
  

  

Abstract— QT prolongation often leads to fatal arrhythmia 
and sudden cardiac death. Antiarrhythmic drugs can increase 
the risk of QT prolongation and therefore require strict post-
administration monitoring and dosage control. Measurement of 
the QT interval from the 12-lead electrocardiogram (ECG) by a 
trained expert, in a clinical setting, is the accepted method for 
tracking QT prolongation. Recent advances in wearable ECG 
technology, however, raise the possibility of automated out-of-
hospital QT tracking. Applications of Deep Learning (DL) - a 
subfield within Machine Learning - in ECG analysis holds the 
promise of automation for a variety of classification and regres-
sion tasks.  In this work, we propose a residual neural network, 
QTNet, for the regression of QT intervals from a single lead 
(Lead-I) ECG. QTNet is trained in a supervised manner on a 
large ECG dataset from a U.S. hospital. We demonstrate the 
robustness and generalizability of QTNet on four test-sets; one 
from the same hospital, one from another U.S. hospital, and two 
public datasets. Over all four datasets, the mean absolute error 
(MAE) in the estimated QT interval ranges between 9ms and 
15.8ms.  Pearson correlation coefficients vary between 0.899 and 
0.914. By contrast, QT interval estimation on these datasets with 
a standard method for automated ECG analysis (NeuroKit2) 
yields MAEs between 22.29ms and 90.79ms, and Pearson 
correlation coefficients 0.345 and 0.620. These results demons-
trate the utility of QTNet across distinct datasets and patient 
populations, thereby highlighting the potential utility of DL 
models for ubiquitous QT tracking.     

Clinical Relevance— QTNet can be applied to inpatient or 
ambulatory Lead-I ECG signals to track QT intervals. The 
method facilitates ambulatory monitoring of patients at risk of 
QT prolongation.    

I. INTRODUCTION 

QT interval (QTI) and heart-rate corrected QT interval 
(QTc) are vital biomarkers for many cardiovascular health 
conditions and severe adverse outcomes. QT prolongation can 
result from multiple causes including genetic factors and drug-
effects, and can increase the risk for the life-threatening 
arrhythmias, Torsades-de-Pointes (TdP), and sudden cardiac 
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death. Hence, frequent monitoring of the QT interval is 
essential for patients diagnosed with a genetic or systemic 
predisposition to QT prolongation, or for those who need 
antiarrhythmic medications for other cardiac conditions [1,2]. 
For example, patients who need to be administered Dofetilide, 
an antiarrhythmic class-III agent often used to treat atrial 
fibrillation, require hospital admission just for QT monitoring 
during drug initiation. They are closely monitored by ECG for 
48-72 hours for excessive QT prolongation, and their dosage 
of medication is regulated accordingly. Such burden, both on 
the patient and the healthcare system, may be reduced with 
additional remote monitoring capabilities of QTI and QTc.  

QTI measurement by an expert from 12-lead ECG tracings 
remains the ‘gold standard’ approach for risk assessment. 
These measurements are confined to the clinical settings, skill- 
and labor-intensive, and not suitable for ubiquitous real-time 
monitoring. Wearable ECG devices, such as smartwatches that 
capture Lead-I only, have advanced toward achieving reliable 
ECG quality with agreement of the interval measurements 
compared to the clinical standard measurements [3,4], 
encouraging the feasibility of remote monitoring.  

 Automated analysis of the ECG signal remains a major 
challenge toward remote QTI monitoring since it is impractical 
for any expert to annotate continuous ECG streams. Deep 
learning (DL), machine learning (ML), with deep neural 
network (DNN) models have shown great promise in ECG 
analysis for classification tasks, such as detecting atrial 
fibrillation and other arrhythmias, identifying cardiac abnorm-
alities, LQTS, and others [5-7]. Yet, ML models for regression 
tasks such as inferring intervals or physiological parameters 
remain an area of active research [7]. Recent DL models on 
interval prediction from single- or multilead ECG attempt to 
circumvent direct regression by formulating the problem as 
multiclass classification or ECG delineation tasks [8-10].  

