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Abstract— Spontaneous retinal Venous Pulsations (SVP) are
rhythmic changes in the caliber of the central retinal vein and
are observed in the optic disc region (ODR) of the retina.
Its absence is a critical indicator of various ocular or neuro-
logical abnormalities. Recent advances in imaging technology
have enabled the development of portable smartphone-based
devices for observing the retina and assessment of SVPs.
However, the quality of smartphone-based retinal videos is
often poor due to noise and image jitting, which in return,
can severely obstruct the observation of SVPs. In this work,
we developed a fully automated retinal video stabilization
method that enables the examination of SVPs captured by
various mobile devices. Specifically, we first propose an ODR
Spatio-Temporal Localization (ODR-STL) module to localize
visible ODR and remove noisy and jittering frames. Then, we
introduce a Noise-Aware Template Matching (NATM) module
to stabilize high-quality video segments at a fixed position in
the field of view. After the processing, the SVPs can be easily
observed in the stabilized videos, significantly facilitating user
observations. Furthermore, our method is cost-effective and has
been tested in both subjective and objective evaluations. Both
of the evaluations support its effectiveness in facilitating the
observation of SVPs. This can improve the timely diagnosis
and treatment of associated diseases, making it a valuable tool
for eye health professionals.

I. INTRODUCTION

Spontaneous retinal venous pulsations (SVP) are rhythmic
changes in the central retinal vein and its branches. SVPs
are commonly present in the optic disc region (ODR) of the
retina. Absent SVPs are clinically associated with progres-
sion in glaucoma and increased intracranial pressure [1], [2].
Accordingly, assessment of the retina in determining SVP
presence is clinically paramount.

SVP evaluation is performed by inspecting the deforma-
tion of the retina vessels via fundus photography techniques
[3]. Conventional fundus photography data is usually cap-
tured using specialized and expensive benchtop equipment
operated by trained professionals. However, with increasing
emphasis on eye health, this method is not sufficient to meet
the growing demand.

Recently, due to the low cost and easy accessibility
of smartphones, researchers and clinicians [4], [5] have
commenced using smartphone-based fundus photography to
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Fig. 1. Illustration of our proposed automatic fundus retina video
stabilization method. Given a fundus retina video, our method automatically
detects the ODR both spatially and temporally. Afterward, our approach
aligns the visible ODR clips to a fixed position in the video footage. The
stabilized video facilitates better SVP inspection.

assess retinal conditions, allowing frequent SVP observa-
tion. However, retinal fundus images captured by hand-held
devices are not robust to various real-world artifacts, such
as noise and jittering. These artifacts would make medical
analysis difficult and time-consuming [6], [7], [8], thus
presenting challenges in clinical diagnosis and exacerbating
the likelihood of erroneous evaluation.

Most existing video stabilization works are proposed to
stabilize natural scenes [9] without taking specific image
domain knowledge into account. Only a few works [10],
[11] have been proposed to stabilize fundus retina videos.
However, those methods often require high-quality videos.
For example, the videos cannot contain eye blinks and drastic
illumination changes. Thus, those methods are not suitable to
process mobile-captured real-world retina videos. Efficiently
monitoring SVPs with computer-assisted techniques [12],
[13] still remains challenging. It is necessary to design an
effective automatic mobile-based fundus video stabilization
method to enable easy observation and diagnosis.

To better support clinicians or even non-experts in ob-
serving and evaluating SVPs, we propose a fully automatic
fundus retina video stabilization method as shown in Fig. 1.

Specifically, we design an ODR Spatio-Temporal Lo-
calization (ODR-STL) module to first detect the spatial
locations of ODR from a fundus video and then temporally
localize the ODR-visible clips from the video.

Next, we introduce a Noise-Aware Template Matching
(NATM) module to stabilize the ODR-visible video clips to
a fixed position of the footage (i.e., the field of view). In the
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Fig. 2. Overview of the pipeline of our method. Left: The video will be first processed by an ODR Spatio-Temporal Localization Module to remove
ODR-invisible frames. Then, a Noise Aware Template Matching is applied to align high-quality ODR frames to a fixed position. The video is cropped to
focus on ODR regions, thus aiding SVP inspection. Right: The intermediate results of our processing pipeline.

meanwhile, NATM is robust to specular near ODR regions
since specular might severely affect conventional template
matching performance.

