mutation operation 
according to the random operators; 

8: FOR 
1 2i p , p   

9: FOR 1j   to 
maxn   

10: Calculate the directed graph of WTs and determine the 

con-nection of WTs; 
11: Execute the cost calculation by Eq. (8); 

12: Record the solution, connections and cost function values; 

13: END FOR 

14: END FOR 

15: Calculate the violation of cross constraints by Eq. (6) and fitness 

function values by Eq. (9); 
16: Determine the annealing operation of current mutation solution by 

Eqs. (12)(15); 

17: Execute the drop of temperature operation; 

18: 1t t  ; 

19: END WHILE 

Output: The optimal groups and connections of OWTs. 

Ⅳ.   CASE STUDY 

To demonstrate the capability and application of the 

proposed technique, 2 OWFs with different quantities 

(i.e., 75, 250) and layouts of WTs are optimized using 6 

algorithms. The main difference between the two testing 

systems is the testing model, including the location 

distribution of WTs, number of WTs, and types and cost 

coefficients of alternative submarine cables. In this 

paper, 4 algorithms combined with the improved DMST 

respectively, including GA, IA, SA, and ISA, are pro-

posed to compare to the other two algorithms which are 

the modified genetic algorithm (MGA) and DMST [15], 

and DMST [10]. The main parameters needed in the 

optimization algorithms are given in Table Ⅲ, with the 

evaluation times of Pattern 1 at 5000. 

In different OWFs, the power of WTs can be different. 

In this paper, the 5 cases have two types of WTs with 8 MW 

and 8.5 MW, respectively. Consequently, different types of 

submarine cables should be applied to connect WTs in 

different OWFs. 

TABLE Ⅲ 

MAIN PARAMETERS OF OPTIMIZATION ALGORITHMS 

Algorithm Parameter Value 

ISA 

Attenuation parameters 0.99 

Initial temperature 50 

Generations 20 000 

SA 

Attenuation parameters 0.99 

Initial temperature N/2 

The length of Markov chain 200 

Generations 100 

IA 

Immune selected ratio 1 

Population refresh ratio 0.5 

Maximum immune generation 100 

Immune population 100 

Number of clones 2 

GA 

Crossover probability 1 

Mutation probability 1 

Population 200 

Generations 100 

MGA 

Crossover probability 1 

Mutation probability 1 

Population 200 

Generations 100 

Additionally, it is important to note that a true evalua-

tion would require years of measured wind speed data 

[38]. For clarity, this paper applies the sample data con-

sisting of three years of hourly wind speed data, as shown 

in Fig. 5, which provides the wind speed frequency dis-

tribution and cumulative frequency of this data set. In 

this paper, the 2 cases apply the WTs with 8 MW, so the 

power curve of the 8 MW WTs is provided in Fig. 6. 

 
Fig. 5.  Wind speed frequency distribution. 

 
Fig. 6.  Typical power curve of the 8 MW wind turbine. 
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The rated bus voltage is set to 66 kV, and the maximum 

and minimum voltages are set to 1.1 p.u. and 0.9 p.u., 

respectively [39]. 

To verify the practical implementation of the algo-

rithms proposed to optimize the CST, 5 different ex-

periments are conducted to evaluate the 6 algorithms. In 

different OWFs, the output of the submarine cable con-

nection graph and capital cost of undersea cables are 

based on MATLAB R2020b. All calculations and gra-

phing are carried out by a personal computer with Intel(R) 

Core i7-10700 CPU at 2.90 GHz with 8 GB of RAM. 

A. Test System #1: An OWF with 75 WTs 

To test the performance of the algorithms, they are 

applied to optimize the CST in an OWF with 75 WTs of 

8 MW each, resulting in a total capacity of 600 MW. 

The cost of submarine cables, including equipment and 

construction costs, is also taken into consideration. In 

this study, the cable connection system consists of 3 

types of submarine cables, as shown in Table Ⅳ. Based 

on the capacities of the submarine cables, current car-

rying capacities, and human intervention factors, three 

submarine cables are selected to connect the WTs in 

case 1. The cable types of #1, #2 and #3, can support up 

to 2, 3 and 4 WTs’ current output, respectively. 