In this paper, we propose a deep learning ResNet-based 
regression model, named QTNet, (see Fig. 1), to infer QTI and 
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Figure 1.  QTNet architecture, adapted from [5]; input: 10-second Lead-I ECG sampled at 250Hz, output: QT interval and heart rate.  
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heart rates (HR) from single channel Lead-I ECG signals. The 
model is trained and evaluated on more than 4.22 million 
clinical ECGs from 903.5 thousand patients at the 
Massachusetts General Hospital (MGH), Boston, MA. The 
same model is then evaluated, without any fine-tuning, on 
multiple external datasets to demonstrate generalizability and 
reliability. External datasets include 3.17 million ECG from 
the Brigham and Women’s Hospital (BWH), Boston, MA, as 
well as publicly available Physionet datasets on drug-induced 
QT change, named RDVQ and DMMLD [11-13]. The perfor-
mance on both internal and external datasets demonstrates low 
regression errors and high Pearson correlation coefficients.  
Due to the lack of publicly available Lead-I DL models for 
QTI regression, we implemented a baseline method using the 
NeuroKit2 [14] library and compare its performance using the 
same datasets. QTNet outperforms the baseline in all metrics 
by notable margins. Hence, the contributions of this work are 
twofold; first, development of a new DNN model for 
regression of QT intervals from raw Lead-I ECG, and second, 
evaluation of the proposed model on external datasets 
including public resources. The results emphasize the potential 
of DL in enabling remote QT monitoring applications. 

II. METHODS 

A. Datasets 
MGH and BWH contain proprietary ECG databanks (GE 

MUSE system) for patients who underwent acquisition at any 
part of their care since 1981. These data contain 12-lead ECG 
voltages along with metadata including intervals (e.g., QTI) 
and interpretations (e.g., abnormalities) generated by the ECG 
devices, often adjudicated by experts. The MGH database is 
comprised of 4.22M ECG with the QTI and HR labels from 
903.5k patients. Similar data exist in the BWH set; 3.17M 
labelled ECG from 668k patients. The Institutional Review 
Board of the Mass General Brigham system approved our 
study to use these data. Though these datasets contain the full 
12-lead ECG, only the Lead-I signals are used for model 
development. All ECG are resampled to 250 Hz sampling rate. 

We use only part of the MGH dataset to build QTNet. For 
training, we use 3.06M ECG (653k patients, 72%), and for 
validation after each epoch, 534k ECG (115k patients, 13%). 
The rest 633k ECG (135.5k patients, 15%) data are used as 
hold-out test purposes, this is our “internal” test-set.  

We also evaluate QTNet on three “external” datasets; no 
fine-tuning was conducted. We test on the BWH dataset (3.1M 
ECG, 668k patients) and two Physionet datasets: RDVQ [12] 
and DMMLD [13]. The latter two datasets were generated for 

clinical trials exploring the effects of ion-channel blocking 
drugs on healthy subjects. The RDVQ study contains more 
than 5000 12-lead ECG from 22 subjects collected at a pre-
administration and 15 post-administration time-markers for 
four drugs. Similarly, the DMMLD study collects more than 
4000 12-lead ECG from 22 subjects over 14 time-markers for 
five drugs. Table 1 presents brief description of these datasets. 
The goal of this work is to evaluate the regression performance 
of QTNet on all those ECG data.  

B. Model Architecture and Training 
QTNet is a single-channel residual neural network consis-

ting of an ingest convolution layer, four residual blocks, each 
block of two convolution layers, and two fully-connected 
dense layers [Fig 1]. This architecture is adapted for regression 
tasks on single-lead ECG signals from existing pipelines [5]. 
10-second ECG Lead-I signal with sampling rate of 250 Hz is 
input to the model as single-channel 1x2500 length tensor. The 
kernel size is 16 for all convolution layer filters. The ingest 
layer learns 64 filters with single sample stride. The four 
residual blocks learn convolution layers with 128, 196, 256, 
and 320 filters, consecutively. Each convolution layer is 
followed by batch normalization and ReLU activation, and the 
skip connections in each residual block are implemented with 
max pooling and 1-to-1 convolution layer. Average pooling is 
used to get 1x320 feature tensor from the output of the last 
residual block. The following two fully-connected layers learn 
the weights to regress two outputs: QTI and HR from this 
feature tensor. The pipeline is implemented with PyTorch. 