After the stabilization, the observation of ODR videos will
not be subject to the artifacts caused by eyeball movements,
blinks, or abrupt brightness fluctuation, thus significantly
facilitating clinical assessment and downstream machine per-
ception. To further illustrate the effectiveness of our proposed
method, we apply it to real fundus videos captured with var-
ious types of smartphone-based fundus cameras. Moreover,
we quantitatively evaluate the quality of the stabilized video
clips as well as conduct a user study in which clinicians are
invited to choose which videos are more favored in observing
and evaluating SVPs.

II. METHODOLOGY

Our fully automated stabilization method is designed to
facilitate the detection of SVPs from clinical fundus videos.
As shown in Fig. 2, we feed an input fundus retina video
captured by the smartphone-based retina imaging platform
in clinics to our system and then obtain a stabilized video
of optical disc regions, where SVPs usually emerge. In our
method, the first step is a spatio-temporal localization of
visible ODR (ODR-STL) and then we select continuous
ODR-visible frames. The second step is to apply noise-
aware template matching (NATM) to stabilize the positions
of visible ODR in video clips.

A. Spatio-temporal Localization of Visible ODR

To accurately determine the presence of SVP, clinicians
need to observe at least one full clear cycle of the pulsation
in a fundus video. Thus, our ODR-STL method first detects
frames that contain ODR in the footage. Then our algorithm
identifies and eliminates huge jitterings in the footage. As
a result, video clips that contain continuous ODR with
sufficient temporal duration (i.e., longer than a full cycle of
SVP) are kept for further stabilization.

1) ODR Detection: Our method first employs a faster R-
CNN neural network [14] to detect ODR in video frames.
Utilizing deep networks helps to improve the accuracy of
the detecting results and circumvents some limitations of
traditional methods (e.g., sensitive to noise and illumination
changes). With the faster R-CNN model, our method extracts
the bounding box of ODR in each frame as well as obtains
the existence of ODR along the temporal dimension. As a
result, we obtain the spatial and temporal information of
visual ODR in a video.

2) Filtering Jitters: Our method then utilizes bounding
boxes to eliminate the jitters in the footage. Due to the
inherent noise presented in the video data and the size vari-
ance of detected boxes, the detected bounding boxes present
frequent fluctuations. However, since the fluctuation around
the ODR is small compared to the sizes of bounding boxes,
our method still obtains the approximate location of the ODR
in each frame, enabling further screening extreme jitters.
As shown in Fig. 3, the polylines reflect the movements
of ODR in the footage throughout the video. The broken
parts of the polyline indicate that the ODR is not detected
in these frames. By eliminating the huge jitter marked as
yellow vertical, our method further preserves a continuous
clip with ODR consistently showing in footage.

B. Noise-Aware Template Matching
Our NATM method is then applied to register the positions

of ODR in each clip. Due to the presence of random noise, it
is unsuitable to apply the plain template matching algorithm
to the data. Therefore, three additional strategies have been
introduced to mitigate the impact of noise when applying
template matching.

1) Template Size Selection: Template-based matching re-
quires a template as a reference. The algorithm identifies the
region of interest by evaluating the pixel-wise difference in
RGB values between a template and a potential matching
target. Thus, it is important to choose a template from a
region that is significantly different from the other parts of
the image. To achieve the best matching results on clinical
noisy data, the size and content of the template are very



Fig. 3. ODR Trajectories. The red (X-axis) and
blue (Y-axis) lines indicate detected ODR deviated
from the position in the first frame. The gray regions
indicate the removed frames after localization. The
pink line indicates the gradient of ODR trajectories.
The purple line indicates the variance of ODR distance
over frames.

Fig. 4. Comparison with other video stabilization methods. Note that our method is able
to remove low-quality images. In this example, ODR does not have enough illumination and
thus we remove this frame and obtain two video clips.

Fig. 5. Top: Optical flow before and after stabilization. Top left: the optical
flow of an original video along X and Y dimensions, respectively. Top right:
the optical flow of our stabilized video. The smoother flow indicates that the
video has fewer jittering artifacts. Bottom: Impacts of specular on different
channels in template matching. We can observe that the blue and green
channels are very sensitive to specular. Therefore, in order to achieve a
noise-aware template matching, our method reduces the impacts of blue
and green channels on template matching.

crucial. Since ODR is the brightest area and is unique in
retina images, the best choice for our task is to employ
a rectangle template centered on the ODR, with the side
length overlapping the ODR diameter. The ODR diameter is
estimated from the sizes of bounding boxes detected by the
faster R-CNN.