TABLE Ⅳ  

 DATA ON SUBMARINE CABLES IN TEST SYSTEM #1 

Type 
Capacity 

 (MW) 

Ampacity  

(A) 
Resistance AC 90℃

(Ω/km) 

Reactance 

(Ω/km) 

Loadable quantity 

of WTs 

Price 

(￥/km×106/km) 

Representing 

colour 

#1 31.800 278 0.246 0.153 2 2.106 Black 

#2 45.498 398 0.127 0.138 3 2.623 Green 

#3 58.529 512 0.078 0.127 4 3.231 Bule 

In Pattern 1, the evaluation process is conducted 20 000 

times for six different methods. The optimization processes 

of meta-heuristic algorithms for CST are presented in 

Fig. 7. The number of iterations in ISA is 20 000, as 

every iteration only has a single individual, and the first 

individual is the best one of the initial groupings. The 

convergence process of the algorithms indicates that 

ISA can break through the local optimal solution. Fig. 8 

shows the data of 10 runs for the meta-heuristics algo-

rithms, including all results, mean value markers and 

median lines. To clarify the results of meta-algorithms, 

the data of DMST are shown in Table Ⅴ noting that the 

results of deterministic algorithm are fixed values 

without optimization. Different from the traditional SA, 

the improved SA can explore the searchable space ef-

ficiently and identify the optimal solution within a 

specified number of iterations. In addition, there is an 

annealing operation, which can abandon the current 

solution and explore new solutions based on the subop-

timal solution. Consequently, ISA can accept the 

suboptimal solution to expand the searchable space and 

prevent it from falling into a low-quality local optimum. 

It shows that the costs optimizing by ISA are signifi-

cantly lower, indicating that ISA has greater stability 

and reliability to optimize the CST of an OWF. Also, it 

illustrates that each algorithm can find several optimal 

schemes for CST under this special OWF, but ISA can 

obtain more solutions which are better than those from 

other algorithms. As a result, ISA can acquire more 

economical schemes in the OWF for the CST problem. 

In fact, the meta-heuristic optimization methods are 

essentially the stochastic optimization algorithm, which 

can easily acquire different optimal solutions in differ-

ent executions. To reveal their optimization stability for 

the optimal design of CST, their optimization results are  

given with different executions. In the case studies, each 
meta-heuristic optimization method is executed with 10 
runs for each testing system. Table Ⅴ lists the lowest, 

average, and highest costs of submarine cable cost scC  

and transmission power loss cost 
oC , respectively. The 

failure opportunity cost fC  is mostly affected by the 

number of WTs and the length of submarine cables.  

 

 
Fig. 7.  The convergence process graphs of meta-heuristics algo-

rithms for optimal design of CST in test system #1. (a) ISA. (b) 

SA, IA, GA & MGA. 
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Fig. 8.  The optimal costs by meta-heuristics algorithms of CST 

by running ten times in test system #1. 

In this paper, the number of WTs is unchangeable and 
the change of the length of submarine cables is quite 
small. The failure opportunity cost is accounted over the 

operating cycle of the OWF i.e. 25 years. As a result, 
under large coefficients of the numbers of WTs and 
submarine cables, the effect of the length of submarine 

cables is further reduced. In addition, min

ct , mean

ct , and 
max

ct represent the shortest, average, and longest con-

vergence times, respectively, whereas mint , meant  and 
maxt  represent the shortest, average, and longest com-

putation times, respectively. It can be seen from Table Ⅴ 
that the iteration optimization based on meta-heuristics 
algorithms can significantly reduce the investment costs 
compared a deterministic algorithm without iterating 
optimization. Although the computation time of the 
deterministic algorithm is quite low, the investment 
costs are higher than all meta-heuristics algorithms.

TABLE Ⅴ  

STATISTICAL RESULTS OBTAINED BY DIFFERENT ALGORITHMS FOR OPTIMAL DESIGN OF CST IN TEST SYSTEM #1 

Algorithm ISA SA IA GA MGA DMST 

Failure opportunity cost (￥/km×109) 2.0816 2.0816 2.0816 2.0816 2.0816 2.0816 

Total capital cost 
(￥/km×109) 

minf  2.4572 2.4623 2.4569 2.4613 2.4616 2.4647 

meanf  2.4591 2.4623 2.4586 2.4615 2.4617 2.4647 

maxf  2.4606 2.4623 2.4604 2.4516 2.4617 2.4647 

Submarine cable cost 
(￥/km×108) 

min

scC  3.7564 3.8063 3.7510 3.7970 3.8001 3.8063 

mean

scC  3.7752 3.8063 3.7696 3.7984 3.8009 3.8063 

max

scC  3.7903 3.8063 3.7873 3.7998 3.8012 3.8063 

Convergence time (s) 