QTNet is trained on the MGH training-validation dataset 
with the QT interval and HR labels. Each layer’s weights are 
initialized from a normal distribution with variance depending 
on the layer size. The mean squared error (MSE) was used as 
the loss function that was minimized by the ADAM optimizer 
for regression. We use learning rate step scheduler to decay the 
rate in half every 3 epochs, starting from 0.01. With the batch 
size 512, each epoch consists of about 6000 iterations. The 
training is run for 100 epochs; we use “early-stopping” to 
reduce overfitting risk based on the validation loss. The 
computations are conducted on a workstation with 64-core 
processor, 512GB memory, and three 48GB GPUs. 

C. ECG Delineation Algorithm 
Given the lack of availability for open-source DL models 

for QTI regression from single-lead ECG, we use the popular 
NeuroKit2 [14] library to implement a QTI regression algori-
thm. Using built-in functions for peak-detection and fiducial 
point delineation, we calculate QTI and HR from the Lead-I 
ECG data for all the test-sets. This algorithm is used as the 
baseline method and the calculated QTI and HR are used for 
comparison against those inferred with QTNet.    

D. Evaluation 
QTNet is evaluated on four datasets: MGH test-set, BWH, 

RDVQ, and DMMLD datasets. We compare the inferred QTI 
to the expert-read labels using measurement agreement, corre-
lation, and regression error metrics.   

Correlation and Errors: Similarity between the inferred 
values and the labels is evaluated using the Pearson-R corre-
lation coefficient. This coefficient ranges from -1 to 1; high 
and positive value refers to strong correlation. The regression 

TABLE I.  DATASET PROPERTIES 

Dataset MGH BWH RDVQ DMMLD 

Patients 903,593 667,060 22 22 

ECG   4,223,689 3,171,283 5232 4211 

Age (yr) 61 ± 18.6 60 ± 16.4 27 ± 5.4 26 ± 4.7 

Female (%) 43.0 50.2 49.5 40.5 

HR (bpm)  77 ± 20.3 77 ± 18.7 64 ± 9.5 67 ± 9.2 

QT (ms) 394 ± 49.9 396 ± 47.6 400 ± 33.7 388 ± 24.3 

QTc (ms) 439 ± 38.5 441 ± 35.3 412 ± 36.2 409 ± 27.4 

 



  

error is measured in mean absolute error (MAE), smaller error 
refers to better regression. 

Bland-Altman Agreement: The Bland-Altman plot is a tool 
to quantify the amount of agreement between two measurem-
ent methods (the inferred QTI and the expert-read labels) for a 
variable. It provides two quantifiable metrics: the bias and the 
limit of agreement (LoA). The bias refers to the average 
difference between the two measurements, and the LoA 
represents the variation of those differences. The 95% LoA is 
defined as 1.96xSDdiff, where SDdiff is the standard deviation 
of the difference in measurements.  

From the inferred QTI and HR, we calculate QTc using the 
Bazett formula QTc = QTI x (HR / 60)1/2. This inferred QTc is 
compared against label using the aforementioned metrics.  

III. RESULTS 

QTNet, without any fine-tuning, demonstrates robust reg-
ression performance across all four test-sets. Being trained on 
the MGH train-set, the performance of QTNet does not deter-
iorate when applied to “hold-out” or “unseen” datasets. As pre-
sented in Table 2, the MAE of QTNet remains notably lower 
than the baseline algorithm for all test-scenarios; moreover, 
the Pearson-R coefficient shows consistently strong correla-
tion across datasets. While the baseline algorithm’s perform-
ance significantly varies across datasets, QTNet performs 
consistently with MAE about 12.5 ms and Pearson-R 0.91, 
irrespective of the data sources. These results are also 
comparable to those reported in the literature on DL-based 
measurement of QT intervals from ECG signals [8-10]. 