2) Screening Blur Template: After confirming the size
and position of the template, our method then determines
which frame should be adopted as the template. In order to
accurately find the ODR, our method selects the template
from a video frame without blur. Considering the irregular
noise in a video, it is difficult to calculate sharpness via
conventional gradient-based algorithms such as Laplacian
sharpness measurement. Meanwhile, we notice that blur
frames usually enlarge the jitters of bounding boxes. There-
fore, in each video clip, we use the trajectory of bounding
box centers within a sliding window to select the most
smooth period of the video, as shown in Fig. 3. Then, we

use the variance of optical flow [15] to determine the quality
of each frame in terms of sharpness as shown in Fig. 5.
The frame with the lowest variance of the optic flow will be
considered as the sharpest image in the most smooth period
of the clip.

3) Specular Spots Removing: In practice, some hand-held
fundus video-capturing devices utilize external light sources
to better observe fundus retina. This results in specular
spots on the eyeballs due to the reflection. As the light
sources normally emit white light, the reflected specular
spots present high values in RGB channels as shown in Fig.
5. We can observe that specular spots protrude especially
in the blue (B) and green (G) channels. Thus, we selected
an appropriate global threshold on the B and G channels.
Then, our algorithm employs mean filtering to minimize the
interference of specular light spots during template matching.

With these three strategies, template matching obtains a
series of ODR coordinates precisely from each noisy video
clip. This allows us to easily align these coordinates and
fix the positions of ODR in the footage. Our method further
crops the ODR out with a modifiable size to emphasize SVP.
As a result, we obtain a set of ODR-stabilized video clips
from our auto-processing pipeline.

III. EXPERIMENTS

In our study, our pipeline will automatically crop video
clips of 640×640 pixels from the original videos of size
1800×1800 pixels. This not only saves the storage by
reducing redundant information, but also emphasizes the area
where SVPs are commonly detectable. We then produce
quantitative and qualitative experiments including a user
study to evaluate the performance of our fundus retina
video stabilization method against some popularly used
approaches.



Fig. 6. Left: The variance of optic flow over frames. The variance of our method is the lowest. The variance of Adobe Premiere is close to ours, but its
effort on reducing optic flow variance brings distortion to the stabilized video. Right: User Study. We invite 25 subjects including clinical professionals
and non-experts to evaluate the quality of 20 stabilized videos by different methods. The original videos are also provided to the users for evaluation. Most
users favor stabilized videos by our method.

A. Quantitative Results

To further illustrate the effectiveness of our method in
inspecting SVPs, we conduct a series of comparative ex-
periments as objective evaluations. We also compare with
some existing video stabilization methods. ImageJ (i.e., FIJI)
is a widely used software in medical image processing. Its
plugins provide capacity for many tasks including video sta-
bilization. Adobe Premiere Pro is a popular video processing
and editing commercial software. It has a built-in function
to stabilize videos as well. We utilize optic flow to measure
the stability. As shown in Fig. 6, our method achieves the
least variance of optical flow.

B. Qualitative Results

Fig. 4 presents examples from our method and other
methods. The original video of this example contains blur,
specular spots, low illumination, and other real-world noise.
We can see that ImageJ fails to address the blur and the
stabilized videos suffer jittering when the specular moves. In
the video clips with less noise, the performance of ImageJ
can be on par with our method. Adobe Premiere Pro performs
more steadily, but it introduces distortion in the stabilized
video. This distortion will harm the SVP observation.

C. User Study

To determine the effectiveness of our method for manual
diagnosis, we recruited 25 individual subjects with varying
levels of expertise from four different clinics. We prepare
some groups of test videos in advance. Each group contains
four videos processed by four different methods from the
same original video. We then ask the subjects to watch five
groups of test videos and then report which video in each
group they would like to use to best observe SVP. We graph
their feedback as in Fig. 6. In this user study, videos from
our method are more favored than those from the others.

IV. CONCLUSIONS

In this paper, we propose an automatic fundus retina
video stabilization method that would profoundly promote
the wide application of smartphone-based SVP inspection
and assessment. From the stabilized videos, clinical profes-
sionals or even non-professionals can easily observe SVPs.
We also believe the stabilized video can significantly ease
the downstream clinical diagnosis and analysis. Noticeably,

our method has been tested on various data collected by
different mobile devices in different clinics. The experiments
demonstrate that our retina video stabilization method is very
effective in different clinical environments.
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