mint  5.0214 4.8749 3.5109 28.3479 117.2878 3.1221 

meant  9.6960 5.0219 36.6338 65.0413 164.1541 3.2715 

maxt  12.9031 5.3237 84.7601 77.8860 246.0465 4.2443 

Computation time (s) 

c

mint  12.5726 480.1561 6.8332 826.5699 3733.8716 3.1221 

c

meant  12.9050 496.8612 83.2984 1032.1911 4245.1385 3.2715 

c

maxt  13.9548 515.2403 88.5295 1283.6421 4494.1805 4.2443 

Additionally, the layout of WTs and optimal CST 

graphs derived by ISA for the OWF is shown in Fig. 9. 

The CST graphs of comparison algorithms are shown in 

Figs. A1A5 in the Appendix A. In a case where the 

WT node voltages violate the voltage constraint, the 

simulation applies the max wind speed of 12 m/s while 

the WTs generate the rated power, as shown in Figs. 5 

and 6. Figure 10 shows the simulation result of the WT 

nodes voltage for the OWF in the proposed wind speed 

frequency distribution. It can be seen that the computa-

tion time of ISA is the lowest of the five meta-heuristics 

algorithms. By integrating the computation time and 

capital cost obtained by all methods, ISA can acquire 

high-quality solutions of the CST problem in OWF. 

Consequently, ISA is superior to other meta-heuristics 

algorithms and deterministic algorithms for OWF. 

B. Test System #2: An OWF with 250 WTs 

To test the robustness of the proposed ISA, Pattern 2 

is employed to apply algorithms to optimize the CST of 

an OWF with 250 WTs and a total capacity of 2000 MW. 

In this study, the cable connection system consists of 6  

types of submarine cables, as shown in Table Ⅵ. The 

cable specifications used in the benchmark are listed in 

Table 10 [31]. Based on the rated voltage and power, ca-

bles #1, #2, #3, #4, #5 and #6, can each withstand the cur-

rent output of up to 3, 4, 5, 6, 7 and 8 WTs, respectively. 
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Fig. 9.  The wind turbine connection graphs obtained by ISA for 

optimal design of CST in test system #1. (a) OWF layout. (b) ISA. 

 
Fig. 10.  The wind turbine node voltage of different algorithms 

for optimal design of CST in test system #1. 

Similarly, Fig. 11 provides the optimization pro-

cesses obtained by the six optimization algorithms for 

the CST problem in Pattern 2. Among the algorithms, 

ISA and IA stand out for their breakthrough of the local 

optimal and optimizing better solutions, as demon-

strated in Fig. 12. As shown in Table Ⅶ, the total cap-

ital cost of the CST derived by ISA is the lowest of 

among all the algorithms, while the computation cost, 

convergence time and mean value obtained by ISA are 

the lowest in the meta-heuristic algorithms. Given the 

size of this wind farm, the computation cost of the CST 

is particularly important, and ISA is able to achieve fast 

calculation speed comparable to the other optimization 

algorithms. This highlights the high efficiency of ISA as 

an adaptive algorithm for large OWF to optimize the 

CST for lower total capital cost. The layout of WTs and 

the optimal CST graphs optimized by ISA are illus-

trated in Fig. 13. The optimal CST graphs are shown in 

Figs. A6A10 in Appendix A. In addition, the simulation 

result of the WT node voltage for the OWF in the proposed 

wind speed frequency distribution is shown in Fig. 14. 

 

 

Fig. 11.  The convergence process graphs of meta-heuristics 

algorithms for optimal design of CST in test system #2. (a) ISA. 

(b) SA, IA, GA & MGA. 

 

Fig. 12.  The optimal costs by meta-heuristics algorithms of CST 

by running ten times in test system #2. 

TABLE Ⅵ  

DATA ON SUBMARINE CABLES IN TEST SYSTEM #2 

Type Capacity (MW)  Ampacity (A) 
Resistance AC 90℃ 

(Ω/km) 

Reactance 
(Ω/km) 

Loadable quantity 
of WTs 

Price 

(￥/km×106/km) 

Representing 
colour 

#1 26.293 230 0.342 0.160 3 0.195 Black 

#2 31.800 278 0.246 0.153 4 0.211 Green 

#3 45.498 398 0.127 0.138 5 0.262 Bule 

#4 58.592 512 0.078 0.127 6 0.323 Magenta 

#5 73.390 642 0.046 0.118 7 0.421 Red 

#6 90.195 789 0.027 0.112 8 0.580 Yellow 
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TABLE Ⅶ  