The Bland-Altman analysis provides additional insight 
into the presence of systematic bias in the regression process. 
The 95% limit-of-agreement (LoA), which is 1.96 times the 
SDdiff, quantifies the reliability range for the predictions, espe-
cially in certain clinical applications. Smaller LoA refers to 
stronger agreement between the prediction and the true value. 
From Table 2, QTNet associated bias is small for the MGH 
test set and the BWH external dataset.  Biases for the RDVQ 
and DMMLD are larger, but still significantly lower than that 
of the baseline model.  Given the systematic differences in the 
data labeling procedures between the hospital systems and the 
Physionet studies, such difference in bias across sources is not 
unexpected, and is also observed for the baseline algorithm.  
The SDdiff ranges from 10.72 ms on the DMMLD data to 20.20 
ms on the MGH test-set. These variances in difference are not 
only significantly lower than those from the baseline method, 
but also lower than those presented in related works [8-10]. 
For example, the best performance in SDdiff achieved by a DL 
model for QTc from single-lead ECG was 23 ms [10]. Similar 
result of 23.5 ms best SDdiff was reported by [8].  

To investigate the spread of the measurement error, we use 
the Bland-Altman plots of the regression result on the RDVQ 
and DMMLD datasets, as shown in Fig 2. The plots show the 
distribution of the inference errors for QTNet and the baseline 
algorithm. QTNet shows positive biases for both datasets, as 
shown by the red-lines (labeled as ‘mean’ of the difference) on 
the plots. These biases indicate the tendency of the systematic 
error in QTNet and quantify possible adjustment to the 
predictions that can be made for better regression performance 
on such data. For both datasets, we notice the narrow spreads 
of the error distributions for QTNet, leading to small LoA 

result; the green-lines show the LoA on Fig 2. Such narrow 
LoA band highlights that the regression errors are bound 
within a small range, leading to increased reliability of the 
method. The LoA for the baseline model, on the other hand, 
are much wider, emphasizing the lower reliability of this 
method for many applications. These plots also underscore the 
consistency of QTNet in regression across datasets. 

Similarly, the inferred QTc value from the QTNet inferred 
QTI and HR is compared against corresponding labels. We 
find similar performance for QTc as the QTI regression. On 
the MGH test-set, the MAE between QTNet inferred QTc and 
the label is 14 ms with a Pearson-R correlation coefficient of 
0.8; on the BWH data, these metrics remain the same. On the 
RDVQ data, the MAE of 15.75 ms with Pearson-R 0.94 are 
reported for QTNet. And, for the DMMLD dataset, the QTc 
regression MAE is 9.73 ms and Pearson-R coefficient 0.93. 
These results highlight the improvement in performance of 
QTNet over those reported in literature [8-10]. 

 
Figure 2.  Bland-Altman agreement plots comparing QTNet and baseline 
method for measuring QT intervals on datasets DMMLD and RDVQ. 

TABLE II.  PERFORMANCE COMPARISON  

Data Methods 
Metrics 

MAE 
(ms) 

Pearson-R 
(ratio) 

Bias 
(ms) 

SDdiff 
(ms) 

MGH  
Test-set 

N=624,652 

Baseline 86.54 0.382 -82.37 84.28 

QTNet 12.63 0.914 0.59 20.20 

BWH 
N=3,171,283 

Baseline 90.79 0.368 -86.98 85.56 

QTNet 12.30 0.922 -0.33 18.61 

RDVQ 
N=5,217  

Baseline 38.14 0.345 -4.87 60.19 

QTNet 15.81 0.899 11.09 14.73 

DMMLD 
N=4,211 

Baseline 22.29 0.620 -8.36 30.20 

QTNet 9.39 0.899 4.60 10.72 

 



  