STATISTICAL RESULTS OBTAINED BY DIFFERENT ALGORITHMS FOR OPTIMAL DESIGN OF CST IN TEST SYSTEM #2 

Algorithm ISA SA IA GA MGA DMST 

Failure opportunity cost (￥/km×109) 5.1961 5.1961 5.1961 5.1961 5.1961 5.1961 

Total capital cost 
(￥/km×109) 

 
minf  6.3601 6.3633 6.3721 6.3670 6.3694 6.3696 

 
meanf  6.3631 6.3655 6.3692 6.3626 6.3694 6.3696 

 
maxf  6.3672 6.3695 6.3696 6.3647 6.3694 6.3696 

Submarine cable cost 
(￥/km×109) 

 min

scC  1.1641 1.1658 1.1717 1.1638 1.1732 1.1735 

 mean

scC  1.1677 1.1695 1.1733 1.1665 1.1732 1.1735 

 max

scC  1.1714 1.1718 1.1756 1.1687 1.1732 1.1735 

Convergence time (s) 

 c

mint  8.3643 64.707 2 158.0615 2750.4416 2808.3766 71.556 

 c

meant  62.4668 2894.772 3 523.8322 3182.1433 4192.0756 78.0011 

 c

maxt  80.7408 4541.033 1 873.4844 3762.8948 6268.8354 82.2138 

Computation time (s) 

 
mint  67.7985 2695.993 7 708.5005 5252.5243 20283.900 71.556 

 
meant  74.8730 4146.505 5 779.5425 5720.0190 21332.343 78.0011 

 
maxt  86.5634 5472.607 6 933.9494 6998.9384 26151.193 82.2138 

 

 
Fig. 13.  The wind turbine connection graphs obtained by ISA for optimal design of CST in test system #2. (a) OWF layout. (b) ISA. 

 
Fig. 14.  The wind turbine node voltage of different algorithms 

for optimal design of CST in test system #2. 

Ⅴ.   CONCLUSION 

In this paper, a new hybrid method based on graph 
theory, meta-heuristic optimization, and a group-
ing-based method is proposed for the optimal design of 
a CST for a large-scale OWF. The main conclusions: 

1) The proposed grouping-based method can dra-
matically reduce the optimization complexity and dif-
ficulty. The graph theory-based improved DMST can 
significantly enhance the local topology quality for 
each WT group, while a high optimization efficiency 
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can be guaranteed. The proposed ISA can effectively 
avoid trapping into low-quality solutions for the CST 
via a wide global exploration for different WT groups. 
Consequently, the proposed method can not only ac-
quire high-quality solutions for CST, but also guarantee 
optimization stability and efficiency. 

2) Comprehensive case studies with two test systems 
are conducted to demonstrate the effectiveness and ad-
vantages of the proposed method, in which four me-
ta-heuristic algorithms and a deterministic algorithm are 
adopted for comparison. The simulation results confirm 
that the proposed method can achieve lower capital costs 
for all the test systems, in which the cost reduction ranges 
from 0.163% to 0.921% against the comparative methods. 
Also, the computation cost for optimal design of the CST 
can be reduced from between 92.329% to 97.668% be-
tween the proposed method and other methods. The 
variation of optimization results using the proposed 
method is slightly larger than the deterministic algorithm. 

APPENDIX A 

 
Fig. A1.  The wind turbine connection graphs obtained by SA for 

optimal design of CST in test system #1. 

 

Fig. A2.  The wind turbine connection graphs obtained by IA for 

optimal design of CST in test system #1. 

 

Fig. A3.  The wind turbine connection graphs obtained by GA for 

optimal design of CST in test system #1. 

 

Fig. A4.  The wind turbine connection graphs obtained by MGA 

for optimal design of CST in test system #1. 

 

Fig. A5.  The wind turbine connection graphs obtained by DMST 

for optimal design of CST in test system #1. 
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Fig. A6.  The wind turbine connection graphs obtained by SA for 

optimal design of CST in test system #2. 

 

Fig. A7.  The wind turbine connection graphs obtained by IA for 

optimal design of CST in test system #2. 

 

Fig. A8.  The wind turbine connection graphs obtained by GA for 

optimal design of CST in test system #2. 

 

Fig. A9.  The wind turbine connection graphs obtained by MGA 

for optimal design of CST in test system #2. 
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Fig. A10.  The wind turbine connection graphs obtained by 

DMST for optimal design of CST in test system #2. 
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