IV. RELATED WORKS 

Recent DL models for ECG analysis have notably 
advanced in learning useful representations for identifying 
cardiac abnormalities and conditions, as well as in capturing 
the relationship between the ECG and other hemodynamic 
parameters. Representations learnt from large amount of ECG 
have been fine-tuned for multiple prediction tasks like atrial 
fibrillation, ventricular hypertrophy, heart blocks, and 
arrhythmias [5,6]. Decision support systems such as 
hypertension diagnosis are also implemented from such 
representations [7]. Though these models have been evaluated 
for classification tasks, they seem to show resilience against 
noise variance and intramodal variations. In addition, these 
studies lend credence to the application of ResNet as an 
attractive architecture for building DNNs for ECG-based 
classification or regression tasks.  Hence, we design QTNet 
from 1d ResNet and adapt for regression of continuous 
variables.       

ECG interval measurement using DL models from 12-lead 
or less is still an area of active research. Due to the challenges 
of regression learning, others have attempted to measure QTI 
not only as continuous variable regression but also as 
secondary to beat-length delineation or range estimation as 
multiclass classification [8-10]. For 12-lead ECG based DNN 
models, ResNet architectures have been employed to estimate 
the probability of an interval among small bins over the entire 
range; the performance shows SDdiff about 23 ms [8]. 
Whereas, [9] used a DNN to regress the intervals directly from 
12-lead ECG, achieving the variance of difference reported in 
SDdiff of about 16 ms. For multilead inputs (Lead-I and II), this 
variance in regression error tends to be higher, as SDdiff is 
about 25 ms in [8] and 22 ms in [9]. Similar result has been 
reported for Cardiologs proprietary DL model on smartwatch 
ECG signals [10]. They also use a ResNet to delineate each 
beat and secondarily calculate QTI and QTc. Taking the 
guidance from these existing works, QTNet attempts to 
improve the performance and achieve generalizability. 

Commercially available digital electrocardiograms use 
proprietary algorithms for automated QTI measurement from 
12-lead ECG. The agreement, and the lack of it, among such 
algorithms varies significantly across cohorts. For QTI, 
pairwise mean differences between algorithms can range up to 
10-13 ms [15]. Moving from 12-lead to lower number of leads 
reduces the accuracy of such algorithms even further; for 
example, AliveCor Lead-I measurements has shown SDdiff of 
46 ms against GE measurements [3]. These challenges are obs-
erved not only across algorithms, the agreement among expert-
reads seems to suffer significantly when reading the QTc from 
Apple watch Lead-I compared to those from 12-lead GE ECG; 
SDdiff 30 ms, median absolute error 18 ms [4]. These high 
differences show “allowable” limits toward clinical significa-
nce, while also motivate the need for complex data-driven 
models as objective high-throughput measurement tools.   

V. CONCLUSION 

This work presents a novel regression model for measuring 
QT interval from Lead-I ECG signal, and demonstrates strong 
agreement of the predicted values with corresponding 12-lead 
labels on four hold-out datasets. The model outperforms the 
baseline algorithm in all metrics overwhelmingly. The results 

also show significant improvement from those published in 
recent works. Consistently ‘good’ inference on all test-sets, 
without any fine-tuning, emphasizes the robustness and 
generalizability of this model to real-world datasets.  

The metrics of evaluation also highlight the potential of 
applying QTNet for applications in remote QTI monitoring. 
Prolongation of QT secondary to drug effects are quantified 
with an increase in QTI by about 60 ms [8,12,13], which is 
much higher than the 95% limit-of-agreement of 20 ms for 
QTNet inferred values, and suggests that the method may be 
useful for real time tracking of QT prolongation.  Two of the 
external datasets that we evaluated QTNet on, RDVQ and 
DMMLD, were acquired as part of studies focusing on drug-
induced ECG changes with time after administration of 
various ion-channel blocking drugs. Future work will use 
those temporal data to evaluate the applicability of QTNet for 
identifying and predicting QT prolongation incidents for 
preventive purposes.  Additionally, prospective studies of the 
method, in patients being given antiarrhythmic drugs that can 
lead to QT prolongation, are needed to ensure that the method 
can truly identify patients at high risk of significant QT 
prolongation and related drug-induced arrythmias.   
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